This invention relates to apparatus for monitoring the operation of a fan motor, and more particularly to an electrical circuit for detecting fan airflow blockage when the motor is a split-capacitor single-phase induction motor.
Cooling fans for heat-sensitive electrical equipment are frequently driven by single-phase induction motors having main and auxiliary windings with one or more capacitors connected in series with the auxiliary winding. Such motors, sometimes referred to as permanent split-capacitor motors because the capacitor is continuously in series with the auxiliary winding, are widely used in cooling fan applications due to their low cost of manufacture and starting ease. In many cases, it is necessary to provide an indication of cooling loss should the fan airflow become blocked by accumulation of dust or foreign objects. Mechanical airflow sensors such as vane switches are known, of course, but such switches require periodic calibration and are not particularly reliable. Accordingly, what is needed is more reliable and trouble-free apparatus for detecting airflow blockage.
The present invention is directed to an improved airflow blockage detection apparatus for a permanent split-capacitor single-phase cooling fan motor, where electrical currents in main and auxiliary windings of the motor are measured and compared to detect airflow blockage. Main and auxiliary current sensors detect AC currents in the main and auxiliary windings, respectively, and a bridge circuit forms a difference between the detected currents. An airflow blockage alarm is activated when the difference exceeds a specified set-point indicative of abnormally low airflow.
Referring to the drawings, and particularly to
In the illustrated embodiment, the main and auxiliary AC winding currents Imain, Iaux are measured with sensors 30, 32 responsive to the root-mean-square (RMS) winding currents Imain_rms, Iaux_rms in the main and auxiliary windings, respectively. Each of the sensors 30, 32 includes a precision resistor 30a, 32a connected in series between the hot (H) power supply wire 24 and the respective winding 18, 20, and a thermistor 30b, 32b disposed in close proximity to the respective resistor 30a, 32a. The resistors 30a, 32a each have an electrical resistance on the order of approximately 2 ohms, for example, and dissipate power in the form of heat due to the respective winding currents Imain, Iaux so that the temperature rises detected by the respective thermistors 30b, 32b provide a measure of the respective RMS winding currents Imain_rms, Iaux_rms. For purposes of the present invention, however, it is not necessary to know the magnitude of either Imain or Iaux, only their difference since airflow blockage is indicated by a winding current difference in excess of a calibrated setpoint SP.
The relationship of the AC winding currents Imain and Iaux for a given forced-air cooling system and various degrees of airflow blockage is graphically depicted in FIG. 2. The data was obtained by variably restricting inlet airflow area (Airflow Intake Blockage), and measuring the resulting airflow (Flow) and winding currents (Imain, Iaux). For the test system, a current differential of approximately 120 mA is observed for airflow blockages of approximately 0%-50%. However, the currents Imain and Iaux diverge as the blockage increases above 50%, with Imain decreasing and Iaux increasing. In the illustrated example, the highest degree of divergence occurs with blockage above 60%, allowing the setpoint SP to be calibrated substantially as shown in
Referring again to
In summary, this invention provide a reliable and inexpensive apparatus for detecting significant airflow blockage and issuing a warning to prevent overheating of heat-sensitive equipment such as electronic and computer circuitry. While described in reference to the illustrated embodiment, it is expected that various modifications in addition to those mentioned above will occur to those skilled in the art. For example, it is possible to measure average or peak-to-peak currents instead of RMS currents, and the current sensors 30, 32 will vary accordingly. For example, the sensors 30, 32 may be inductively or capacitively coupled to the lines 24, 26, or the currents may be detected by simply measuring and rectifying the voltage across a series resistor. Also, the winding current difference may be detected directly in the inductivel coupled approach, if desired. Various other measurement techniques are also possible. Additionally, some or all of the signal processing may be performed by a suitably programmed microprocessor, if desired. Thus, it will be understood that circuitry incorporating these and other modifications may fall within the scope of this invention, which is defined by the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5478379 | Bevins | Dec 1995 | A |
| 5831525 | Harvey | Nov 1998 | A |
| 6545438 | Mays, II | Apr 2003 | B1 |
| Number | Date | Country | |
|---|---|---|---|
| 20040263341 A1 | Dec 2004 | US |