Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods

Information

  • Patent Grant
  • 7744040
  • Patent Number
    7,744,040
  • Date Filed
    Tuesday, November 4, 2008
    16 years ago
  • Date Issued
    Tuesday, June 29, 2010
    14 years ago
Abstract
Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods are disclosed. A device in accordance with one embodiment includes a wing and an inboard trailing edge device coupled to the wing and movable relative to the wing between a first stowed position and a first deployed position along a first motion path. An outboard trailing edge device can be coupled to the wing outboard of the inboard trailing edge device, and can be movable relative to the wing along a second motion path that is non-parallel to the first motion path. An intermediate trailing edge device can be coupled between the inboard and outboard trailing edge devices and can be movable along a third motion path that is non-parallel to both the first and second motion paths. Each of the trailing edge devices can open a gap relative to the wing when moved to their respective deployed positions.
Description
TECHNICAL FIELD

The present invention is directed generally toward aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods.


BACKGROUND

Modern high-speed aircraft generally have thin wings that provide a low drag profile during high-speed or cruise flight. The wings of these aircraft often include various movable surfaces to provide aircraft control and/or to configure the aircraft for low-speed operations (e.g., take-off and landing). For example, in addition to carrying fuel, the wings of a high-speed transport aircraft typically include aileron surfaces, spoiler surfaces, leading edge devices, and trailing edge flap surfaces. These movable surfaces are often located at or near the leading and trailing edges of the wing, and are each movable between a stowed position and a variety of deployed positions, depending upon the particular flight condition of the aircraft.



FIG. 1A is a partially schematic illustration of a portion of an aircraft 10a (in this case, a Boeing 767 aircraft) having a fuselage 11 and a wing 20 with high lift devices configured in accordance with the prior art. The high lift devices can include deployable slats 21 positioned toward the leading edge of the wing 20, and multiple trailing edge devices positioned toward the trailing edge of the wing 20. The trailing edge devices can include an outboard aileron 34, an outboard flap 32a, an inboard aileron 60a, and an inboard flap 31a. The inboard and outboard ailerons 60a, 34 can be used generally for roll control of the aircraft 10a, and the inboard and outboard flaps 31a, 32a can be used to control the lift of the aircraft 10a at lower speeds (e.g., during take-off and landing). The ailerons 60a, 34 are simple hinged devices that are ungapped when in their deployed positions. Conversely, when the inboard and outboard flaps 31a, 32a are deployed, they move in an aft direction to open a gap relative to the wing 20. This aft motion is shown schematically by motion paths 41a and 42a, respectively. Because the inboard flap motion path 41a converges with the outboard flap motion path 42a, the inboard aileron 60a located between the inboard flap 31a and the outboard flap 32a does not move aft when deployed (as indicated by motion path 43a) so as to avoid interference with the adjacent flaps 31a, 32a.



FIG. 1B is a cross-sectional illustration of the inboard aileron 60a, illustrating the location of a hinge line 61 about which the inboard aileron 60a pivots relative to the wing 20. Because the hinge line 61 is located toward the front of the inboard aileron 60a and within the contour of the inboard aileron 60a, a gap does not open between the inboard aileron 60a and the wing when the inboard aileron 60a deflects either upwardly or downwardly. Instead, the leading edge 71 of the inboard aileron 60a remains in close proximity to an aft-facing cove 37 of the wing 20.



FIG. 1C is a partially schematic illustration of a portion of another aircraft 10b (in this case, a Boeing 777 aircraft) having a fuselage 11 and a wing 20 with high lift devices configured in accordance with another prior art arrangement. The trailing edge devices can include an inboard flap 31b, an outboard flap 32b, and a flaperon 60b, all of which can travel aft during deployment to open corresponding gaps relative to the wing 20. Accordingly, the inboard flap 31b can travel aft along an inboard flap motion path 41b, and the outboard flap 32b can move along a generally parallel outboard flap motion path 42b. Because the inboard and outboard flap motion paths 41b, 42b are generally parallel, the flaperon 60b can also move aft to a gapped position along a flaperon motion path 43b that is generally parallel to the inboard and outboard flap motion paths 41b, 42b. Inboard spoilers 51 and outboard spoilers 52 can be used as speed brakes and/or to control the size of the gap between the wing 20 and the flaps 31b, 32b.


An advantage of the arrangement shown in FIG. 1C when compared with the arrangement shown in FIGS. 1A and 1B is that the aft motion of the flaperon 60b can allow it to be deployed to greater deflections without causing flow separations, by virtue of the gap that opens between the flaperon 60b and the wing 20. Accordingly, the flaperon 60b can be operated at high deflection rates for roll control, and at high deflection angles for lift control. However, a potential drawback with this arrangement is that complex mechanisms are typically required to deploy the flaperon 60b to its aft configuration, particularly if the mechanism is configured to fit within a shallow wing section, so as to reduce the size of external fairings. On the other hand, simple mechanisms (e.g., a simple hinge), tend to extend well beyond the contours of the wing section, which requires relatively large, heavy hinge supports and associated fairings that generate drag. Accordingly, there is a need for improved, lightweight trailing edge devices.


SUMMARY

The following summary is provided for the benefit of the reader only, and is not intended to limit in any way the invention as set forth by the claims. An aircraft system in accordance with one aspect of the invention includes a wing and an inboard trailing edge device coupled to the wing and movable relative to the wing between a first stowed position and a first deployed position along a first motion path. An outboard trailing edge device can be coupled to the wing outboard of the inboard trailing edge device, and can be movable relative to the wing between a second stowed position and a second deployed position along a second motion path that is non-parallel to the first motion path. The system can still further include an intermediate trailing edge device coupled to the wing between the inboard and outboard trailing edge devices. The intermediate trailing edge device can be movable relative to the wing between a third stowed position and a third deployed position along a third motion path that is non-parallel to both the first and second motion paths. Each of the inboard, outboard and intermediate trailing edge devices can open a gap relative to the wing when moved to their respective deployed positions.


In further particular aspects, the inboard trailing edge device has a first leading edge, the outboard trailing edge device has a second leading edge, and the intermediate trailing edge device has a third leading edge. The first, second and third leading edges can be offset from each other when the trailing edge devices are in their stowed positions. Each of the trailing edge devices can be moved to multiple deployed positions, and for at least one combination of deployed positions, the first, second and third leading edges can form a composite leading edge profile that follows a generally monotonic function.


Further aspects of the invention are directed to a method for operating an aircraft wing, including moving an inboard trailing edge device relative to an aircraft wing between a first stowed position and a first deployed position along a first motion path to open a gap between the inboard trailing edge device and the wing. The method can further include moving an outboard trailing edge device relative to the wing between a second stowed position and a second deployed position along a second motion path that is non-parallel to the first motion path to open a gap between the outboard trailing edge device and the wing. The method can still further include moving an intermediate trailing edge device (located between the inboard and outboard trailing edge devices) relative to the wing between a third stowed position and a third deployed position along a third motion path that is non-parallel to the first and second motion paths to open a gap between the intermediate trailing edge device and the wing.


In a further particular aspect, moving the trailing edge devices can include moving the trailing edge devices along motion paths that converge toward each other in an aft direction. In still a further aspect, the intermediate trailing edge device can have a greater sweep angle than the inboard trailing edge device, and the outboard trailing edge device can have a greater sweep angle than the intermediate trailing edge device. The method can further include offsetting the leading edges of the trailing edge devices from each other when the trailing edge devices are in their stowed positions, aligning the leading edges to form a generally continuous leading edge when the trailing edge devices are in their deployed positions, in addition to offsetting the trailing edges of the trailing edge devices when the trailing edge devices are in their deployed positions, and aligning the trailing edges to form a composite trailing edge profile that follows a generally monotonic function when the trailing edge devices are in their stowed positions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C illustrate aircraft wings configured in accordance with the prior art.



FIG. 2 is an isometric illustration of an aircraft having a wing with trailing edge devices configured in accordance with an embodiment of the invention.



FIG. 3 is an enlarged, top plan view of one of wings shown in FIG. 2.



FIG. 4A is an enlarged plan view of a portion of the wing shown in FIG. 3.



FIG. 4B illustrates trailing edge devices of the wing shown in FIG. 4A at stowed and deployed positions.



FIGS. 5A-5C are schematic side illustrations of an intermediate trailing edge device in stowed and deflected positions in accordance with an embodiment of the invention.



FIG. 5D is a graph illustrating hinge point locations, non-dimensionalized by trailing edge device chord length, and located relative to an intersection between the wing and the trailing edge device in accordance with several embodiments of the invention.



FIGS. 6A-6C are partially schematic, side elevation views of the intermediate trailing edge device shown in FIGS. 4A-4C, illustrating further features of this device.





DETAILED DESCRIPTION

The present disclosure describes aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods. Several specific details of the invention are set forth in the following description and in FIGS. 2-6C to provide a thorough understanding of certain embodiments of the invention. One skilled in the relevant art, however, will understand that the present invention may have additional embodiments, and that other embodiments of the invention may be practiced without several of the specific features described below.



FIG. 2 is a partially schematic, isometric illustration of an aircraft 210 having a fuselage 211 and wings 220 outfitted with trailing edge devices 230 configured in accordance with an embodiment of the invention. The aircraft 210 can further include an empennage 212 that carries horizontal stabilizers 213 and a vertical stabilizer 215. The horizontal stabilizers 213 can carry elevators 214, and the vertical stabilizer 215 can carry a rudder 216. The aircraft 210 can be controlled by activating the trailing edge devices 230, the elevators 214, and the rudder 216 under the direction of a control system 217 (shown schematically in FIG. 2). Further details of the trailing edge devices 230 are described below with reference to FIGS. 3-6C.



FIG. 3 is a top plan view of the left wing 220 of the aircraft 210 initially described above with reference to FIG. 2. The wing 220 can include deployable leading edge devices, such as slats 221, located at or proximate to a leading edge 222 of the wing 220. The trailing edge devices 230 are located aft of the leading edge 222 and form a composite trailing edge 280. The trailing edge devices 230 can include an aileron 234 positioned toward the outboard extremity of the wing 220, an inboard trailing edge device 231 (e.g., an inboard flap) positioned toward the inboard extremity of the wing 220, an outboard trailing edge device 232 (e.g., an outboard flap), and an intermediate trailing edge device 260 (e.g., a flaperon) positioned between the inboard and outboard trailing edge devices 231, 232. Each of the trailing edge devices 230 can be moved relative to the wing 220 between a stowed position (shown in FIG. 3) and one or more deployed positions. In one aspect of this embodiment, the aileron 234 does not form a gap relative to the wing 220 when the aileron 234 is deployed, while the inboard, outboard and intermediate trailing edge devices 231, 232, 260 do. The motions of the inboard, outboard and intermediate trailing edge devices (collectively referred to as “gapped trailing edge devices 238”) are described in greater detail below.


The inboard trailing edge device 231 can move along a first motion path 241, the outboard trailing edge device 232 can move along a second motion path 242, and the intermediate trailing edge device 260 can move along a third motion path 243. Each motion path may be purely rotational when viewed from the side of the aircraft 210, or may be a combination of rotation and translation. In either case, components of each motion path carry the corresponding gapped trailing device 238 aft and downward relative to the wing 220, thereby opening a gap between the wing 220 and the trailing edge device 238. The first motion path 241 can be oriented at a first angle A1 relative to the longitudinal axis 223 of the aircraft. In a particular aspect of an embodiment shown in FIG. 3, the first angle A1 can have a value of approximately zero degrees. The second motion path 242 can be oriented at an angle A2 relative to the longitudinal axis 223, and the third motion path 243 can be oriented at an angle A3 that has a value between A1 and A2. Accordingly, the motion paths 241, 242, and 243 converge toward each other in an aft direction.


The wing 220 can further include spoilers 25Q positioned proximate to the gapped trailing edge devices 238. The spoilers 250 can include outboard spoilers 252, inboard spoilers 251, and an intermediate spoiler 253. The spoilers 250 can be deployed in concert with the gapped trailing edge devices 238 to provide for further control of the airflow adjacent to the trailing edge gaps. The spoilers 250 can also be deployed independently of the motion of the gapped trailing edge devices 238, for example, to provide a speed brake function. In a particular aspect of this embodiment, each of the spoilers 250 is a simple hinged device that rotates downwardly and upwardly relative to the wing 220 (e.g., in the manner of standard aileron). Downward rotation can be accomplished without opening an additional gap relative to the wing 220, and upward rotation may create a small gap. The trailing edges of the spoilers 250 can be aligned to form a generally monotonic profile both when the spoilers 250 are in their stowed positions (as shown in FIG. 3) and also when the spoilers 250 are deployed downwardly.



FIG. 4A is a top plan view of a portion of the wing 220 shown in FIG. 3, approximately centered on the intermediate trailing edge device 260. The wing 220 can include a rear spar 290, with the wing fuel volume located forward of the rear spar 290, and the gapped trailing edge devices 238 located aft of the rear spar 290. Each of the gapped trailing edge devices 238 can include at least one actuator for moving the trailing edge devices between their stowed and deployed positions. Accordingly, the inboard trailing edge device 231 can be coupled to an inboard actuator 244. The outboard trailing edge device 232 can be coupled to an outboard actuator 245, and the intermediate trailing edge device 260 can be coupled to an intermediate actuator 265. For purposes of illustration, a single actuator is shown coupled to each of the gapped trailing edge devices 238, but it will be understood by those of ordinary skill in the relevant art that each device 238 may be coupled to a multiple actuators in other embodiments. In any of these embodiments, if the intermediate trailing edge device 260 is used for roll control (in addition to low-speed lift augmentation), while the inboard and outboard trailing edge devices 231, 232 are used generally only for low-speed lift augmentation, then the intermediate actuator 265 can have a higher maximum actuation rate than that of the inboard actuator 244 and/or the outboard actuator 245. Accordingly, the intermediate actuator 265 can provide response times appropriate for performing aileron functions.


Each of the gapped trailing edge devices 238 can include a leading edge positioned close to the wing 220, and a distal trailing edge. Accordingly, the inboard trailing edge device 231 can include a first leading edge 271 and a first trailing edge 281. The outboard trailing edge device 232 can include a second leading edge 272 and a second trailing edge 282. The intermediate trailing edge device 260 can include a third leading edge 273 and a third trailing edge 283. The leading edges 271, 272 and 273 can form a composite device leading edge 270, and the trailing edges 281, 282 and 283 can form the composite trailing edge 280. In a particular aspect of this embodiment, each of the gapped trailing edge devices 238 can undergo purely rotational motion by rotating about a hinge line that is generally parallel to the corresponding leading edge. Accordingly, the first motion path 241 can be generally normal to the first leading edge 271, the second motion path 242 can be generally normal to the second leading edge 272, and the third motion path 243 can be generally normal to the third leading edge 273.


When the gapped trailing edge devices 238 are in their stowed positions (as shown in FIG. 4A), the corresponding trailing edges 281, 282, 283 can form a generally continuous composite trailing edge 280 that defines a monotonically varying function. In this configuration, the leading edges 271, 272, and 273 can be located beneath the corresponding spoilers 251, 252 and 253, respectively, as indicated by dashed lines in FIG. 4A. The leading edges 271, 272, 273 can each be swept by successively greater angles (in a spanwise direction) relative to a lateral axis 224 of the wing 220. Accordingly, the first leading edge 271 can be swept by a first angle L1, the second leading edge 272 can be swept by an angle L2, and the third leading edge 273 can be swept by an angle L3 that is between L1 and L2. As is also shown in FIG. 4A, the first, second and third leading edges 271, 272, and 273 can be stepped relative to each other when the gapped trailing edge devices 238 are in their stowed positions. This is not expected to have an adverse aerodynamic consequence because the leading edges are positioned beneath the corresponding spoilers when the gapped trailing edge devices 238 are in their stowed positions.



FIG. 4B is an enlarged, schematic illustration of the portion of the wing 220 shown in FIG. 4A, with the gapped trailing edge devices 238 shown in stowed and selected deployed positions. The general outlines of the gapped devices 238 are shown in solid lines when the devices are stowed, dashed lines when the devices are partially deployed (corresponding to a take-off setting), and phantom lines when the devices are fully deployed (corresponding to a landing setting). As described above, when the gapped devices 238 are in the stowed positions, the trailing edges 281, 282, and 283 form a composite trailing edge 280 that has a generally monotonically varying function. Although there may be small spaces between the sides of adjacent devices 238, the overall composite trailing edge 280 does not include significant steps. Conversely, the composite leading edge 270 (formed by the first leading edge 271, the second leading edge 272, and the third leading edge 273) is stepped and does not form a generally monotonically varying function. As the gapped trailing edge devices 238 move from their stowed positions to their deployed positions, the composite trailing edge 280 becomes more stepped, and the composite leading edge 270 becomes less stepped. For example, as shown by dashed lines in FIG. 4B, when the gapped trailing edge devices 238 are in a partially deployed position (indicated by dashed lines), the leading edges 271, 272, and 273 are more closely aligned with each other, while the trailing edges 281, 282, and 283 depart from a generally monotonically varying composite trailing edge 280. When the gapped trailing edge devices 238 move to their fully deployed positions (as indicated by phantom lines in FIG. 4B), the composite leading edge 270 can describe a generally monotonically varying function, while the composite trailing edge 280 is stepped. Accordingly, while spaces may exist between the edges of adjacent gapped trailing edge devices 238 at the composite leading edge 270, the overall contour of the composite leading edge 270 is generally monotonic and unstepped.


One feature of an arrangement of the gapped trailing edge devices 238 in accordance with several embodiments of the invention is that all three of the devices 238 can form aerodynamic gaps when moved to their deployed positions. An advantage of this arrangement is that the devices 238 can be deployed to greater deflection angles than would be possible if the devices were not gapped, which can in turn provide for greater aircraft control and reduced aircraft landing speeds.


Another feature of at least some of the foregoing embodiments is that they can include an intermediate, gapped trailing edge device 260 that has a generally trapezoidal planform shape and that is positioned between two additional gapped trailing edge devices 231, 232. The trapezoidal shape can allow the intermediate trailing edge device 260 to be fit between an inboard trailing edge device 231 located at a portion of the wing 220 that has little or no sweep, and an outboard trailing edge 232 device located at a portion of the wing 220 that has a significant sweep angle. In addition, the intermediate trailing edge device 260 can move aft relative to the wing 220 along a motion path that is aligned between the motion paths of the inboard and outboard trailing edge devices 231, 232. This arrangement allows the intermediate trailing edge device 260 to move downwardly and in some case, aft (by at least a short distance), without interfering with the inboard and outboard trailing edge devices 231,232, which are also moving aft. As a result, the intermediate trailing edge device 260 can form a gap relative to the wing 220, which increases its effectiveness at high deflection angles without causing interference with the adjacent devices. The overall effect of this arrangement is that it can make increased use of the trailing edge devices 238 when compared with existing trailing edge device arrangements.


Still another feature of at least some embodiments of the foregoing arrangements is that they can include trailing edge devices having the forward 20% (or less) covered by spoilers or other portions of the wing when the trailing edge devices are stowed. An advantage of this arrangement is that it can require less aftward movement to open a suitable gap between the wing and the trailing edge device when the trailing edge device is deployed.



FIGS. 5A-5C schematically illustrate the intermediate trailing edge device 260, including features that can increase the ease with which the trailing edge device 260 is integrated with the adjacent trailing edge devices 231, 232 described above. Referring first to FIG. 5A, the intermediate trailing edge device 260 can have a hinge point 261 that is located forward of the third leading edge 273 by a distance F. The hinge point 261 can also be located below both an upper surface 269 and a lower surface 268 of the intermediate trailing edge device 260. In a particular embodiment, the hinge point 261 is located a distance D below the lower surface 268. In other embodiments, the location of the hinge point 261 can be identified with reference to an intersection point I between a portion of the wing 220 and the upper surface 269 of the intermediate trailing edge device 260. In an embodiment shown in FIG. 5A, the intersection point I can be at the aft-most point of the intermediate spoiler 253, and in other embodiments (e.g., those in which the wing 220 does not include a spoiler at this location), the intersection point I can be at another portion of the wing 220. In any of these embodiments, the hinge point 261 can be located a distance D1 beneath the intersection point I, and a distance F1 forward of the intersection point I.


By locating the hinge point 261 forward of the leading edge 273 (and/or the intersection point I), and at a relatively shallow depth D (or D1) below the intermediate trailing edge device 260, the motion of the intermediate trailing edge device 260 when it deploys can be less likely to interfere with the motion of adjacent trailing edge devices. In particular, this arrangement can allow a significant portion of the movement of the intermediate trailing edge device 260 to be downward (in addition to being aftward) when it is deployed (as shown in FIG. 5B). For example, in this arrangement, the leading edge 273 of the intermediate trailing edge device 260 can move downwardly by a significant margin as a result of the hinge point 261 being positioned forward relative to the leading edge 273. This is unlike many existing trailing edge devices which have hinge points located at or behind the leading edge. An advantage of this arrangement is that the intermediate trailing edge device 260 can form an aerodynamically significant gap 262 while moving along an intermediate flap motion path 243 (shown in FIG. 3) that does not interfere with the motion of adjacent trailing edge devices.


The surfaces of the intermediate trailing edge device 260 (e.g., the lower surface 268 and the upper surface 269) can be generally rigid in at least one embodiment, and accordingly do not change shape significantly when the intermediate trailing edge device 260 is deployed. This is unlike some other trailing edge devices that change shape during deployment. In one aspect of this embodiment the position of the hinge point 261 can allow the intermediate trailing edge device 260 to open the gap 262 when deployed, without the need for flexible flow surfaces.


The size of the gap 262 can be controlled at least in part by the intermediate spoiler 253. The intermediate spoiler 253 can rotate about a spoiler hinge point 254, and can follow (at least in part) the motion of the trailing edge device 260 when the trailing edge device 260 is deflected downwardly (as shown in FIG. 5B). When the trailing edge device 260 is deflected upwardly (as shown in FIG. 5C), the spoiler 253 can also follow this motion in such a manner as to eliminate or nearly eliminate the gap 262. Accordingly, the spoiler 253 can follow a motion path that nearly seals it against the trailing edge device 260, without causing the spoiler 253 to actually rub against the trailing edge device 260. In other embodiments, such rubbing can be permitted so long as it does not damage either the spoiler 253 or the trailing edge device 260. This arrangement can allow the trailing edge device 260 to be deflected upwardly for roll control and/or wing load alleviation. The intermediate spoiler 253 can also be operated independently of the trailing edge device 260 (as shown in dashed lines in FIG. 5A), to act as a spoiler and/or speed brake. In particular embodiments, the trailing edge device 260 can be deflected upwardly by at least 10° relative to the stowed position, and in further particular embodiments, the trailing edge device 260 can be deflected upwardly by up to 30°.


As discussed above with reference to FIG. 4A, the intermediate spoiler 253 can overlap the intermediate trailing edge device 260 when both elements are in their respective stowed positions. In a particular embodiment, the overlap distance 0 (shown in FIG. 5A) can be 20% or less of the chord length C (FIG. 5A) of the intermediate trailing edge device 260. An advantage of an embodiment of this arrangement is that the intermediate trailing edge device 260 need not move aft by a significant amount in order to move away from the intermediate spoiler 253 and open a gap.


In particular embodiments, the distances F1 and D1 described above with reference to FIG. 5A can have specific ranges of values, when non-dimensionalized relative to each other and/or relative to the chord length C of the intermediate trailing edge device 260. For example, FIG. 5D illustrates representative hinge points 261 plotted on a non-dimensional grid. Point I (the origin) identifies the intersection point between the wing 220 and the upper surface 269 of the intermediate trailing edge device 260. The x-scale identifies the fore/aft location of the hinge points 261, non-dimensionalized by the chord length C of the intermediate trailing edge device 260. The y-scale identifies the upward/downward location of the hinge points 261, also non-dimensionalized by the chord length C. Hinge points 261 in accordance with particular aspects of the invention are located forward of and above line 259. Accordingly, these hinge points 261 can be described as being forward of an above a series of line segments passing through x, y coordinates (0.5, −0.5), (0.1 −0.2), (0.2, −0.3), (0.5 −0.4) and (1.0, −0.5) identified as points 258a-258e, respectively.


Returning to FIG. 5A, the rear spar 290 can be positioned relatively far forward of the intermediate trailing edge device 260. For example, the rear spar 290 can be positioned a distance S forward of the third leading edge 273. A ratio of S to local streamwise chord length C can have a value of about 0.5. In some cases, this ratio can be higher as well. While this ratio can apply to the intermediate trailing edge device 260 (and in particular, the outboard edge of the intermediate trailing edge device 260), it can also apply to the outboard trailing edge device 232 shown in FIG. 3, at any point along the span of that device.


The foregoing ratio (e.g., as applied to the outboard trailing edge device 232) is unlike many existing arrangements in which the ratio of S/C varies from about 0.2 to about 0.32. An advantage of an embodiment of the arrangement shown in FIG. 5A is that it can accommodate a forward location of the hinge point 261 (and associated actuation mechanisms) without significantly impacting overall fuel volume. This in turn can improve the integration of the outboard trailing edge device 232.



FIGS. 6A-6C illustrate further details of the operation of the intermediate trailing edge device 260. FIG. 6A illustrates the intermediate trailing edge device 260 in its stowed position. In addition to the components described above, the aircraft wing 220 can include a lower cove door 263 that controls airflow along the lower surface of the trailing edge device 260. As shown in FIG. 6B, the intermediate trailing edge device 260 has been moved to a lower deployed position to open the gap 262 between the leading edge 273 and the wing 220. Accordingly, the actuator 265 drives an actuator link 266 aft to move the intermediate trailing edge device 260 along its motion path 243. The lower cove door 263 can be mechanically linked to the coupling between the actuator 265 and the intermediate trailing edge device 260 to rotate out of the way and open the gap 262, allowing air (indicated by arrow A) to flow through. The intermediate spoiler 253 can also be mechanically linked to the motion of the intermediate trailing edge device 260 to rotate downwardly and control the size of the gap 262. In other embodiments, the motion of the lower cove door 263 and/or the intermediate spoiler 253 can be controlled in other fashions, for example, by an independent hydraulic or electric control system. FIG. 6C illustrates the intermediate trailing edge device 260 and the intermediate spoiler 253 deflected upwardly, for example, while performing a roll control or wing load alleviation function. As is also shown in FIG. 6C, making the depth of the hinge 261 relatively shallow can reduce or eliminate the need for a large or otherwise extensive fairing at the lower surface of the wing 220. The combination of a gapped trailing edge device with a drooped spoiler can improve both the aerodynamic performance of the high lift system and the wing in which it is installed.


In a particular embodiment, the arrangement shown in FIGS. 6A-6C can include a cam track 291 and associated linkage that attach the intermediate spoiler 253 to the intermediate trailing edge device 260, controlling the gap 262 between the two devices By tailoring the contour of the cam surfaces of the cam track 291, the position of the intermediate spoiler 253 relative to the intermediate trailing edge device 260 (including the gap 262) can be specified with a high degree of accuracy throughout the entire range of motion. The cam track 291 can add specific advantages over other embodiments, such as hydraulic or electric actuators, or a bellcrank mechanism. For example, actuators (hydraulic or electric) may be heavier, and/or more costly, than the cam track 291. A bell crank, though similar in weight and reliability to the cam track 291, typically does not match the flexibility and adaptability of the cam track 291 to manage the gap 262. In a particular aspect of an embodiment shown in FIGS. 6A-6C, the cam track 291 can improve the ability of the spoiler 253 to fair to the intermediate trailing edge device 260 in the retracted position The cam track 291 can also aid in setting the gap 262 at a certain value for given down positions of the intermediate trailing edge device 260 (e.g., a takeoff position and a landing position). The cam track 291 can also provide control for specific movement patterns. For example, when the intermediate trailing edge device 260 moves down from the cruise (retracted) position, the cam track 291 can be shaped so that the spoiler 253 “dwells,” allowing the gap 262 to increase quickly as the intermediate trailing edge device 260 moves down. Similarly, as the intermediate trailing edge device 260 moves up from the cruise (retracted) position, the spoiler 253 can quickly move upwards, to clear the rising intermediate trailing edge device 260.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. For example, in some embodiments, the intermediate trailing edge device can be installed between inboard and outboard trailing edge devices and can have a gapped deployed configuration that is driven by arrangements other than those shown in the Figures. The trailing edge devices, including the intermediate trailing edge device, can be deployed to control a spanwise lift distribution over the wing. Motion of the trailing edge devices in several embodiments includes rotational motion. In at least some embodiments, the motion of the trailing edge devices can also include other motions (e.g., linear motions). Aspects of the invention described in context of particular embodiments may be combined or eliminated in other embodiments. For example, aspects of the invention described in the context of three gapped trailing edge devices can be extended to a greater number of gapped trailing edge devices in other embodiments. Further, while advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.

Claims
  • 1. An aircraft system, comprising: a wing;an inboard trailing edge device coupled to the wing and movable relative to the wing between a first stowed position and a first deployed position along a first motion path, wherein an airflow gap exists between the inboard trailing edge device and the wing when the inboard trailing edge device is in the first deployed position;an outboard trailing edge device coupled to the wing outboard of the inboard trailing edge device, and being movable relative to the wing between a second stowed position and a second deployed position along a second motion path that is non-parallel to the first motion path, wherein an airflow gap exists between the outboard trailing edge device and the wing when the outboard trailing edge device is in the second deployed position; andan intermediate trailing edge device coupled to the wing between the inboard and outboard trailing edge devices, and being movable relative to the wing between a third stowed position and a third deployed position along a third motion path that is non-parallel to both the first and second motion paths, wherein an airflow gap exists between the intermediate trailing edge device and the wing when the intermediate trailing edge device is in the second deployed position, and wherein the intermediate trailing edge device abuts the inboard trailing edge device and the outboard trailing edge device when the inboard, outboard and intermediate trailing edge devices are in the respective first, second and third stowed positions.
  • 2. The aircraft system of claim 1 wherein: the inboard trailing edge device has a first leading edge, the outboard trailing edge device has a second leading edge and the intermediate trailing edge device has a third leading edge;the first, second and third leading edges are offset from each other when the trailing edge devices are in their stowed positions;the first deployed position is one of multiple first deployed positions, the second deployed position is one of multiple second deployed positions, and the third deployed position is one of multiple third deployed positions; andfor at least one combination of a first deployed position, a second deployed position and a third deployed position, the first, second and third leading edges form a composite leading edge profile that follows a generally monotonic function.
  • 3. The aircraft system of claim 1 wherein the first, second and third motion paths converge toward each other in an aft direction.
  • 4. The aircraft system of claim 1 wherein intermediate trailing edge device has a generally trapezoidal planform shape.
  • 5. The aircraft system of claim 1 wherein the inboard trailing edge device has a first leading edge, the outboard trailing edge device has a second leading edge and the intermediate trailing edge device has a third leading edge, and wherein the first, second and third leading edges are offset from each other when the trailing edge devices are in their stowed positions.
  • 6. The aircraft system of claim 1 wherein the inboard trailing edge device has a first trailing edge, the outboard trailing edge device has a second trailing edge and the intermediate trailing edge device has a third trailing edge, and wherein the first, second and third trailing edges form a composite trailing edge profile that follows a generally monotonic function when the trailing edge devices are in their stowed positions.
  • 7. The aircraft system of claim 1 wherein the wing has a longitudinal axis and wherein the inboard trailing edge device has a first leading edge with a first sweep angle relative to the longitudinal axis, the outboard trailing edge device has a second leading edge with a second sweep angle greater than the first sweep angle, and the intermediate trailing edge device has a third leading edge with a third sweep angle (a) greater than the first sweep angle and less than or equal to the second sweep angle, or (b) greater than or equal to the first sweep angle and less than the second sweep angle.
  • 8. The aircraft system of claim 1 wherein the wing has a longitudinal axis and wherein the inboard trailing edge device has a first leading edge with a first sweep angle relative to the longitudinal axis, the outboard trailing edge device has a second leading edge with a second sweep angle, and wherein the inboard trailing edge device moves generally normal to the first leading edge and the outboard trailing edge device moves generally normal to the second leading edge.
  • 9. The aircraft system of claim 1, further comprising: an inboard spoiler positioned forward of the inboard trailing edge device;an outboard spoiler positioned forward of the outboard trailing edge device; andan intermediate spoiler positioned forward of the intermediate trailing edge device, wherein each of the spoilers is movable between a stowed position, a downwardly deflected position, and an upwardly deflected position.
  • 10. The aircraft system of claim 9 wherein the wing has a longitudinal axis and wherein the inboard spoiler has a first hinge line with a first sweep angle relative to the longitudinal axis, the outboard spoiler has a second hinge line with a second sweep angle relative to the longitudinal axis, and the intermediate spoiler has a third hinge line with a third sweep angle relative to the longitudinal axis, and wherein the third sweep angle is greater than the first sweep angle and less than the second sweep angle.
  • 11. The aircraft system of claim 9 wherein the inboard spoiler has a first trailing edge, the outboard spoiler has a second trailing edge, and the intermediate spoiler has a third trailing edge, and wherein the first, second and third trailing edges form a composite trailing edge profile that follows a generally monotonic function when the spoilers are in their stowed positions.
  • 12. The aircraft system of claim 9 wherein the inboard spoiler has a first trailing edge, the outboard spoiler has a second trailing edge, and the intermediate spoiler has a third trailing edge, and wherein the first, second and third trailing edges form a generally continuous composite trailing edge when the spoilers are in their downwardly deflected positions.
  • 13. The aircraft system of claim 9 wherein each of the spoilers is movable to multiple downwardly deflected positions, and wherein the inboard spoiler has a first trailing edge, the outboard spoiler has a second trailing edge, and the intermediate spoiler has a third trailing edge, and wherein the first, second and third trailing edges form a composite trailing edge profile that follows a generally monotonic function when the spoilers are moved in a coordinated fashion to any of their downwardly deflected positions.
  • 14. The aircraft system of claim 1, further comprising a control system operatively coupled to the trailing edge devices to control motion of the trailing edge devices.
  • 15. The aircraft system of claim 1 wherein the wing includes a wing fuel volume and wherein the intermediate outboard trailing edge device has a chord length and wherein the system further comprises a rear wing spar positioned aft of the wing fuel volume, and wherein the rear wing spar is located at a distance forward of the intermediate outboard trailing edge device, with a ratio of the distance to the chord length having a value of about 0.5 or higher.
  • 16. An aircraft, comprising: a fuselage having a longitudinal axis;a wing coupled to the fuselage; andan inboard trailing edge device coupled to the wing and movable relative to the wing between a first stowed position and a first deployed position along a first motion path, wherein an airflow gap exists between the inboard trailing edge device and the wing when the inboard trailing edge device is in the first deployed position, the inboard trailing edge device having (a) a first leading edge with a first sweep angle relative to the longitudinal axis, and (b) a first trailing edge;an outboard trailing edge device coupled to the wing outboard of the inboard trailing edge device, and being movable relative to the wing between a second stowed position and a second deployed position along a second motion path that is non-parallel to the first motion path, wherein an airflow gap exists between the outboard trailing edge device and the wing when the outboard trailing edge device is in the second deployed position, the outboard trailing edge device having (a) a second leading edge with a second sweep angle relative to the longitudinal axis, and (b) a second trailing edge; andan intermediate trailing edge device coupled to the wing between the inboard and outboard trailing edge devices, and being movable relative to the wing between a third stowed position and a third deployed position along a third motion path that is non-parallel to both the first and second motion paths, wherein an airflow gap exists between the intermediate trailing edge device and the wing when the intermediate trailing edge device is in the third deployed position, the intermediate trailing edge device having (a) a third leading edge with a third sweep angle relative to the longitudinal axis, the third sweep angle being greater than the first sweep angle and less than the second sweep angle, and (b) a third trailing edge; whereinthe first, second and third leading edges are offset from each other when the trailing edge devices are in their stowed positions, and wherein the intermediate trailing edge device abuts the inboard trailing edge device and the outboard trailing edge device when the inboard, outboard and intermediate trailing edge devices are in the respective first, second and third stowed positions;the first, second and third leading edges form a generally monotonic leading edge profile when the trailing edge devices are in their deployed positions;the first, second and third trailing edges are offset from each other when the trailing edge devices are in their deployed positions; andthe first, second and third trailing edges form a generally monotonic trailing edge profile when the trailing edge devices are in their deployed positions.
  • 17. The system of claim 16 wherein the first, second and third motion paths converge toward each other in an aft direction.
  • 18. A method for operating an aircraft wing, comprising: moving an inboard trailing edge device relative to an aircraft wing between a first stowed position and a first deployed position along a first motion path to open a gap between the inboard trailing edge device and the wing;moving an outboard trailing edge device relative to the wing between a second stowed position and a second deployed position along a second motion path that is non-parallel to the first motion path to open a gap between the outboard trailing edge device and the wing; andmoving an intermediate trailing edge device relative to the wing between a third stowed position and a third deployed position along a third motion path that is non-parallel to the first and second motion paths to open a gap between the intermediate trailing edge device and the wing, wherein the intermediate trailing edge device is positioned between the inboard and outboard trailing edge devices, and wherein the intermediate trailing edge device abuts the inboard trailing edge device and the outboard trailing edge device when the inboard, outboard and intermediate trailing edge devices are in the respective first, second and third stowed positions.
  • 19. The method of claim 18 wherein moving the trailing edge devices includes moving the trailing edge devices along motion paths that converge toward each other in an aft direction.
  • 20. The method of claim 18 wherein the inboard trailing edge device has a first trailing edge, and a first leading edge with a first sweep angle, the outboard trailing edge device has a second trailing edge, and a second leading edge with a second sweep angle greater than the first sweep angle, and the intermediate leading edge device has a third trailing edge, and a third leading edge with a third sweep angle greater than the first sweep angle and less than the second sweep angle, and wherein the method further comprises: offsetting the first, second, and third leading edges from each other when the trailing edge devices are in their stowed positions;aligning the first, second and third leading edges to form a generally monotonic leading edge profile when the trailing edge devices are in their deployed positions;offsetting the first, second and third trailing edges when the trailing edge devices are in their deployed positions; andaligning the first, second and third trailing edges form a generally monotonic composite trailing edge profile when the trailing edge devices are in their stowed positions.
  • 21. The method of claim 18 wherein the inboard trailing edge device has a first leading edge, the outboard trailing edge device has a second leading edge and the intermediate trailing edge device has a third leading edge, and wherein stowing the trailing edge devices includes positioning the first, second and third leading edges to be offset from each other.
  • 22. The method of claim 18 wherein: the first deployed position is one of multiple first deployed positions, the second deployed position is one of multiple second deployed positions, and the third deployed position is one of multiple third deployed positions; and whereinmoving the trailing edge devices includes moving the trailing edge devices to at least one combination of a first deployed position, a second deployed position and a third deployed position where the first, second and third leading edges form a generally continuous composite leading edge.
  • 23. The method of claim 18 wherein the inboard trailing edge device has a first trailing edge, the outboard trailing edge device has a second trailing edge and the intermediate trailing edge device has a third trailing edge, and wherein moving the trailing edge devices includes moving the first, second and third trailing edges to form a composite trailing edge profile that follows a generally monotonic function when the trailing edge devices are their stowed positions, and moving the first, second and third trailing edges be offset from each other when the trailing edge devices are in their deployed positions.
  • 24. The method of claim 18, further comprising: downwardly deflecting an inboard spoiler located forward of the inboard trailing edge device, the inboard spoiler having a first trailing edge;downwardly deflecting an outboard spoiler located forward of the outboard trailing edge device, outboard spoiler having a second trailing edge; anddownwardly deflecting an intermediate spoiler located forward of the intermediate trailing edge device so that a third trailing edge of the intermediate spoiler forms a generally continuous, composite trailing edge with the first and second trailing edges.
  • 25. The method of claim 24 wherein each of the trailing edge devices is movable to multiple deployed positions, and wherein each of the spoilers is movable to corresponding multiple downwardly deflected positions, and wherein for each of the multiple downwardly deflected positions, the spoilers are moved so that the first, second and third trailing edges form a composite trailing edge profile that follows a generally monotonic function.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 11/284,247, filed Nov. 21, 2005, now U.S. Pat. No. 7,475,854 which is incorporated herein in its entirety.

US Referenced Citations (299)
Number Name Date Kind
1724456 Crook Aug 1929 A
1770575 Ksoll Jul 1930 A
2086085 Lachmann et al. Jul 1937 A
2169416 Griswold Aug 1939 A
2282516 Hans et al. May 1942 A
2289704 Grant Jul 1942 A
2319383 Zap May 1943 A
2347230 Zuck Apr 1944 A
2358985 McAndrew Sep 1944 A
2378528 Arsandaux Jun 1945 A
2383102 Zap Aug 1945 A
2385351 Davidsen Sep 1945 A
2387492 Blaylock et al. Oct 1945 A
2389274 Pearsall et al. Nov 1945 A
2406475 Rogers Aug 1946 A
2421694 Hawkins et al. Jun 1947 A
2422296 Flader et al. Jun 1947 A
2444293 Holt Jun 1948 A
2458900 Erny Jan 1949 A
2504684 Harper Apr 1950 A
2518854 Badenoch Aug 1950 A
2563453 Briend Aug 1951 A
2652812 Fenzl Sep 1953 A
2665084 Feeney et al. Jan 1954 A
2665085 Feeney et al. Jan 1954 A
2851229 Clark Sep 1958 A
2864239 Taylor Dec 1958 A
2877968 Granan et al. Mar 1959 A
2886008 Geyer et al. May 1959 A
2891740 Campbell Jun 1959 A
2899152 Weiland Aug 1959 A
2912190 MacDonough Nov 1959 A
2920844 Marshall et al. Jan 1960 A
2938680 Greene et al. May 1960 A
2990144 Hougland Jun 1961 A
2990145 Hougland Jun 1961 A
3013748 Westburg Dec 1961 A
3089666 Quenzler May 1963 A
3112089 Dornier Nov 1963 A
3136504 Carr Jun 1964 A
3166271 Zuck Jan 1965 A
3203275 Hoover Aug 1965 A
3203647 Alvarez-Calderon Aug 1965 A
3263946 Roberts et al. Aug 1966 A
3282535 Steiner Nov 1966 A
3362659 Razak et al. Jan 1968 A
3375998 Alvarez-Calderon Apr 1968 A
3423858 Speno Jan 1969 A
3447763 Allcock Jun 1969 A
3463418 Miksch Aug 1969 A
3504870 Cole et al. Apr 1970 A
3528632 Miles et al. Sep 1970 A
3539133 Robertson Nov 1970 A
3556439 Autry et al. Jan 1971 A
3587311 Hays, Jr. Jun 1971 A
3589648 Gorham et al. Jun 1971 A
3642234 Kamber et al. Feb 1972 A
3653611 Trupp et al. Apr 1972 A
3659810 Robertson May 1972 A
3677504 Schwarzler et al. Jul 1972 A
3704828 Studer et al. Dec 1972 A
3704843 Jenny Dec 1972 A
3711039 James Jan 1973 A
3730459 Zuck May 1973 A
3743219 Gorges et al. Jul 1973 A
3767140 Johnson Oct 1973 A
3790106 Sweeney et al. Feb 1974 A
3794276 Maltby et al. Feb 1974 A
3804267 Cook et al. Apr 1974 A
3807447 Masuda et al. Apr 1974 A
3813062 Prather May 1974 A
3827658 Hallworth Aug 1974 A
3831886 Burdges et al. Aug 1974 A
3836099 O'Neill et al. Sep 1974 A
3837601 Cole Sep 1974 A
3853289 Nevermann et al. Dec 1974 A
3862730 Heiney Jan 1975 A
3874617 Johnson Apr 1975 A
3897029 Calderon et al. Jul 1975 A
3904152 Hill Sep 1975 A
3910530 James et al. Oct 1975 A
3913450 MacGregor Oct 1975 A
3917192 Alvarez-Calderon et al. Nov 1975 A
3941334 Cole Mar 1976 A
3941341 Brogdon, Jr. Mar 1976 A
3949957 Portier et al. Apr 1976 A
3954231 Fraser May 1976 A
3968946 Cole Jul 1976 A
3985319 Dean et al. Oct 1976 A
3987983 Cole Oct 1976 A
3991574 Frazier Nov 1976 A
3994451 Cole Nov 1976 A
4015787 Maieli et al. Apr 1977 A
4106730 Spitzer et al. Aug 1978 A
4117996 Sherman Oct 1978 A
4120470 Whitener Oct 1978 A
4131253 Zapel Dec 1978 A
4146200 Borzachillo Mar 1979 A
4171787 Zapel Oct 1979 A
4180222 Thornburg Dec 1979 A
4181275 Moelter et al. Jan 1980 A
4189120 Wang Feb 1980 A
4189121 Harper et al. Feb 1980 A
4200253 Rowarth et al. Apr 1980 A
4202519 Fletcher May 1980 A
4240255 Benilan et al. Dec 1980 A
4248395 Cole Feb 1981 A
4262868 Dean Apr 1981 A
4267990 Staudacher et al. May 1981 A
4283029 Rudolph Aug 1981 A
4285482 Lewis Aug 1981 A
4293110 Middleton et al. Oct 1981 A
4312486 McKinney Jan 1982 A
4351502 Statkus Sep 1982 A
4353517 Rudolph Oct 1982 A
4358077 Coronel Nov 1982 A
4360176 Brown Nov 1982 A
4363098 Buus et al. Dec 1982 A
4365774 Coronel Dec 1982 A
4384693 Pauly et al. May 1983 A
4399970 Evans Aug 1983 A
4427168 McKinney et al. Jan 1984 A
4441675 Boehringer et al. Apr 1984 A
4444368 Andrews Apr 1984 A
4448375 Herndon May 1984 A
4471925 Kunz et al. Sep 1984 A
4471927 Rudolph et al. Sep 1984 A
4472780 Chenoweth et al. Sep 1984 A
4475702 Cole Oct 1984 A
4479620 Rogers et al. Oct 1984 A
4485992 Rao Dec 1984 A
4496121 Berlin Jan 1985 A
4498646 Proksch et al. Feb 1985 A
4528775 Einarsson et al. Jul 1985 A
4533096 Baker et al. Aug 1985 A
4542869 Brine Sep 1985 A
4544117 Schuster Oct 1985 A
4553722 Cole Nov 1985 A
4575030 Gratzer Mar 1986 A
4576347 Opsahl Mar 1986 A
4605187 Stephenson Aug 1986 A
4637573 Perin et al. Jan 1987 A
4650140 Cole Mar 1987 A
4669687 Rudolph Jun 1987 A
4691879 Greene Sep 1987 A
4700911 Zimmer et al. Oct 1987 A
4702441 Wang Oct 1987 A
4702442 Weiland et al. Oct 1987 A
4706913 Cole Nov 1987 A
4712752 Victor Dec 1987 A
4717097 Sepstrup Jan 1988 A
4720066 Renken et al. Jan 1988 A
4729528 Borzachillo Mar 1988 A
4779822 Burandt et al. Oct 1988 A
4784355 Brine Nov 1988 A
4786013 Pohl et al. Nov 1988 A
4789119 Bellego et al. Dec 1988 A
4796192 Lewis Jan 1989 A
4834326 Stache May 1989 A
4838503 Williams et al. Jun 1989 A
4854528 Hofrichter et al. Aug 1989 A
4867394 Patterson, Jr. Sep 1989 A
4892274 Pohl et al. Jan 1990 A
4899284 Lewis et al. Feb 1990 A
4962902 Fortes Oct 1990 A
5039032 Rudolph Aug 1991 A
5046688 Woods Sep 1991 A
5056741 Bliesner et al. Oct 1991 A
5074495 Raymond Dec 1991 A
5082207 Tulinius Jan 1992 A
5082208 Matich Jan 1992 A
5088665 Vijgen et al. Feb 1992 A
5094411 Rao Mar 1992 A
5094412 Narramore Mar 1992 A
5100082 Archung Mar 1992 A
5114100 Rudolph et al. May 1992 A
5158252 Sakurai Oct 1992 A
5167383 Nozaki et al. Dec 1992 A
5207400 Jennings et al. May 1993 A
5280863 Schmittle Jan 1994 A
5282591 Walters et al. Feb 1994 A
5351914 Nagao et al. Oct 1994 A
5388788 Rudolph Feb 1995 A
5474265 Capbern et al. Dec 1995 A
5493497 Buus Feb 1996 A
5542684 Squirrell et al. Aug 1996 A
5544847 Bliesner Aug 1996 A
5564655 Garland et al. Oct 1996 A
5600220 Thoraval et al. Feb 1997 A
5609020 Jackson et al. Mar 1997 A
5680124 Bedell et al. Oct 1997 A
5681014 Davies et al. Oct 1997 A
5686907 Bedell et al. Nov 1997 A
5711496 Nusbaum Jan 1998 A
5735485 Ciprian et al. Apr 1998 A
5740991 Gleine et al. Apr 1998 A
5743490 Gillingham et al. Apr 1998 A
5788190 Siers Aug 1998 A
5836550 Paez Nov 1998 A
5839698 Moppert Nov 1998 A
5875998 Gleine et al. Mar 1999 A
5915653 Koppelman Jun 1999 A
5921506 Appa Jul 1999 A
5927656 Hinkleman Jul 1999 A
5984230 Orazi Nov 1999 A
6015117 Broadbent et al. Jan 2000 A
6033180 Machida et al. Mar 2000 A
6076767 Farley et al. Jun 2000 A
6076776 Breitbach et al. Jun 2000 A
6079672 Lam et al. Jun 2000 A
6082679 Crouch et al. Jul 2000 A
6109567 Munoz Saiz et al. Aug 2000 A
6145791 Diller et al. Nov 2000 A
6152405 Muller et al. Nov 2000 A
6161801 Kelm et al. Dec 2000 A
6164598 Young et al. Dec 2000 A
6173924 Young et al. Jan 2001 B1
6189837 Matthews Feb 2001 B1
6213433 Gruensfelder et al. Apr 2001 B1
6227498 Arata May 2001 B1
6244542 Young et al. Jun 2001 B1
6293497 Kelley-Wickemeyer et al. Sep 2001 B1
6328265 Dizdarevic Dec 2001 B1
6349903 Caton et al. Feb 2002 B2
6364254 May et al. Apr 2002 B1
6375126 Sakurai et al. Apr 2002 B1
6382566 Ferrel et al. May 2002 B1
6431498 Watts et al. Aug 2002 B1
6439512 Hart Aug 2002 B1
6443394 Weisend, Jr. Sep 2002 B1
6450457 Sharp et al. Sep 2002 B1
6464175 Yada et al. Oct 2002 B2
6464176 Uchida et al. Oct 2002 B2
6466141 McKay et al. Oct 2002 B1
6478541 Charles et al. Nov 2002 B1
6481667 Ho Nov 2002 B1
6536714 Gleine et al. Mar 2003 B2
6554229 Lam et al. Apr 2003 B1
6561463 Yount et al. May 2003 B1
6598834 Nettle et al. Jul 2003 B2
6601801 Prow et al. Aug 2003 B1
6622974 Dockter et al. Sep 2003 B1
6625982 Van Den Bossche et al. Sep 2003 B2
6644599 Perez Nov 2003 B2
6651930 Gautier et al. Nov 2003 B1
7258308 Beyer Jan 2004 B2
6698523 Barber Mar 2004 B2
6729583 Milliere et al. May 2004 B2
6755375 Trikha Jun 2004 B2
6796526 Boehringer Sep 2004 B2
6796534 Beyer et al. Sep 2004 B2
6799739 Jones Oct 2004 B1
6802475 Davies et al. Oct 2004 B2
6824099 Jones Nov 2004 B1
6843452 Vassberg et al. Jan 2005 B1
6860452 Bacon et al. Mar 2005 B2
6910659 Friddell et al. Jun 2005 B2
6978971 Dun Dec 2005 B1
6981676 Milliere et al. Jan 2006 B2
7007889 Charron Mar 2006 B2
7007897 Wingett et al. Mar 2006 B2
7028948 Pitt Apr 2006 B2
7048228 Vassberg et al. May 2006 B2
7048234 Recksiek et al. May 2006 B2
7048235 McLean et al. May 2006 B2
7051975 Pohl et al. May 2006 B2
7051982 Johnson May 2006 B1
7059563 Huynh Jun 2006 B2
7147241 Beaujot et al. Dec 2006 B2
7159825 Seve Jan 2007 B2
7226020 Pohl et al. Jun 2007 B2
7243881 Sakurai et al. Jul 2007 B2
7264206 Wheaton et al. Sep 2007 B2
7270305 Rampton et al. Sep 2007 B2
7300021 Voogt Nov 2007 B2
7309043 Good et al. Dec 2007 B2
7322547 Konings Jan 2008 B2
7338018 Huynh et al. Mar 2008 B2
7357358 Lacy et al. Apr 2008 B2
7424350 Speer Sep 2008 B2
7475854 Lacy et al. Jan 2009 B2
7494094 Good et al. Feb 2009 B2
7500641 Sakurai et al. Mar 2009 B2
7506842 Jones Mar 2009 B2
20030197097 Wakayama Oct 2003 A1
20040059474 Boorman et al. Mar 2004 A1
20050011994 Sakurai et al. Jan 2005 A1
20050040294 Perez-Sanchez et al. Feb 2005 A1
20050061922 Milliere Mar 2005 A1
20050230565 Kallinen Oct 2005 A1
20050242243 Seve Nov 2005 A1
20060038086 Reckzeh Feb 2006 A1
20060049308 Good et al. Mar 2006 A1
20060175468 Huynh et al. Aug 2006 A1
20060226297 Perez-Sanchez Oct 2006 A1
20070114328 Lacy et al. May 2007 A1
20070176051 Good et al. Aug 2007 A1
20070252040 Kordel et al. Nov 2007 A1
20090206209 Good et al. Aug 2009 A1
Foreign Referenced Citations (20)
Number Date Country
387833 Jan 1924 DE
1129379 May 1962 DE
0100775 Feb 1984 EP
0103038 Mar 1984 EP
0215211 Mar 1987 EP
230061 Jul 1987 EP
0483504 May 1992 EP
0781704 Jul 1997 EP
0947421 Oct 1999 EP
1010616 Jun 2000 EP
1338506 Aug 2003 EP
1462361 Sep 2004 EP
1547917 Jun 2005 EP
705155 Jun 1931 FR
984443 Jul 1951 FR
56121 Sep 1952 FR
57988 Sep 1953 FR
58273 Nov 1953 FR
1181991 Feb 1970 GB
2144688 Mar 1985 GB
Related Publications (1)
Number Date Country
20090146017 A1 Jun 2009 US
Continuations (1)
Number Date Country
Parent 11284247 Nov 2005 US
Child 12264831 US