The present subject matter relates generally to time-data synchronization and more particularly to providing time reference synchronization for components of an aircraft.
In an aircraft, measurement systems typically include multiple devices distributed throughout the aircraft to observe various aircraft operations. These measurement systems often need to be accurately synchronized in time such that events measured by one device can be communicated to another device. In this way, measurement systems can correlate events measured by spatially separated devices.
Current synchronization solutions can include network time protocol (NTP) and precision time protocol (PTP). However, such protocols can include accuracy limitations and induce high processor loads. While a global position system (GPS) receiver can be used at each device of the measurement system, outfitting such hardware can be costly, as well as, less reliable due to GPS signal unavailability.
Aspects and advantages of examples of the present disclosure will be set forth in part in the following description, or may be learned from the description, or may be learned through practice of the examples.
One example aspect of the present disclosure is directed to a computer-implemented method of providing time reference synchronization for an aircraft system. The method can include receiving, by one or more computing devices associated with a data acquisition system of an aircraft, a signal comprising time synchronization information. The signal can include a first signal portion and a second signal portion. The method can further include filtering, by the one or more computing devices, the signal comprising the time synchronization information to distinguish the first signal portion and the second signal portion from noise associated with the signal. The method can include determining, by the one or more computing devices, the time synchronization information based at least in part on the first signal portion and the second signal portion. The method can further include synchronizing, by the one or more computing devices, a set of data acquired by the data acquisition system with the time synchronization information.
Another example aspect of the present disclosure is directed to a computing system for providing a time reference synchronization signal. The system can include one or more processors and one or more memory devices included in an aircraft. The one or more memory devices can store instructions that when executed by the one or more processors cause the one or more processors to perform operations. The operations can include encoding a signal with time synchronization information in at least one of a preamble portion, a time reference portion, a post-amble portion, and a time synchronization portion. The operations can further include sending the signal with the time synchronization information to one or more data acquisition systems. The one or more data acquisition systems can be configured to determine the time synchronization information based at least in part on at least one of the preamble portion, the time reference portion, the post-amble portion, and the time synchronization portion.
Yet another example aspect of the present disclosure is directed to an aircraft. The aircraft can include a computing system. The computing system can be configured to encode a signal with time synchronization information. The signal can include a preamble portion, a time reference portion, a post-amble portion, and a time synchronization portion. The computing system can be further configured to send the signal with the time synchronization information. The aircraft can include a data acquisition system. The data acquisition system can be configured to receive the signal comprising the time synchronization information. The data acquisition system can be further configured to verify that the signal is encoded with the time synchronization information based at least in part on at least one of the preamble portion, the time reference portion, and the post-amble portion. The data acquisition system can be configured to identify the time synchronization information based at least in part on the time synchronization portion. The data acquisition system can be further configured to synchronize a set of data acquired by the data acquisition system with the time synchronization information.
Other example aspects of the present disclosure are directed to systems, methods, aircrafts, avionics systems, devices, and non-transitory computer-readable media for providing time reference synchronization.
Variations and modifications can be made to these example aspects of the present disclosure.
These and other features, aspects and advantages of various examples will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate examples of the present disclosure and, together with the description, serve to explain the related principles.
Detailed discussion of examples directed to one of ordinary skill in the art are set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the present disclosure, one or more example(s) of which are illustrated in the drawings. Each example is provided by way of explanation of the present disclosure, not limitation of the present disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope of the present disclosure. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Example aspects of the present disclosure are directed to systems and methods of providing time reference synchronization for an aircraft system. For instance, an aircraft can include a master clock computing system and one or more data acquisition system(s) (e.g., accelerometer, tachometer) associated with a component (e.g., engine) of the aircraft. The master clock computing system can encode a specialized, unique signal with time synchronization information (e.g., a reference time, local time). The master clock computing system can send the signal to the data acquisition system(s). For example, the master clock computing system can send the signal via one or more power line(s) of the aircraft to leverage the existing aircraft hardware and avoid adding extra cable
The data acquisition system(s) can receive the signal including the time synchronization information, for example, via the power line(s) and filter the signal from noise. The data acquisition system(s) can verify that the signal is a signal-of-interest by examining, at least a first portion of, the signal. The data acquisition system(s) can identify and extract the time synchronization information based, at least in part, on another portion of the signal. The data acquisition system(s) can synchronize a set of data associated with a component of the aircraft with the time synchronization information and send the synchronized data to another computing system (e.g., ground-based system, data repository). In this way, the data acquisition systems can use time synchronization information from a centralized master clock computing system to measure local events, thereby achieving highly accurate time referencing, without needing a real clock on each of the individual data acquisition system(s).
More particularly, the master clock computing system can encode a signal with time synchronization information to create the specialized signal. For instance, the signal can include a carrier wave, such as a high frequency carrier wave. The signal can include a first portion and a second portion. The first signal portion can include at least one of a preamble portion, a time reference portion, and/or a post-amble portion, each including one or more signal cycle(s). The second signal portion can include a time synchronization portion, which can include one or more pulse(s). In some implementations, at least one cycle and/or pulse can be amplitude shift keyed.
The master clock computing system can send the signal (with the time synchronization information) to one or more data acquisition system(s). For example, the master clock computing system can modulate the one or more power line(s) associated with the data acquisition system(s) with the signal (e.g., including the carrier wave). In this way, the time synchronization information can be provided to the data acquisition system(s) using power lines already existing in the aircraft, without adding additional cables to the aircraft for time synchronization. The data acquisition system(s) can receive the signal, including the time synchronization information. For example, the power line(s) can be configured to feed the signal to the data acquisition system(s) (e.g., a channel, a sensor ADC, etc. associated therewith), which can sample the signal at a multiple of the carrier frequency.
The data acquisition system(s) can determine the time synchronization information by processing one or more individual portion(s) of the signal. To do so, the computing device(s) can verify the signal and identify the time synchronization information of the signal. For instance, as indicated above, the first portion of the signal can include, at least one of, a preamble portion, a time reference portion, and/or a post-amble portion. The data acquisition system(s) can verify that the signal is a specialized, unique signal from the master clock computing system by examining the preamble portion, the time reference portion, and/or the post-amble portion and its associated structure/cycle(s). For example, the data acquisition system(s) can compare the structure/cycle(s) included in those portions to one or more threshold(s) that are indicative of whether the signal includes the time synchronization information. If the signal structure/cycle(s) are above the threshold, then the signal can be accepted. In this way, the first signal portion can indicate to the data acquisition system(s) that a specialized time synchronization signal is being sent to the data acquisition system(s). However, if the structure/cycle(s) are below the threshold, the data acquisition system can reject the signal (e.g., as error-ridden, corrupt, lacking time synchronization information).
The data acquisition system(s) can identify and extract the time synchronization information of the signal based, at least in part, on the second portion of the signal. More specifically, in some implementations, the data acquisition system(s) can identify the time synchronization information based, at least in part, on the time synchronization portion, including one or more time synchronization pulse(s). For example, the data acquisition system(s) can identify a local zero crossing associated with one or more of the time synchronization pulse(s) to identify the time synchronization information (e.g., a reference time, local time), as further described herein. The data acquisition system(s) can synchronize a set of data acquired by the data acquisition system(s) (e.g., associated with an engine component, auxiliary power unit) with the time synchronization information. Moreover, the data acquisition system(s) can send a message including the time synchronized data to another computing system (e.g., ground-based data center).
The systems and methods according to example aspects of the present disclosure provide an efficient, cost-effective approach for providing accurate time references for acquired data. Particularly, systems and methods can provide simplified time synchronization information by leveraging the existing aircraft hardware. Replicated electronics across the systems can lead to similar delays for each data acquisition system, which can be easily predicted and compensated for during synchronization and/or analysis. Moreover, the systems and methods employ simple software decoding of the time synchronization information to incur very little processor load. In this way, the systems and methods according to example aspects of the present disclosure have a technical effect of producing simple, highly accurate time synchronization using existing aircraft hardware, which can limit the bandwidth expended on time synchronization.
As shown in
The computing device(s) 117 can be coupled to a variety of systems included on the aircraft 110. For instance, the computing device(s) 117 can be coupled to the data acquisition system(s) 119 via one or more power line(s) 118 associated with the data acquisition(s) 119. The power line(s) 118 can be those already existing on an aircraft 110. In some implementations, the computing device(s) 117 can be coupled to a variety of systems (including the data acquisition(s) 119) over a network. The network can include a data bus or a combination of wired and/or wireless communication links.
The data acquisition system(s) 119 can be configured to monitor and collect data with respect to one or more components of the aircraft 110. The data acquisition system(s) 119 can include an accelerometer, tachometer, magnetic tachometer, optical tachometer, sensor, and/or any other suitable type of measurement device included on the aircraft 110. By way of example, the data acquisition system(s) 119 can be associated with a component 120 of the engine(s) 112, a component of an auxiliary power unit, etc. The data acquisition system(s) 119 can be configured to measure the vibration experienced by the component 120 of the aircraft 110 (e.g., engine gearbox, rotor, shaft).
The computing system 116 can be configured to provide a time reference synchronization signal to the data acquisition system(s) 119. The computing device(s) 117 can be configured to send a signal 204, including time synchronization information 206 to the data acquisition system(s) 119. In some implementations, the computing device(s) 117 can be configured to send the signal 204 via one or more of the power line(s) 118 associated with the data acquisition system(s) 119. The time synchronization information 206 can include data indicative of a local time 208, a reference time, etc. Moreover, the computing device(s) 117 can be configured to encode the signal 204 such that it is a specialized signal that can indicate to the data acquisition system(s) 119 that it contains the time synchronization information 206.
For instance,
In some implementations, the signal 204 can include a carrier wave 302 (e.g., a high frequency carrier wave). At least one cycle of the signal 204 can be amplitude shift keyed (e.g., varying amplitude of the signal 204 to change signal mode/state). The computing device(s) 117 can be configured to encode the signal 204 to include one or more state(s) such as, for example: a space (e.g., indicating no carrier present), a one (e.g., indicating carrier at full amplitude), and/or a zero (e.g., indicating carrier at half amplitude). Moreover, the computing device(s) 117 can be configured to encode the signal 204 to include a first signal portion 310 and/or a second signal portion 320. In some implementations, the signal 204 can include a space 330 (e.g., equivalent to a plurality of bits) between the first portion 310 and the second portion 320. For example, the space 330 can be equivalent to five bits.
The first signal portion 310 can include, at least one of, a preamble portion 312, a time reference portion 314, and/or a post-amble portion 316. The preamble portion can include one or more first signal cycle(s) 317. For instance, the one or more first signal cycle(s) 317 can include a plurality of carrier wave cycles decoded as ones. By way of example, the first signal cycles(s) 317 can include ten carrier wave cycles, as shown in
The second portion 320 can include a time synchronization portion 322. The time synchronization portion 322 can include one or more time synchronization pulse(s) 323. For example, the time synchronization pulse(s) 323 can include one or more cycles decoded as ones, as shown in
Returning to
In some implementations, the computing device(s) 117 can encode the signal 204 such that the computing device(s) 220 of the data acquisition system(s) 119 can verify that the signal 204 includes the time synchronization information 206 and also identify the time synchronization information 206. For example, the one or more first signal cycle(s) 317, the one or more second signal cycle(s) 318, and/or the one or more third signal cycle(s) 319 can be encoded to verify that the signal 204 includes the time synchronization information 206, as further described herein. The one or more time synchronization pulse(s) 323 can be encoded with a local time 208, which can be used for data synchronization.
The computing device(s) 117 can be configured to send the signal 204 with the time synchronization information 206, for example, to one or more computing device(s) 220 of the data acquisition system(s) 119. By way of example, the signal 204 can include a carrier wave 302 (e.g., high frequency carrier wave) and the computing device(s) 117 can be configured to modulate the one or more power line(s) 118 associated with the data acquisition system(s) 119 with the signal 204, including the carrier wave 302. In this way, the time synchronization information 206 can be provided to the data acquisition system(s) 119 using power lines already existing in the aircraft 110, without adding additional cables to the aircraft 110 for time synchronization. Moreover, the signal 204 can be associated with a short burst, which can lead to bandwidth limiting of the signal modulation to have little effect on the time synchronization information 206.
The computing device(s) 220 of the data acquisition system(s) 119 can be configured to receive the signal 204, including the time synchronization information 206. For example, the power line(s) 118 can be configured to feed the signal 204 to the data acquisition system(s) 119 (e.g., a channel 202A-C, a sensor ADC, etc. associated therewith), which can be configured to sample the signal 204 at a multiple of the carrier frequency.
The computing device(s) 220 of the data acquisition system(s) 119 can be configured to analyze the signal 204 to extract the time synchronization information 206. For instance, the computing device(s) 220 of the data acquisition system(s) 119 can be configured to determine the time synchronization information 206 based, at least in part, on the signal 204. In some implementations, this can be done based, at least in part, on at least one of the preamble portion 312, the time reference portion 314, the post-amble portion 316, and/or the time synchronization portion 322.
For example, the computing device(s) 220 of the data acquisition system(s) 119 can be configured to verify that the signal 204 is encoded with time synchronization information 206. In some implementations, this can based, at least in part, on at least one of the preamble portion 312, the time reference portion 314, and/or the post-amble portion 316. More specifically, in some implementations, computing device(s) 220 can be configured to verify that the signal 204 is encoded with time synchronization information 206 based, at least in part, on at least one of the one or more first signal cycle(s) 317, the one or more second signal cycle(s) 318, and/or the one or more third signal cycle(s) 319. For example, and as further described below, the computing device(s) 220 can be configured to compare the particular cycle structure of the first portion 310 with one or more thresholds 340 (shown in
In some implementations, the computing device(s) 220 of the data acquisition system(s) 119 can be configured to identify the time synchronization information 206 based, at least in part, on the second portion 320. More specifically, in some implementations, the computing device(s) 220 can be configured to identify the time synchronization information 206 based, at least in part, on the time synchronization portion 322. For example, the computing device(s) 220 of the data acquisition system(s) 119 can be configured to identify the time synchronization information 206 based, at least in part, on the one or more time synchronization pulse(s) 323, as further described herein.
The computing device(s) 220 of the data acquisition system(s) 119 can be configured to synchronize a set of data 230, acquired by the data acquisition system(s) 119. For example, the data acquisition system(s) 119 can be configured to acquire the set of data 230 associated with one or more component(s) 120 (e.g., of engine 112). The computing device(s) 220 can be configured to synchronize the set of data 230 with the time synchronization information 206. In some implementations, the data acquisition system(s) 119 can be configured to synchronize data acquired from another device and/or data acquisition system 119.
The computing device(s) 220 can be configured to send a message 240, including the set of data 230 acquired by the data acquisition system(s) 119 and synchronized with the time synchronization information 206. The message can be sent to a remote computing system 250 that can be remote from the data acquisition system(s) 119 and/or the aircraft 110. For example, the remote computing system 250 can be associated with a ground-based data analysis system and/or repository.
At (402), the method 400 can include encoding a signal with time synchronization information. For example, the computing device(s) 117 of computing system 116 can encode the signal 204 with time synchronization information 206. The signal 204 can include the first portion 310 and the second portion 320. In some implementations, the first signal portion 310 can include at least one of the preamble portion 312, the time reference portion 314, and the post-amble portion 316. The second signal portion 320 can include the time synchronization portion 322. Additionally, and/or alternatively, the signal 204 can include a carrier wave 302 (e.g., high frequency carrier wave) and can include one or more cycle(s) and/or pulse(s) (e.g., 317, 318, 319, 323) as described herein. In some implementations, at least one cycle and/or pulse can be amplitude shift keyed.
At (404) and (406), the method 400 can include sending and receiving the signal including the time synchronization information. For example, the computing device(s) 117 of computing system 116 can send (e.g., via one or more power line(s)) the signal 204 with the time synchronization information 206 to one or more data acquisition system(s) 119. The computing device(s) 220 of the data acquisition system(s) 119 can receive the signal 204 including the time synchronization information 206, as described above.
At (408), the method can include filtering the signal. For instance, the computing device(s) 220 of the data acquisition system(s) 119 can filter the signal 204 including the time synchronization information 206 to distinguish the first signal portion 310 and/or the second signal portion 320 from noise associated with the signal 204. The computing device(s) 220 of the data acquisition system(s) 119 can filter the signal 204 to eliminate any noise and/or interference other than the signal 204 at the carrier frequency.
At (410), the method can include determining the time synchronization information. For instance, the computing device(s) 220 of the data acquisition system(s) 119 can determine the time synchronization information 206 based, at least in part, on the first signal portion 310 and/or the second signal portion 320 of signal 204. To do so, in some implementations, the computing device(s) 220 can verify that the signal 204 includes the time synchronization information 206 and identify the time synchronization information 206 of the signal 204.
The computing device(s) 220 can verify the signal 204 based, at least in part, on the first portion 310. As described above, the first portion 310 can include at least one of a preamble portion 312, a time reference portion 314, and a post-amble portion 316. The computing device(s) 220 can verify the signal 204 based, at least in part, on at least one of the preamble portion 312, the time reference portion 314, and/or the post-amble portion 316.
In some implementations, the computing device(s) 220 can verify the signal 204 based, at least in part, on one or more threshold(s) 340. For example, the preamble portion 312 can include one or more first signal cycle(s) 317, the time reference portion 314 can include one or more second signal cycle(s) 318, and/or the post-amble portion 316 can include one or more third signal cycle(s) 319. The computing device(s) 220 can determine whether the first signal cycle(s) 317, the second signal cycle(s) 318, and/or the third signal cycle(s) 319 (e.g., their associated amplitudes) are above one or more threshold(s) 340. In some implementations, the one or more threshold(s) 340 can be indicative of whether the signal 204 includes the time synchronization information 206. For instance, the computing device(s) 220 can accept the signal 204 as including the time synchronization information 206 when the first signal cycle(s) 317, the second signal cycle(s) 318, and/or the third signal cycle(s) 319 are above the one or more threshold(s) 340. Such acceptance can indicate that the signal 204 does indeed include the time synchronization information 206, the signal 204 is not corrupt or error-ridden, etc. In this way, the computing device(s) 220 can verify that the signal 204 includes the time synchronization information 206 when the cycles of the first portion 310 are above the threshold(s) 340 and accordingly accept such a signal.
Additionally, and/or alternatively, the computing device(s) 220 can reject the signal 204 when at least one of the first signal cycle(s) 317, the second signal cycle(s) 318, and/or the third signal cycle(s) 319 are below the one or more threshold(s) 340. Such rejection can indicate an error and/or corruption of the signal 204 (e.g., associated with the first and/or second portions 310, 320) and/or the time synchronization information 206. In some implementations, a rejection can indicate that the signal 204 fails to include the time synchronization information 206.
The computing device(s) 220 of data acquisition system(s) 119 can also, and/or alternatively, identify and extract the time synchronization information 206 included in the signal 204. The computing device(s) 220 can identify the time synchronization information 206 based, at least in part, on the time synchronization portion 322. More specifically, in some implementations, the computing device(s) 220 can identify the time synchronization information 206 based, at least in part, on the one or more time synchronization pulse(s) 323.
By way of example, as shown in
Returning to
At (414), the method can include sending a message that includes the time synchronized set of data. For instance, the computing device(s) 220 of the data acquisition system(s) 119 can send the message 240 comprising the set of data 230 (acquired by the data acquisition system(s) 119) synchronized with the time synchronization information 206. The message 240 can be sent to the remote computing system 250 that can be remote from the data acquisition system(s) 119 and/or the aircraft 110.
The computing system 116 can include one or more computing device(s) 117. The computing device(s) 117 can include one or more processor(s) 117A and one or more memory device(s) 117B. The one or more processor(s) 117A can include any suitable processing device, such as a microprocessor, microcontroller, integrated circuit, logic device, and/or other suitable processing device. The one or more memory device(s) 117B can include one or more computer-readable media, including, but not limited to, non-transitory computer-readable media, RAM, ROM, hard drives, flash drives, and/or other memory devices.
The one or more memory device(s) 117B can store information accessible by the one or more processor(s) 117A, including computer-readable instructions 117C that can be executed by the one or more processor(s) 117A. The instructions 117C can be any set of instructions that when executed by the one or more processor(s) 117A, cause the one or more processor(s) 117A to perform operations. In some embodiments, the instructions 117C can be executed by the one or more processor(s) 117A to cause the one or more processor(s) 117A to perform operations, such as any of the operations and functions for which the computing system 116 and/or the computing device(s) 117 are configured, one or more operations for providing time reference synchronization for an aircraft system (e.g., method 700), as described herein, and/or any other operations or functions of the one or more computing device(s) 117. The instructions 117C can be software written in any suitable programming language or can be implemented in hardware. Additionally, and/or alternatively, the instructions 117C can be executed in logically and/or virtually separate threads on processor(s) 117A.
The memory device(s) 117B can further store data 117D that can be accessed by the processors 117A. For example, the data 117D can include data associated with the signal 204 (and/or any portions thereof), the time synchronization information 206, data associated with the data acquisition system(s) 119, and/or any other data and/or information described herein.
The computing device(s) 117 can also include a network interface 117E used to communicate, for example, with the other components of the system 500. The network interface 117E can include any suitable components for interfacing with one or more network(s), including for example, transmitters, receivers, ports, controllers, antennas, and/or other suitable components.
The data acquisition system(s) 119 can include one or more sensor(s) 504 and one or more computing device(s) 220. As described herein, the sensor(s) 504 (e.g., accelerometer, tachometer, magnetic tachometer, optical tachometer, and/or any other suitable type of measurement device) can be configured to acquire data associated with one or more component(s) of aircraft 110. The sensor(s) 504 can be associated with the computing device(s) 220. In some implementations, the sensor(s) 504 can be configured to perform one or more functions of the computing device(s) 220.
The computing device(s) 220 can include one or more processor(s) 220A and one or more memory device(s) 220B. The one or more processor(s) 220A can include any suitable processing device, such as a microprocessor, microcontroller, integrated circuit, logic device, and/or other suitable processing device. The one or more memory device(s) 220B can include one or more computer-readable media, including, but not limited to, non-transitory computer-readable media, RAM, ROM, hard drives, flash drives, and/or other memory devices.
The one or more memory device(s) 220B can store information accessible by the one or more processor(s) 220A, including computer-readable instructions 220C that can be executed by the one or more processor(s) 220A. The instructions 220C can be any set of instructions that when executed by the one or more processor(s) 220A, cause the one or more processor(s) 220A to perform operations. In some embodiments, the instructions 220C can be executed by the one or more processor(s) 220A to cause the one or more processor(s) 220A to perform operations, such as any of the operations and functions for which the data acquisition system(s) 119 and/or the computing device(s) 220 are configured, one or more operations for providing time reference synchronization for an aircraft system (e.g., method 700), as described herein, and/or any other operations or functions of the one or more computing device(s) 220. The instructions 220C can be software written in any suitable programming language or can be implemented in hardware. Additionally, and/or alternatively, the instructions 220C can be executed in logically and/or virtually separate threads on processor(s) 220A. The memory device(s) 220B can further store data 220D that can be accessed by the processors 220A. For example, the data 220D can include data associated with the signal 204 (and/or any portions thereof), the time synchronization information 206, the set of data 230, other data acquired and/or used by the data acquisition system(s) 119, and/or any other data and/or information described herein.
The computing device(s) 220 can also include a network interface 220E used to communicate, for example, with the other components of the system 500. The network interface 220E can include any suitable components for interfacing with one or more network(s), including for example, transmitters, receivers, ports, controllers, antennas, and/or other suitable components.
The circuitry configuration of the computing device(s) 117 and 220, shown in
The technology discussed herein makes reference to computer-based systems and actions taken by and information sent to and from computer-based systems. One of ordinary skill in the art will recognize that the inherent flexibility of computer-based systems allows for a great variety of possible configurations, combinations, and divisions of tasks and functionality between and among components. For instance, processes discussed herein can be implemented using a single computing device or multiple computing devices working in combination. Databases, memory, instructions, and applications can be implemented on a single system or distributed across multiple systems. Distributed components can operate sequentially or in parallel.
Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the present disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the present disclosure, including the best mode, and also to enable any person skilled in the art to practice the present disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the present disclosure is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Date | Country | Kind |
---|---|---|---|
1609153 | May 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/062711 | 5/25/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/203019 | 11/30/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3564544 | Scott et al. | Feb 1971 | A |
3705404 | Chisholm | Dec 1972 | A |
3719920 | Grada et al. | Mar 1973 | A |
3812333 | Mineck et al. | May 1974 | A |
4088899 | Miller et al. | May 1978 | A |
4405985 | Hall et al. | Sep 1983 | A |
4534219 | Nadeau et al. | Aug 1985 | A |
5144315 | Schwab et al. | Sep 1992 | A |
5320449 | Demarteau | Jun 1994 | A |
5424746 | Schwab et al. | Jun 1995 | A |
5924056 | Boedecker et al. | Jul 1999 | A |
5974862 | Lander et al. | Nov 1999 | A |
6023444 | Naville et al. | Feb 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6424595 | Chenin | Jul 2002 | B1 |
6765383 | Barringer | Jul 2004 | B1 |
6954137 | Stewart et al. | Oct 2005 | B2 |
7092759 | Nehls et al. | Aug 2006 | B2 |
7127289 | Yu et al. | Oct 2006 | B2 |
7139608 | Ideker et al. | Nov 2006 | B2 |
7286872 | Kramer et al. | Oct 2007 | B2 |
7292151 | Ferguson et al. | Nov 2007 | B2 |
7369896 | Gesotti | May 2008 | B2 |
7519537 | Rosenberg | Apr 2009 | B2 |
7558157 | Gardner et al. | Jul 2009 | B1 |
7805020 | Trudeau et al. | Sep 2010 | B2 |
7847726 | Jia et al. | Dec 2010 | B2 |
7847734 | Wu | Dec 2010 | B2 |
7855545 | Petchenev et al. | Dec 2010 | B2 |
7859465 | Wu | Dec 2010 | B2 |
7894901 | Koh | Feb 2011 | B1 |
7904155 | Yu et al. | Mar 2011 | B2 |
7916877 | Goldberg et al. | Mar 2011 | B2 |
7969819 | Hall et al. | Jun 2011 | B2 |
8004933 | Iseli | Aug 2011 | B2 |
8009198 | Alhadef | Aug 2011 | B2 |
8050881 | Yeung et al. | Nov 2011 | B1 |
8116994 | Parker | Feb 2012 | B2 |
8121857 | Galasso et al. | Feb 2012 | B2 |
8130141 | Pattabiraman et al. | Mar 2012 | B2 |
8155121 | Gudan et al. | Apr 2012 | B2 |
8164980 | Sullivan et al. | Apr 2012 | B2 |
8165844 | Luinge et al. | Apr 2012 | B2 |
8217797 | Ikoyan | Jul 2012 | B2 |
8330812 | Maguire, Jr. | Dec 2012 | B2 |
8379874 | Simon | Feb 2013 | B1 |
8427325 | Ferguson et al. | Apr 2013 | B2 |
8428088 | Kroepfl et al. | Apr 2013 | B2 |
8473176 | Youngquist et al. | Jun 2013 | B2 |
8512240 | Zuckerman-Stark | Aug 2013 | B1 |
8536436 | Moreno | Sep 2013 | B2 |
8537113 | Weising et al. | Sep 2013 | B2 |
8588033 | Pozzo Di Borgo et al. | Nov 2013 | B2 |
8606071 | Remennik et al. | Dec 2013 | B2 |
8629803 | Pattabiraman et al. | Jan 2014 | B2 |
8643540 | Pattabiraman et al. | Feb 2014 | B2 |
8647287 | Greenberg et al. | Feb 2014 | B2 |
8744803 | Park et al. | Jun 2014 | B2 |
8784274 | Chuang | Jul 2014 | B1 |
8792980 | Yu et al. | Jul 2014 | B2 |
8810632 | Hwang et al. | Aug 2014 | B2 |
8821015 | Stagnitto et al. | Sep 2014 | B2 |
8838646 | Tang et al. | Sep 2014 | B2 |
8849387 | Gilbert et al. | Sep 2014 | B2 |
8966656 | Hirsch et al. | Feb 2015 | B2 |
8972220 | Park et al. | Mar 2015 | B2 |
9026151 | Opshaug et al. | May 2015 | B2 |
9042988 | DiLorenzo | May 2015 | B2 |
9047773 | Chen et al. | Jun 2015 | B2 |
9060682 | Lokshin | Jun 2015 | B2 |
9070268 | Monacos et al. | Jun 2015 | B2 |
9080438 | McCoy et al. | Jul 2015 | B1 |
9100899 | Meshkati et al. | Aug 2015 | B2 |
9144055 | Sun et al. | Sep 2015 | B2 |
9154917 | Venkatraman | Oct 2015 | B2 |
9158644 | Tang et al. | Oct 2015 | B2 |
9164167 | Hyde et al. | Oct 2015 | B2 |
9167547 | Suzuki et al. | Oct 2015 | B2 |
9174838 | Zhang et al. | Nov 2015 | B2 |
9179886 | Stagnitto et al. | Nov 2015 | B2 |
9182497 | Geier et al. | Nov 2015 | B2 |
9202520 | Tang | Dec 2015 | B1 |
9907038 | Sahlin | Feb 2018 | B2 |
20030045970 | Maryanka | Mar 2003 | A1 |
20030100406 | Millington et al. | May 2003 | A1 |
20030105496 | Yu et al. | Jun 2003 | A1 |
20040024421 | Ideker et al. | Feb 2004 | A1 |
20040088025 | Gesotti | May 2004 | A1 |
20040105533 | Iseli | Jun 2004 | A1 |
20050027320 | Nehls et al. | Feb 2005 | A1 |
20050160270 | Goldberg et al. | Jul 2005 | A1 |
20060022833 | Ferguson et al. | Feb 2006 | A1 |
20060049957 | Surgenor et al. | Mar 2006 | A1 |
20060058850 | Kramer et al. | Mar 2006 | A1 |
20060161211 | Thompson et al. | Jul 2006 | A1 |
20060221187 | Alhadef | Oct 2006 | A1 |
20060224188 | Libbus et al. | Oct 2006 | A1 |
20070043585 | Matos | Feb 2007 | A1 |
20070055315 | Ideker et al. | Mar 2007 | A1 |
20070129781 | Yu et al. | Jun 2007 | A1 |
20070198139 | Boran et al. | Aug 2007 | A1 |
20070247368 | Wu | Oct 2007 | A1 |
20070255327 | Cho et al. | Nov 2007 | A1 |
20080025640 | Trudeau et al. | Jan 2008 | A1 |
20080150797 | Jia et al. | Jun 2008 | A1 |
20080167693 | Kieval et al. | Jul 2008 | A1 |
20080169801 | Petchenev et al. | Jul 2008 | A1 |
20090076419 | Namineni et al. | Mar 2009 | A1 |
20090228060 | Libbus et al. | Sep 2009 | A1 |
20090306839 | Youngquist et al. | Dec 2009 | A1 |
20090310571 | Matischek | Dec 2009 | A1 |
20090323880 | Filer | Dec 2009 | A1 |
20090327893 | Terry et al. | Dec 2009 | A1 |
20100079291 | Kroll et al. | Apr 2010 | A1 |
20100091924 | Wu | Apr 2010 | A1 |
20100097890 | Sullivan et al. | Apr 2010 | A1 |
20100103878 | Fuliwara et al. | Apr 2010 | A1 |
20100132536 | O'Dwyer | Jun 2010 | A1 |
20100222836 | Jarverud | Sep 2010 | A1 |
20100223128 | Dukellis et al. | Sep 2010 | A1 |
20100250986 | Black et al. | Sep 2010 | A1 |
20110015804 | Cluff et al. | Jan 2011 | A1 |
20110063114 | Ikoyan | Mar 2011 | A1 |
20110093031 | Yu et al. | Apr 2011 | A1 |
20110109726 | Hwang et al. | May 2011 | A1 |
20110112739 | O'Dea et al. | May 2011 | A1 |
20110184319 | Mack et al. | Jul 2011 | A1 |
20110216002 | Weising et al. | Sep 2011 | A1 |
20110228091 | Kroepfl et al. | Sep 2011 | A1 |
20120020445 | DiStasi et al. | Jan 2012 | A1 |
20120021758 | Gum et al. | Jan 2012 | A1 |
20120042257 | Aftab et al. | Feb 2012 | A1 |
20120124088 | Meshkati et al. | May 2012 | A1 |
20120230473 | Stagnitto et al. | Sep 2012 | A1 |
20120245476 | Skerl et al. | Sep 2012 | A1 |
20120262297 | Poon | Oct 2012 | A1 |
20120307145 | Buchheit | Dec 2012 | A1 |
20130010812 | Carro | Jan 2013 | A1 |
20130038520 | Osman | Feb 2013 | A1 |
20130072145 | Dantu | Mar 2013 | A1 |
20130102324 | Qiu et al. | Apr 2013 | A1 |
20130103943 | Hirsch et al. | Apr 2013 | A1 |
20130106697 | Kulik | May 2013 | A1 |
20130120188 | Pattabiraman et al. | May 2013 | A1 |
20130124763 | Kessler | May 2013 | A1 |
20130138266 | Koike | May 2013 | A1 |
20130142016 | Pozzo DiBorgo et al. | Jun 2013 | A1 |
20130154854 | Chen et al. | Jun 2013 | A1 |
20130198276 | Leppänen et al. | Aug 2013 | A1 |
20130219207 | Milota et al. | Aug 2013 | A1 |
20130234885 | Geier et al. | Sep 2013 | A1 |
20130310660 | Zuckerman-Stark et al. | Nov 2013 | A1 |
20140012143 | Gilbert et al. | Jan 2014 | A1 |
20140039804 | Park et al. | Feb 2014 | A1 |
20140047231 | Cummings et al. | Feb 2014 | A1 |
20140052401 | Riley et al. | Feb 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140070944 | Lacaze et al. | Mar 2014 | A1 |
20140086219 | Suzuki et al. | Mar 2014 | A1 |
20140105054 | Saegrov et al. | Apr 2014 | A1 |
20140118143 | Monacos et al. | May 2014 | A1 |
20140120838 | Lokshin | May 2014 | A1 |
20140122958 | Greenebrg et al. | May 2014 | A1 |
20140125499 | Cate et al. | May 2014 | A1 |
20140168243 | Huang | Jun 2014 | A1 |
20140181650 | Polubinski | Jun 2014 | A1 |
20140192793 | Abraham et al. | Jul 2014 | A1 |
20140236493 | Park et al. | Aug 2014 | A1 |
20140236531 | Carter | Aug 2014 | A1 |
20140241441 | Devaucelle | Aug 2014 | A1 |
20140257624 | Safa-Bakhsh et al. | Sep 2014 | A1 |
20140274161 | Venkatramon et al. | Sep 2014 | A1 |
20140288620 | DiLorenzo | Sep 2014 | A1 |
20140310643 | Karmanenko et al. | Oct 2014 | A1 |
20140317660 | Cheung et al. | Oct 2014 | A1 |
20140333733 | Kim | Nov 2014 | A1 |
20150043568 | Coulon et al. | Feb 2015 | A1 |
20150049863 | Stagnitto et al. | Feb 2015 | A1 |
20150073494 | Ideker et al. | Mar 2015 | A1 |
20150081931 | Tang et al. | Mar 2015 | A1 |
20150094100 | Opshaug et al. | Apr 2015 | A1 |
20150105097 | Sun et al. | Apr 2015 | A1 |
20150112883 | Orduna et al. | Apr 2015 | A1 |
20150116497 | Doval et al. | Apr 2015 | A1 |
20150127268 | Park et al. | May 2015 | A1 |
20150179044 | Wu et al. | Jun 2015 | A1 |
20150185315 | Hyde et al. | Jul 2015 | A1 |
20150223767 | Sehnert et al. | Aug 2015 | A1 |
20150246711 | Lee | Sep 2015 | A1 |
20150253351 | Sadasivam et al. | Sep 2015 | A1 |
20150262497 | Landau et al. | Sep 2015 | A1 |
20150271772 | Knowles | Sep 2015 | A1 |
20150285593 | Dribben | Oct 2015 | A1 |
20150300907 | Giunta et al. | Oct 2015 | A1 |
20150308257 | McCoy et al. | Oct 2015 | A1 |
20150317801 | Bentley et al. | Nov 2015 | A1 |
20150341875 | Kwak | Nov 2015 | A1 |
20150358933 | Yamamoto et al. | Dec 2015 | A1 |
20150359457 | Blumenthal et al. | Dec 2015 | A1 |
20150365224 | Waheed | Dec 2015 | A1 |
20160005230 | Asselin et al. | Jan 2016 | A1 |
20160045161 | Alshaer et al. | Feb 2016 | A1 |
20160103162 | Safa-Bakhsh et al. | Apr 2016 | A1 |
20160352388 | Lane | Dec 2016 | A1 |
20160380671 | Jackson | Dec 2016 | A1 |
20170251508 | Park | Aug 2017 | A1 |
20190028309 | Noda | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1582840 | Oct 2005 | EP |
1987405 | Jul 2010 | EP |
1660178 | Jan 2011 | EP |
2433866 | Mar 2012 | EP |
2533439 | Dec 2012 | EP |
2541853 | Jan 2013 | EP |
2752642 | Jul 2014 | EP |
2775454 | Sep 2014 | EP |
2540215 | Nov 2015 | EP |
2942688 | Nov 2015 | EP |
2518921 | Apr 2015 | GB |
WO9742560 | Nov 1997 | WO |
WO03093950 | Nov 2003 | WO |
WO2006014810 | Feb 2006 | WO |
WO2007084850 | Jul 2007 | WO |
WO2009116032 | Sep 2009 | WO |
WO2010036488 | Apr 2010 | WO |
WO2010045539 | Apr 2010 | WO |
WO2010119084 | Oct 2010 | WO |
WO2011091347 | Jul 2011 | WO |
WO2011091355 | Jul 2011 | WO |
WO2011129907 | Oct 2011 | WO |
WO2013006210 | Jan 2013 | WO |
WO2013032364 | Mar 2013 | WO |
WO2013059989 | May 2013 | WO |
WO2013154231 | Oct 2013 | WO |
WO2014116977 | Jul 2014 | WO |
WO2015089224 | Jun 2015 | WO |
WO2015109442 | Jul 2015 | WO |
WO2015117049 | Aug 2015 | WO |
WO2015140816 | Sep 2015 | WO |
WO20151160964 | Oct 2015 | WO |
WO2015169474 | Nov 2015 | WO |
WO2015195728 | Dec 2015 | WO |
Entry |
---|
PCT International Search Report Corresponding to PCT/EP2017/062711 dated Dec. 11, 2017. |
Great Britain Search and Examination Report Corresponding to GB1609153 dated Nov. 24, 2016. |
Number | Date | Country | |
---|---|---|---|
20190208485 A1 | Jul 2019 | US |