This application takes the benefit of and claims priority to Chinese Patent Application No. 202110614351.1 filed on Jun. 2, 2021, the contents of which are herein incorporated by reference.
The present disclosure relates to the technical field of flight devices, in particular to an aircraft safety lifesaving system.
An aircraft is an aircraft which is heavier than air flying in the atmosphere, in which a power device with one or more engines generates forward thrust or tensile force, and the fixed wing of the fuselage generates lift.
Because the aircraft is traveling at a high altitude, its safety performance is very important. Before each flight, the staff will check the aircraft status comprehensively and carefully, so as to improve the safety factor of the aircraft to the maximum. However, when an aircraft is traveling at a high altitude, it is still impossible to completely avoid air crashes caused by various factors. Once an air crash occurs, many people will lose their lives.
The applicant finds that there are at least the following technical problems in the prior art. In the prior art, lifesaving devices such as parachutes are equipped in the aircraft. Once the aircraft crashes, passengers and crew can use parachutes to escape from the escape exit of the cabin, but it is difficult for this manner to ensure the safety of passengers in the case of time constraints. There is no device on the aircraft that can assist in deceleration and landing, so that it can assist the aircraft to land when the aircraft has a failure.
The purpose of the present disclosure is to provide an aircraft safety lifesaving system, which solves the technical problem in the prior art that the aircraft lacks a device capable of assisting the aircraft to decelerate and land and buffering the descending impact force, and it is difficult to better ensure the safety of the aircraft and its staff. Many technical effects produced by the preferred technical scheme among the technical schemes provided by the present disclosure are described in detail hereinafter.
To achieve the above purpose, the present disclosure provides the following technical scheme.
The present disclosure provides an aircraft safety lifesaving system, comprising an aircraft body, wherein an openable safety cabin is provided at the top of the aircraft body, a deceleration device is provided in the safety cabin, and the deceleration device is capable of being ejected from the safety cabin to enable the aircraft body to decelerate and land;
a damping and buffering mechanism is provided at the bottom of the aircraft body, the damping and buffering mechanism is telescopically provided in the vertical direction, and the damping and buffering mechanism is capable of extending to the position below the aircraft wheel body to buffer the impact force when the aircraft body descends.
Preferably, the damping and buffering mechanism comprises a friction plate, a vertical strut and an elastic component, wherein:
the vertical strut is a hydraulic support provided vertically, the top end of the vertical strut is connected with the bottom of the aircraft body, and the elastic component is positioned between the vertical strut and the friction plate and connects the vertical strut and the friction plate;
the friction plate is capable of moving to the position below the wheel body when the vertical strut extends out so as to have friction with the ground for deceleration, and the elastic component is capable of elastically deforming when the friction plate contacts with the ground so as to buffer an external force.
Preferably, the friction plate extends along the length direction of the aircraft body, and more than two vertical struts are connected to both sides of the upper surface of the friction plate, and all the vertical struts are arranged at intervals along the extending direction of the friction plate.
Preferably, the damping and buffering mechanism further comprises an inclined strut, the inclined strut is a hydraulic support, the inclined strut is arranged obliquely, and the inclined strut has a fixed end connected with the bottom of the aircraft body and a telescopic end connected with the side of the vertical strut.
Preferably, an interlayer is formed in the housing of the aircraft body, the interlayer is communicated with the safety cabin, a reinforcing band is accommodated in the interlayer, and the reinforcing band is fixed around the aircraft body for a circle and extends into the safety cabin;
a plurality of safety cabins are arranged at intervals along the length direction of the aircraft body, and all the deceleration devices in the safety cabin are fixedly connected with the reinforcing bands.
Preferably, the deceleration device comprises a brake parachute located on the fuselage and a brake parachute located at the tail of the aircraft body, wherein:
the brake parachute on the fuselage comprises one or more layers, and when the brake parachute has more than two layers, the bottom of the brake parachute on the upper layer is fixedly connected with the top of the brake parachute on the lower layer.
Preferably, the deceleration device comprises a propeller on the fuselage, the propeller is connected with a generator, the generator is electrically connected with a storage battery, and the storage battery is electrically connected with an electrical device in the aircraft body.
Preferably, deceleration wings are also provided on both sides of the aircraft body, the deceleration wings have an arc structure protruding toward the nose, there are more than two deceleration wings on each side, and all the deceleration wings located on the same side of the aircraft body are arranged at intervals in the length direction of the aircraft body.
Preferably, the deceleration wing is rotatably connected with the aircraft body, and a hydraulic rod assembly is provided between the side of the deceleration wing away from the nose and the aircraft body;
the hydraulic rod assembly comprises one or more hydraulic rod bodies, the fixed ends of the hydraulic rod bodies are fixedly connected with the aircraft body, and the telescopic ends of the hydraulic rod bodies are fixedly connected with the deceleration wing;
the deceleration wing has an unfolded state and a folded state, and the hydraulic rod is capable of pushing the deceleration wing to rotate in the direction away from the aircraft body when extending out, so that the deceleration wing is in the unfolded state; the hydraulic rod is capable of pulling the deceleration wing to rotate in the direction close to the aircraft body when contracting, so that the deceleration wing is in the folded state.
Preferably, an escape exit is provided at the position corresponding to each deceleration wing on the aircraft body, and the escape exit is capable of being covered by the deceleration wing in the folded state;
the escape exit is provided with a push-pull door body; and an extendable escape ladder is provided at the escape exit.
Compared with the prior art, the aircraft safety lifesaving system provided by the present disclosure has the following beneficial effects. An openable safety cabin is provided at the top of the aircraft body. The deceleration device in the safety cabin is capable of being ejected to assist the aircraft body to decelerate and descend, thereby preventing the aircraft from directly losing control and crashing on the basis of striving for more escape time for passengers and flight attendants. A damping and buffering mechanism is provided at the bottom of the aircraft body. The damping and buffering mechanism is located above the wheel body when the aircraft is flying normally. In case of emergency, the damping and buffering mechanism extends to the position below the wheel body. When the aircraft contacts with the ground, the damping and buffering mechanism contacts with the ground first, so that the impact force when the aircraft body descends can be buffered, and serious accidents caused by the impact force when the aircraft body descends can be prevented so as not to threaten the safety of passengers and important parts in the aircraft, and the safety of life and property caused by the fact that the aircraft is out of control is reduced.
In order to explain the embodiments of the present disclosure or the technical scheme in the prior art more clearly, the drawings needed in the embodiments will be briefly introduced hereinafter. Obviously, the drawings in the following description are only some embodiments of the present disclosure. For those skilled in the art, other drawings can be obtained according to these drawings without paying creative labor.
In the drawings, 1. Aircraft body; 2. Safety warehouse; 3. Deceleration device; 31. Brake parachute; 32. Propeller; 4. Reinforcing band; 5. Damping and buffering mechanism; 51. Friction plate; 52. Vertical strut; 53. Elastic component; 54. Inclined strut; 6. Storage battery; 7. Generator; 8. Interlayer; 9. Deceleration wing; 10. Hydraulic rod body; 11. Escape exit.
In order to make the purpose, technical scheme and advantages of the present disclosure clearer, the technical scheme of the present disclosure will be described in detail below. Obviously, the described embodiments are only some embodiments of the present disclosure, rather than all of the embodiments. Based on the embodiments of the present disclosure, all other embodiments obtained by those skilled in the art without paying creative labor belong to the scope of protection of the present disclosure.
In the description of the present disclosure, it should be understood that the orientation or positional relationships indicated by the terms “center”, “length”, “width”, “height”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inner”, “outer”, “side”, etc. are based on the orientation or positional relationships shown in the drawings, which are only for the convenience of describing the present disclosure and simplifying the description, but do not indicate or imply that the referred devices or elements must have a specific orientation and be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the present disclosure. In the description of the present disclosure, unless otherwise specified, “a plurality of” means two or more.
The technical scheme provided by the present disclosure will be described in more detail with reference to
As shown in
In the aircraft safety lifesaving system of this embodiment, an openable safety cabin 2 is provided at the top of the aircraft body 1. The deceleration device 3 in the safety cabin 2 is capable of being ejected to assist the aircraft body 1 to decelerate and descend, thereby preventing the aircraft from directly losing control and crashing on the basis of striving for more escape time for passengers and flight attendants. A damping and buffering mechanism is 5 provided at the bottom of the aircraft body 1. The damping and buffering mechanism 5 is located above the wheel body when the aircraft is flying normally. In case of emergency, the damping and buffering mechanism 5 extends to the position below the wheel body. When the aircraft contacts with the ground, the damping and buffering mechanism 5 contacts with the ground first, so that the impact force when the aircraft body 1 descends can be buffered, and serious accidents caused by the impact force when the aircraft body 1 descends can be prevented so as not to threaten the safety of passengers and important parts in the aircraft, and the safety of life and property caused by the fact that the aircraft is out of control is reduced.
The damping and buffering mechanism 5 of this embodiment can generate sliding friction with the ground when contacting with the ground to assist the aircraft body 1 to decelerate, and generate elastic deformation to buffer the vertical downward impact force.
Specifically, the embodiment provides a specific implementation of a damping and buffering mechanism 5. As shown in
The friction plate 51 can be made of wear-resistant materials such as a carbon fiber composite plate, which can reduce its own weight. When an aircraft lands, it usually still has a certain horizontal speed, and the friction plate 51 can generate sliding friction with the ground. The sliding friction is used to assist the aircraft to decelerate quickly. The hydraulic support as the vertical strut is telescopically provided, which can lift the friction plate 51 to the position above the aircraft wheel body when the aircraft slides normally, so as to prevent the aircraft body 1 from sliding normally. When the aircraft lands due to accident, the vertical strut extends out and pushes out the friction plate 51 to the position below the wheel, so that the friction plate 51 first contacts the ground. The elastic component 53 is vertically arranged, and can be elastically deformed in the vertical direction when contacting with the ground, so as to buffer the impact force in the vertical direction and prevent the aircraft from being seriously damaged by a large impact external force when landing.
Specifically, as shown in
As an optional embodiment, as shown in
The damping and buffering mechanism 5 in this embodiment has the following functions. First, when the aircraft normally flies and lands, once the landing gear fails to open, it will result in friction between the aircraft body 1 and the ground, causing serious damage to the fuselage. When the landing gear fails to open normally, the damping and buffering mechanism 5 of this embodiment can extend to the position below the wheel body, and the friction plate 51 made of wear-resistant material contacts with the ground to have sliding friction, so as to prevent damage caused by friction between the fuselage and the ground. The damping and buffering mechanism can act as the landing gear, assist the aircraft body to slide, and at the same time play a damping role in the taxiing process. The damping and buffering mechanism 5 in this embodiment has double functions to ensure the safe landing of the aircraft, which is safer. Second, when the aircraft has a mechanical failure in flight in the air, the vertical strut extends out and pushes the friction plate 51 to the position below the wheel, so that the friction plate 51 contacts with the ground. The friction force is used to assist the aircraft to decelerate quickly to prevent the aircraft from crashing. The elastic component 53 can buffer the impact force in the vertical direction, and prevent the aircraft from being seriously damaged by a large impact force when landing. Third, the damping and buffering mechanism 5 and the aircraft body engine are two independent power supply systems, and the damping and buffering mechanism 5 can be connected with a storage battery. When the engine breaks down, the damping and buffering mechanism 5 can also work, which is safer.
On the basis of the above embodiments, a specific implementation of the deceleration device 3 is provided below:
The deceleration device 3 is located in the safety cabin 2, and is ejected from the safety cabin 2 when the aircraft encounters an accident. The deceleration device 3 is still fixedly connected with the aircraft body 1 after being ejected, providing upward buoyancy for the aircraft body 1 and preventing the aircraft body 1 from directly crashing out of control. In order to ensure the stable connection between the aircraft body 1 and the deceleration device 3 and prevent them from being separated when the external force is large, as an optional embodiment, as shown in
As shown in
As shown in
The brake parachute 31 located at the tail of the aircraft body 1 is mainly used to assist the aircraft to decelerate, and the brake parachute 31 located on the fuselage of the aircraft body 1 is mainly used to assist the aircraft to decelerate at the beginning of an aircraft accident, as shown in
The ejection system used to eject the deceleration device 3 in the safety cabin 2 is a mature existing technology, which is not described in detail here. The opening switch of the ejection system can be provided in the rear cabin to prevent passengers from false triggering. For example, the switch of the ejection system can also be provided in the safety cover, which can only be turned on after the safety cover is broken by a safety hammer to prevent false triggering.
In this embodiment, another specific embodiment of the deceleration device 3 is provided. The difference between embodiment 3 and embodiment 2 is that, as shown in
Preferably, as shown in
This embodiment is an improvement on the above embodiments. The aircraft body 1 uses the brake parachute 31 and/or the propeller 32 and the friction plate 51 to decelerate. In order to enable the aircraft to decelerate quickly in case of an accident, as an optional embodiment, as shown in
In order to reduce the influence on the speed of the deceleration wing 9 during the normal flight of the aircraft, the deceleration wing 9 in this embodiment is foldable. When the aircraft is flying normally, the deceleration wing 9 is folded, as shown in
In this embodiment, a specific embodiment of the foldable structure of the deceleration wing 9 is provided. As shown in
The deceleration wing 9 has an unfolded state (as shown in
The aircraft body 1 is usually provided with an emergency exit, which is convenient for passengers and crew to escape in an emergency. However, emergency exits are limited. In order to help passengers evacuate quickly in case of emergency, as an optional embodiment, as shown in
The aircraft body 1 of this embodiment is further provided with a laser interceptor missile system, which is a mature technology on the existing aircraft, and usually comprises a storage battery, an early warning system, a sensing system, a computer system and a launching system, and intercepts missiles and the like in case of a dangerous situation to ensure safety.
According to the aircraft safety lifesaving system of this embodiment, when an aircraft encounters a mechanical failure or a safety failure caused by human factors in the process of flying in the air, the system can help passengers strive for more escape time, assist the aircraft to descend and land, avoid the serious problem of aircraft crash and human death to a certain extent, and provide great safety guarantee for the aircraft to fly in the air.
In the description of this specification, specific features, structures or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
In the description of this specification, the description with reference to the terms “one embodiment”, “some embodiments”, “example”, “specific example” or “some examples” means that the specific features, structures, materials or characteristics described in connection with this embodiment or example are included in at least one embodiment or example of the utility model. In this specification, the schematic expressions of the above terms do not necessarily refer to the same embodiments or examples. Furthermore, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art can integrate and combine different embodiments or examples and features of different embodiments or examples described in this specification without contradicting each other.
The above is only a specific embodiment of the present disclosure, but the protection scope of the present disclosure is not limited thereto. The changes or substitutions conceivable to those skilled in the art within the technical scope disclosed by the present disclosure should be covered within the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be subject to the protection scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202110614351.1 | Jun 2021 | CN | national |