This invention relates to aircraft.
It is known to accelerate the airflow over a wing of an aircraft by discharging compressed air from a duct within the wing over a trailing edge portion of the wing thereby to increase the lift of the wing. The compressed air is derived from a compressor of a gas turbine engine for propelling the aircraft and such an arrangement must necessarily subtract from the power of the engine. It is an object of this invention to reduce or overcome this difficulty.
According to this invention there is provided air-craft comprising a wing, a gas turbine engine, a jet pipe of which has an exhaust end portion situated beneath a trailing edge portion of the wing, a panel constituting a part common to said pipe end portion and said trailing edge portion, and a flow passage arranged to connect the jet pipe to the upper surface of the panel to discharge exhaust gas of the engine over the panel and thereby accelerate air flowing from the wing toward the panel.
Since the invention uses the energy of the exhaust gas to energize the airflow over the wing, it does not subtract power from the engine, at least not to the extent to which this is the case in the above-mentioned known arrangement.
Preferably the exhaust end portion has a rectangular flow area, the longer sides of which lie along the trailing edge of the wing so that said panel forms a significant spanwise part of said edge.
Preferably there are provided two said panels arranged one above the other and said flow passage is arranged for the gas to discharge into a passage defined between the two panels to entrain air from the wing by virtue of the two panels constituting an ejector.
The two panels may be in the form of two flaps supported for pivotal motion relative to the jet pipe and to a fixed part of the wing so that the direction of the jet and of the entrained air may be varied for the purpose of varying the direction of thrust of the engine, e.g. in a forward and upward direction, while simultaneously increasing the lift of the wing.
The invention is particularly of use in aircraft where thrust line of the engine is offset from the center of gravity of the aircraft and where the additional lift derivable from the panel or panels in the trailing edge region of the wing can be of help in compensating for pitch unbalance occasioned by said offset.
The entrainment of air by said ejector not only increases the lift of the wing but also adds to the thrust developed at the exhaust end portion of the jet pipe.
An example of the present invention will now be described with reference to the accompanying drawings wherein:
Referring to
Referring to
When it is required to divert the thrust of the engine into a vertical direction for purposes of a vertical take-off (
Assuming a vertical take-off has taken place, and it is then required to make a transition to normal forward flight, the flaps 20,21,22,23 are slowly pivoted into a position inclined to the horizontal,
The flap 16 is so related to the adjacent edge of the fixed structure 11, that, in the inclined and the vertically downward position of the flaps, the flap 16 is separated from the structure 11 by a passage 25 open to the jet pipe 14 and to an ejector passage 26 between the flaps 20,21. The passage 26 is formed by the flap 21 being displaced rearwards when being pivoted from the
It will be appreciated that the passage 25,26 may also be open in the
Inasmuch as the panel is swept at its upper surface 20D by the entrained flow 26A, which is essentially boundary layer flow, and at its underside by the gas from the pipe 14, the panel may be regarded as a part common to the nozzle 15 and to the trailing edge portion of the wing 10 downstream of the fixed structure thereof. By constituting the flap 20 a common part in this way, it is possible to use the hot exhaust gas for the energization of the flow 26A because the passage 25 can be arranged substantially directly between the pipe 15 and the upper surface 20D and difficulties which might arise from the ducting of hot gas are avoided. While it is possible to use the gas for energization of the flow 26A in the
Number | Date | Country | Kind |
---|---|---|---|
8038248 | Nov 1980 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2891740 | Campbell | Jun 1959 | A |
2951660 | Giliberty | Sep 1960 | A |
3330500 | Winborn | Jul 1967 | A |
3332644 | Whittley | Jul 1967 | A |
3756542 | Bertin | Sep 1973 | A |
4000610 | Nash et al. | Jan 1977 | A |
4106730 | Spitzer et al. | Aug 1978 | A |
4117996 | Sherman | Oct 1978 | A |
4146197 | Grotz | Mar 1979 | A |
4343446 | Langley | Aug 1982 | A |
Number | Date | Country |
---|---|---|
1506615 | Aug 1969 | DE |
1172442 | Nov 1969 | GB |
1369609 | Oct 1974 | GB |
1450028 | Sep 1976 | GB |