The invention relates to airdrop platforms,
An airdrop platform is used for carrying and restraining a load in an aircraft and then supporting the load as it is dropped from the aircraft under one or more parachutes. After deployment from the aircraft, the platform is subjected to two significant changes in kinetic energy. The first arises when the supporting parachute or parachutes opens. The platform is then rapidly decelerated and there is a significant change in the kinetic energy of the platform. The second arises when the platform lands on the ground. Again, the platform is subject to high deceleration and so subject to a large change in kinetic energy.
As a result, it is customary to build platforms that are sufficiently rigid that these changes in energy do not break or cause permanent deformation of the platform. The platforms may be made of aircraft grade aluminium designed to provide great strength and resistance to bending. The Type V platform of Natick design is constructed on this basis. The change in energy is dissipated through the load and the parachute as well as to the surrounding ground on landing but no significant amount of energy is absorbed by the platform.
As a result, such platforms are heavy and so more difficult to handle as well as being expensive. Additionally, the lack of compliance of the materials means that uneven loading can lead to permanent deformation.
According to the invention, there is provided an airdrop platform comprising a load-carrying base having an upper surface and a lower surface, the upper surface including attachment points for one or more parachutes, the load-carrying base being such as such as to flex to absorb energy on changes of the energy of the platform under the forces applied to the base on parachute opening and on landing.
Absorbing the loads encountered in use by the load-carrying member by flexing allows the load-carrying member to be light and inexpensive.
The following is a more detailed description of some embodiments of the invention, by way of example, reference being made to the accompanying drawings, in which:
Referring first to
The base 10 is an energy-absorbing grating made from glass-fibre reinforced polyester. It consists of rovings of continuous glass fibres aligned bi-axially and saturated with polyester resin to form a square panel. The panel is topped with silicone grit to provide a non-slip finish, though this is not a critical feature of the design. As a result of this, loads applied to the base 10 and having a component in directions normal to the plane of the base 10 will cause local flexure of the base 10 relative to the remainder of the base 10.
Referring next to
In use, a platform of the kind described with reference to the drawings is for dropping a load from an aircraft. The load is mounted on the base 10 outside the aircraft and one or more packed parachutes are then attached to the base 10 at the confluence point of the four slings 18. The base 10 and load are then loaded onto the aircraft where the roller trays 16 interface with the rollers of the aircraft cargo handling system. The base 10 is then secured to the floor. When the aircraft reaches the desired drop point, the base 10 is released from the floor of the aircraft and exits a rear door of the aircraft. The parachute(s) open by the use of static lines and deploy. As the parachute(s) fill with air, they decelerate the platform rapidly via the attachment points 14 resulting in a rapid change in the kinetic energy of the platform. This change in energy is absorbed by the base 10 flexing so avoiding permanent damage to the base 10.
The platform and the load then descend under the control of the parachute(s) until they reach the ground. As the base lands on the ground, there will again be an abrupt change in the kinetic energy of the platform. These forces arising during such landing will cause the base 10 to flex so absorbing some of the energy change.
As a result, the base 10 can be made of an inexpensive lightweight material. This is important where the platform is for single use. It also allows easy storage of the platform prior to use.
Of course, the base 10 need not be as described above. It could be of any flexible material capable of absorbing energy by flexing under the decelerative forces from the parachute(s) and the ground. The base need not be a grid; it could be a sheet of uninterrupted material or sandwiched materials. The metal channels 13a, 13b need not have flat surfaces; they could be castellated to engage with the cargo handling system and provide restraint in all axes.
Number | Date | Country | Kind |
---|---|---|---|
1411361.7 | Jun 2014 | GB | national |