Aspects of this disclosure relate generally to inkjet printing, and more specifically to inkjet printing systems having a media transport assembly utilizing vacuum suction to hold and transport print media. Related devices, systems, and methods also are disclosed.
In some applications, inkjet printing systems use an ink deposition assembly with one or more printheads, and a media transport assembly to move print media (e.g., a substrate such as sheets of paper, envelopes, or other substrate suitable for being printed with ink) through an ink deposition region of the ink deposition assembly (e.g., a region under the printheads). The inkjet printing system forms printed images on the print media by ejecting ink from the printheads onto the media as the media pass through the deposition region. In some inkjet printing systems, the media transport assembly utilizes vacuum suction to assist in holding the print media against a movable support surface (e.g., conveyor belt, rotating drum, etc.) of the transport device. Vacuum suction to hold the print media against the support surface can be achieved using a vacuum source (e.g., fans) and a vacuum plenum fluidically coupling the vacuum source to a side of the movable support surface opposite from the side that supports the print medium. The vacuum source creates a vacuum state in the vacuum plenum, causing vacuum suction through holes in the movable support surface that are fluidically coupled to the vacuum plenum. When a print medium is introduced onto the movable support surface, the vacuum suction generates suction forces that hold the print medium against the movable support surface. The media transport assembly utilizing vacuum suction may allow print media to be securely held in place without slippage while being transported through the ink deposition region under the ink deposition assembly, thereby helping to ensure correct locating of the print media relative to the printheads and thus more accurate printed images. The vacuum suction may also allow print media to be held flat as it passes through the ink deposition region, which may also help to increase accuracy of printed images, as well as helping to prevent part of the print medium from rising up and striking part of the ink deposition assembly and potentially causing a jam or damage.
One problem that may arise in inkjet printing systems that include media transport assemblies utilizing vacuum suction is unintended blurring of images resulting from air currents induced by the vacuum suction. In some systems, such blurring may occur in portions of the printed image that are near the edges of the print media, particularly those portions that are near the lead edge or trail edge in the transport direction (sometimes referred to as process direction) of the print media. During a print job, the print media are spaced apart from one another on the movable support surface as they are transported through the deposition region of the ink deposition assembly, and therefore parts of the movable support surface between adjacent print media are not covered by any print media. This region between adjacent print media is referred to herein as the inter-media zone. Thus, adjacent to both the lead edge and the trail edge of each print medium in the inter-media zone there are uncovered holes in the movable support surface. Because these holes are uncovered, the vacuum of the vacuum plenum induces air to flow through those uncovered holes. This airflow may deflect ink droplets as they are traveling from a printhead to the substrate, and thus cause blurring of the image.
A need exists to improve the accuracy of the placement of droplets in inkjet printing systems and to reduce the appearance of blur of the final printed media product. A need further exists to address the blurring issues in a reliable manner and while maintaining speeds of printing and transport to provide efficient inkjet printing systems.
Embodiments of the present disclosure may solve one or more of the above-mentioned problems and/or may demonstrate one or more of the above-mentioned desirable features. Other features and/or advantages may become apparent from the description that follows.
In accordance with at least one embodiment of the present disclosure, a printing system comprises an ink deposition assembly and a media transport assembly. The ink deposition assembly comprises a printhead arranged to eject a print fluid to a deposition region of the ink deposition assembly. The media transport assembly comprises a vacuum source and a movable support surface. The movable support surface comprises valves having holes through the media support surface. The media transport assembly is configured to hold one or more print media against the movable support surface by vacuum suction communicated from the vacuum source through valves. The valves are each configured to transition between a closed state in which airflow through the hole of the respective valve is prevented and an open state in which airflow through the hole of the respective valve is allowed.
In accordance with at least one embodiment of the present disclosure, a movable support surface for a printing system comprises a flexible belt and a plurality of valves arranged in the flexible belt to communicate vacuum suction through the flexible belt to hold print media being transported by the movable support surface against the flexible belt. The valves are configured to transition between an open state in which the vacuum suction is communicated through the respective valve and a closed state in which the vacuum suction is blocked through the respective valve.
In accordance with at least one embodiment of the present disclosure, a method comprises loading a print medium onto a movable support surface of a media transport assembly of a printing system and holding the print medium against the movable support surface via vacuum suction through valves in the movable support surface. The method further comprises causing those of the valves that are covered by the print medium to transition, via interaction of the print medium with the valves, from a closed state in which the vacuum suction is blocked through the respective valves to an open state in which the vacuum suction is permitted through the respective valves. The method further comprises transporting the print medium, via the movable support surface, in a process direction through a deposition region of a printhead of the printing system; and ejecting print fluid from the printhead to deposit the print fluid to the print medium in the deposition region.
The present disclosure can be understood from the following detailed description, either alone or together with the accompanying drawings. The drawings are included to provide a further understanding of the present disclosure and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments of the present teachings and together with the description explain certain principles and operation. In the drawings:
In the Figures and the description herein, numerical indexes such as “_1”, “_2”, etc. are appended to the end of the reference numbers of some components. When there are multiple similar components and it is desired to refer to a specific one of those components, the same base reference number is used and different indexes are appended to it to distinguish individual components. However, when the components are being referred to generally or collectively without a need to distinguish between specific ones, the index may be omitted from the base reference number. Thus, as one example, a print medium 5 may be labeled and referred to as a first print medium 5_1 when it is desired to identify a specific one of the print media 5, as in
As described above, when an inter-media zone is near or under a printhead, the uncovered holes in the inter-media zone can create crossflows that can blow satellite droplets off course and cause image blur. Similarly, uncovered holes along an inboard or outboard side of the print media can also create crossflows that cause image blur. To better illustrate some of the phenomena occurring giving rise to the blurring issues, reference is made to
As shown in
In
As shown in the enlarged view A′ in
l illustrate yet another situation in which such blurring can occur, but this time near the inboard edge IE of the print medium 5 due to uncovered holes 21, 27 in that region. The cause of blurring near the inboard edge IE is similar to that described above in relation to the trail edge TE and lead edge LE, except that in the case of printing near the inboard edge IE the ink-ejection region is now located outboard of the uncovered region 24 of the holes 21 and 27 in the movable support surface 20 and platen 26. As a result, the crossflows 15 that are crossing through the ink-ejection region now originate from the outboard side of the printhead 10, e.g., from region R5, and flow in an inboard direction towards the region R6. Thus, as shown in the enlarged view C′ of
In contrast, as shown in
Embodiments disclosed herein may, among other things, inhibit some of the crossflows so as to reduce the resulting image blur that may occur. By inhibiting crossflows, the droplets ejected from a printhead (including, e.g., the satellite droplets) are more likely to land closer to or at their intended deposition locations, and therefore the amount of blur can be reduced. In accordance with various embodiments, an airflow control system comprises a number of valves arranged in the movable support surface, with each valve forming a closable hole or passageway that communicates the vacuum suction through the movable support surface. Each valve is arranged to close and open the corresponding hole based on whether a print medium is located above the valve. The valve is biased to close the hole when it is not covered by a print medium, and conversely to open the hole when it is covered by a print medium. For example, in some embodiments the valve may each comprise a biased closure mechanism (e.g., a flexible reed) which is movable between an open position in which it does not block airflow through the hole and a closed position in which it does block airflow through the hole. The valve is configured to bias the closure mechanism towards the closed position (e.g., by vacuum suction and/or spring forces internal to the closure mechanism), such that when a print medium is not located above the valve the closure mechanism is moved by the biasing to the closed position. The valve is further configured such that, when a print medium is above the valve, the closure mechanism is held in the open position by interaction with the print medium. In particular, vacuum suction through the hole pulls the print medium downward against the reed, pressing the reed towards the open position and overcoming the biasing force that urges the reed to the closed position. In this manner, the movable support surface is configured to automatically prevent suction through any uncovered holes by virtue of the valves, which are passively actuated to the desired state without requiring active control or powered actuators (e.g., by the biasing elements and by interaction with the vacuum suction and print media). With suction through the uncovered holes being prevented, the crossflows that would have been induced by such uncovered holes are reduced or eliminated. With the crossflows near the trail edge, lead edge, and/or or lateral edges (outboard and/or inboard edges) of the print media reduced or eliminated, the ink droplets (including the satellite droplets) are more likely to land at or nearer to their intended deposition locations, and therefore the amount of blur near that edge of the print media is reduced.
Turning now to
The ink deposition assembly 101 comprises one or more printhead modules 102. One printhead module 102 is illustrated in
As shown in
The movable support surface 120 is movable relative to the ink deposition assembly 101, and thus the print media held against the movable support surface 120 is transported relative to the ink deposition assembly 101 as the movable support surface 120 moves. Specifically, the movable support surface 120 transports the print media through a deposition region of the ink deposition assembly 101, the deposition region being a region in which print fluid (e.g., ink) is ejected onto the print media, such as a region under the printhead(s) 110. The movable support surface 120 can comprise any structure capable of being driven to move relative to the ink deposition assembly 101 and which has holes 121 to allow the vacuum suction to hold down the print media, such as a belt, a drum, etc.
As noted above, the movable support surface comprises valves 122, and each valve 122 comprises a hole 121. The hole 121 comprises a passageway through the movable support surface 120, which can fluidically couple the region below the movable support surface 120 to the region above the moveable support surface 120. The holes 121 are openable and closable through closure mechanisms of the corresponding valves 122. The valves 122 are configured to transition between the open state and the closed state based on whether they are covered by a print medium. In the open state of a valve 122, the vacuum suction is communicated through the associated hole 121 to the region above the movable support surface, while in the closed state of the valves, airflow through the hole 121 is blocked and the vacuum suction is not communicated through the hole 121 to the region above the movable support surface. Each valve 122 is biased to the closed state when the hole 121 is not covered by a print medium. On the other hand, when a print medium is located over the hole 121, the associated valve 122 is held in an open state, in which airflow through the holes 121 is allowed (and hence the vacuum suction from the plenum 125 is communicated through the hole 121). The valve 122 located under a print medium is held in the open state by interaction with the print media. In some embodiments, all of the valves 122 are initialized into the open state by an externally applied force, for example via contact with a print medium disposed above the valve 122 and/or contact with a roller (described further below with respect to an embodiment of
Because each of the valves 122 is biased to a closed state when a print medium is not located above the respective valve 122, suction is automatically prevented through any holes 121 that happen to not be covered by a print medium. With suction through the uncovered holes 121 being prevented, the crossflows that would have been induced by such uncovered holes 121 are reduced or eliminated. Thus, image blur near the edges of the print media is reduced.
The vacuum plenum 125 comprises baffles, walls, or any other structures arranged to enclose or define an environment in which a vacuum state (e.g., low pressure state) is maintained by the vacuum source 128, with the plenum 125 fluidically coupling the vacuum source 128 to the movable support surface 120 such that the movable support surface 120 is exposed to the vacuum state within the vacuum plenum 125. In some embodiments, the movable support surface 120 is supported by a vacuum platen 126, which may be a top wall of the vacuum plenum 125. In such an embodiment, the movable support surface 120 is fluidically coupled to the vacuum in the plenum 125 via platen holes 127 through the vacuum platen 126. In some embodiments, the movable support surface 120 is itself one of the walls of the vacuum plenum 125 and thus is exposed directly to the vacuum in the plenum 125. The vacuum source 128 may be any device configured to remove air from the plenum 125 to create the low-pressure state in the plenum 125, such as a fan, a pump, etc.
As noted above, the media loading/registration device 155 loads the print media onto the movable support surface 120 and registers the print media relative to various registration datums, as those of ordinary skill in the art are familiar with. For example, as each print medium is loaded onto the movable support surface 120, and one edge of each print medium may be registered to (i.e., aligned with) a process-direction registration datum (such as the registration datums Reg in
The control system 130 comprises processing circuitry to control operations of the printing system 100. The processing circuitry may include one or more electronic circuits configured with logic for performing the various operations described herein. The electronic circuits may be configured with logic to perform the operations by virtue of including dedicated hardware configured to perform various operations, by virtue of including software instructions executable by the circuitry to perform various operations, or any combination thereof. In examples in which the logic comprises software instructions, the electronic circuits of the processing circuitry include a memory device that stores the software and a processor comprising one or more processing devices capable of executing the instructions, such as, for example, a processor, a processor core, a central processing unit (CPU), a controller, a microcontroller, a system-on-chip (SoC), a digital signal processor (DSP), a graphics processing unit (GPU), etc. In examples in which the logic of the processing circuitry comprises dedicated hardware, in addition to or in lieu of the processor, the dedicated hardware may include any electronic device that is configured to perform specific operations, such as an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), a Complex Programmable Logic Device (CPLD), discrete logic circuits, a hardware accelerator, a hardware encoder, etc. The processing circuitry may also include any combination of dedicated hardware and general-purpose processor with software.
Turning now to
In the printing system 300, the ink deposition assembly 301 comprises four printhead modules 302 as shown in
In the printing system 300, media transport assembly 303 comprises a flexible belt providing the movable support surface 320. As shown in
The movable support surface 320 comprises a number of valves 322, which may be used as the valves 122 in the printing system 100 of
The valves 322 are configured to transition between open and closed states based on whether they are covered by a print medium, similarly to the valves 122 described above. The valves 322 are initialized to an open state (by an external force, described further below). After being initialized to the open state, the valves 322 automatically transition from the open state to the closed state if they are not covered by a print medium 305 due to biasing forces, as described further below. On the other hand, those valves 322 that are covered by a print medium are held in the open state by interaction with the print medium that overcomes the biasing forces.
More specifically, the valves 322 may comprise a closure mechanism (e.g., a flexible reed) which is movable between open and closed positions, with the position of the closure mechanism controlling whether the hole 321 of the valve 322 is an open state or a closed state. The closure mechanism is biased towards the closed position. The biasing forces that bias the closure mechanism to the closed position may include vacuum suction forces that are applied to the closure mechanism as a result of the closure mechanism being exposed the vacuum suction from the plenum 325. The biasing forces may also include internal structural forces (e.g., spring force) of the closure mechanism. When there is no print medium above a given valve 322, then there is no countervailing force to overcome the biasing forces, and therefore the closure mechanism is moved to the closed position. On the other hand, when a print medium is present above the given valve 322, the print medium interacts with (e.g., presses against) the closure mechanism and provides a countervailing force to overcome the biasing forces and hold the closure mechanism in the open position. The countervailing forces from the print medium may include the weight of the print medium 305 together with vacuum suction forces applied to the print medium 305 via the open hole 321.
In some embodiments, the initialization of a valve 322 to the open state may occur as a result of the weight of a print medium pressing against the closure mechanism as the print medium is loaded onto the movable support surface 320. In such embodiments, only those valves 322 that happen to be located under a print medium are initialized to the open state, while other valves may remain in the closed state.
However, in some embodiments, the weight of a print medium 305 alone may be insufficient to overcome the biasing forces to move the closure mechanism to the open position. Thus, in some embodiments, the roller 356 (see
Because the valves 322 automatically move to the closed state in the absence of a print medium 305 covering the holes 321 associated with the valve 322, the crossflows that would otherwise be induced through those holes 321 are prevented. Thus, image blur near the edges of the print media 305 is reduced or prevented. In addition, because the holes 321 covered by print media 305 are in an open state, the vacuum suction can be communicated through those holes 321 hold down force the print media 305.
In some embodiments, the platen holes 327 may include (of be coupled to) channels on a top side thereof, as seen in the expanded cutaway of
The media transport assembly 303 also comprises a media loading/registration device 355, which loads print media 305 onto the movable support surface 320 and registers the print media 305 relative to the movable support surface 320. The media loading/registration device 355 is similar to and may be used as the media loading/registration device 155 described above. In some embodiments, the roller 356 may be part of the media loading/registration device 355.
As shown in
As noted above, in
As mentioned above, the valve 422 also comprises a flexible reed 423, which is positioned in the chamber 434 under the top hole portion 435. The reed 423 forms a closure mechanism of the valve 422 and is movable between a closed position (see
The reed 423 can be formed out of the material of the movable support surface 420 itself, such as out of the flexible belt material in various embodiments, or alternatively can be a separate structure. A proximal end of the reed 423 is connected to the remainder of the valve 422, while a distal end of the reed 423 is a free end able to move relative to the remainder of the valve 422 in a vertical direction (i.e., along a thickness dimension of the movable support surface 420). Thus, the reed 423 is configured as a cantilever such that a downward force applied to the distal end of the reed 423 causes the reed 423 to elastically flex/bend. In the closed position (see
As noted above, one or more channels 426 are formed in the layer 429. As shown in
When the reed 423 is in the closed position (
When the reed 423 is in the open position (
The valve 422 may be similar in some ways to a reed valve, which utilizes a flexible reed positioned over an aperture to allow airflow through the aperture in one direction while preventing airflow through the aperture in an opposite direction. However, the valve 422 may differ from a reed valve in various ways. For example, the valve 422 is not necessarily intended to allow airflow in one direction while preventing it in the other direction, since in operation the airflow through the valve 422 is already constrained to move in just one direction due to the vacuum suction. Moreover, in a reed valve the reed is generally actuated as a result changes in which side of the reed is exposed to higher pressure and which is exposed to lower pressure (as a result of changes in direction of airflow), i.e., when lower pressure is located on a first side of the reed the reed is open, but when the lower pressure is located on the second side of the reed the reed is closed. In contrast, in the valve 422 the low pressure is located on the same side of the reed 423 both in the closed state and in the open state (assuming the vacuum suction is on). Thus, the valve 422 is not actuated from closed to open as a result of a change in which side of the reed 423 is exposed the lower pressure, but rather the valve 422 is actuated from the closed state to the open state as a result of application of an external force to the reed 423 (e.g., from the print media and/or roller).
As noted above, in some embodiments the valve 422 is an integral part of the movable support surface 420 that is formed, at least in part, from the material of the movable support surface 420. In some of these embodiments, the movable support surface 420 comprises a flexible belt with multiple layers 428 to 432 stacked together and with the valves 522 formed within the layers 428 to 432. The layers are indicated by dot-dashed lines in
Although specific shapes and relative sizes are illustrated for various parts of the valves 422, these shapes and relative sizes are not limiting. For example, the top and bottom hole portions 435 and 427 could be larger or smaller, have different aspect ratios (i.e., be more oblong or less oblong), have different shapes (e.g., square, polygonal, etc.). As another example, the reed 423 could be longer, shorter, wider, narrower, or differently shaped (e.g., rectangular, etc.). Furthermore, although two channels 42 are illustrated, in other embodiments, fewer or more channels 426 could be provided to couple the chamber 434 to the bottom hole portion 427.
In the embodiments described above with respect to
This description and the accompanying drawings that illustrate inventive aspects and embodiments should not be taken as limiting—the claims define the protected invention. Various mechanical, compositional, structural, electrical, and operational changes may be made without departing from the spirit and scope of this description and the claims. In some instances, well-known circuits, structures, and techniques have not been shown or described in detail in order not to obscure the invention. Like numbers in two or more figures represent the same or similar elements.
Further, the terminology used herein to describe aspects of the invention, such as spatial and relational terms, is chosen to aid the reader in understanding embodiments of the invention but is not intended to limit the invention. For example, spatially terms—such as “beneath”, “below”, “lower”, “above”, “upper”, “inboard”, “outboard”, “up”, “down”, and the like—may be used herein to describe directions or one element's or feature's spatial relationship to another element or feature as illustrated in the figures. These spatial terms are used relative to the poses illustrated in the figures, and are not limited to a particular reference frame in the real world. Thus, for example, the direction “up” in the figures does not necessarily have to correspond to an “up” in a world reference frame (e.g., away from the Earth's surface). Furthermore, if a different reference frame is considered than the one illustrated in the figures, then the spatial terms used herein may need to be interpreted differently in that different reference frame. For example, the direction referred to as “up” in relation to one of the figures may correspond to a direction that is called “down” in relation to a different reference frame that is rotated 180 degrees from the figure's reference frame. As another example, if a device is turned over 180 degrees in a world reference frame as compared to how it was illustrated in the figures, then an item described herein as being “above” or “over” a second item in relation to the Figures would be “below” or “beneath” the second item in relation to the world reference frame. Thus, the same spatial relationship or direction can be described using different spatial terms depending on which reference frame is being considered. Moreover, the poses of items illustrated in the figure are chosen for convenience of illustration and description, but in an implementation in practice the items may be posed differently.
The term “process direction” refers to a direction that is parallel to and pointed in the same direction as an axis along which the print media moves as is transported through the deposition region of the ink deposition assembly. Thus, the process direction is a direction parallel to the y-axis in the Figures and pointing in a positive y-axis direction.
The term “cross-process direction” refers to a direction perpendicular to the process direction and parallel to the movable support surface. At any given point, there are two cross-process directions pointing in opposite directions, i.e., an “inboard” cross-process direction and an “outboard” cross-process direction. Thus, considering the reference frames illustrated in the Figures, a cross-process direction is any direction parallel to the x-axis, including directions pointing in a positive or negative direction along the x-axis. References herein to a “cross-process direction” should be understood as referring generally to any of the cross-process directions, rather than to one specific cross-process direction, unless indicated otherwise by the context. Thus, for example, the statement “the valve is movable in a cross-process direction” means that the valve can move in an inboard direction, outboard direction, or both directions.
The terms “upstream” and “downstream” may refer to directions parallel to a process direction, with “downstream” referring to a direction pointing in the same direction as the process direction (i.e., the direction the print media are transported through the ink deposition assembly) and “upstream” referring to a direction pointing opposite the process direction. In the Figures, “upstream” corresponds to a negative y-axis direction, while “downstream” corresponds to a positive y-axis direction. The terms “upstream” and “downstream” may also be used to refer to a relative location of element, with an “upstream” element being displaced in an upstream direction relative to a reference point and a “downstream” element being displaced in a downstream direction relative to a reference point. In other words, an “upstream” element is closer to the beginning of the path the print media takes as it is transported through the ink deposition assembly (e.g., the location where the print media joins the movable support surface) than is some other reference element. Conversely, a “downstream” element is closer to the end of the path (e.g., the location where the print media leaves the support surface) than is some other reference element. The reference point of the other element to which the “upstream” or “downstream” element is compared may be explicitly stated (e.g., “an upstream side of a printhead”), or it may be inferred from the context.
The terms “inboard” and “outboard” refer to cross-process directions, with “inboard” referring to one to cross-process direction and “outboard” referring to a cross-process direction opposite to “inboard.” In the Figures, “inboard” corresponds to a positive x-axis direction, while “outboard” corresponds to a negative x-axis direction. The terms “inboard” and “outboard” also refer to relative locations, with an “inboard” element being displaced in an inboard direction relative to a reference point and with an “outboard” element being displaced in an outboard direction relative to a reference point. The reference point may be explicitly stated (e.g., “an inboard side of a printhead”), or it may be inferred from the context.
The term “vertical” refers to a direction perpendicular to the movable support surface in the deposition region. At any given point, there are two vertical directions pointing in opposite directions, i.e., an “upward” direction and an “downward” direction. Thus, considering the reference frames illustrated in the Figures, a vertical direction is any direction parallel to the z-axis, including directions pointing in a positive z-axis direction (“up”) or negative z-axis direction (“down”).
The term “horizontal” refers to a direction parallel to the movable support surface in the deposition region (or tangent to the movable support surface in the deposition region, if the movable support surface is not flat in the deposition region). Horizontal directions include the process direction and cross-process directions.
The term “vacuum” has various meanings in various contexts, ranging from a strict meaning of a space devoid of all matter to a more generic meaning of a relatively low pressure state. Herein, the term “vacuum” is used in the generic sense, and should be understood as referring broadly to a state or environment in which the air pressure is lower than that of some reference pressure, such as ambient or atmospheric pressure. The amount by which the pressure of the vacuum environment should be lower than that of the reference pressure to be considered a “vacuum” is not limited and may be a small amount or a large amount. Thus, “vacuum” as used herein may include, but is not limited to, states that might be considered a “vacuum” under stricter senses of the term.
The term “air” has various meanings in various contexts, ranging from a strict meaning of the atmosphere of the Earth (or a mixture of gases whose composition is similar to that of the atmosphere of the Earth), to a more generic meaning of any gas or mixture of gases. Herein, the term “air” is used in the generic sense, and should be understood as referring broadly to any gas or mixture of gases. This may include, but is not limited to, the atmosphere of the Earth, an inert gas such as one of the Noble gases (e.g., Helium, Neon, Argon, etc.), Nitrogen (N2) gas, or any other desired gas or mixture of gases.
In addition, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context indicates otherwise. And, the terms “comprises”, “comprising”, “includes”, and the like specify the presence of stated features, steps, operations, elements, and/or components but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups. Components described as coupled may be electrically or mechanically directly coupled, or they may be indirectly coupled via one or more intermediate components, unless specifically noted otherwise. Mathematical and geometric terms are not necessarily intended to be used in accordance with their strict definitions unless the context of the description indicates otherwise, because a person having ordinary skill in the art would understand that, for example, a substantially similar element that functions in a substantially similar way could easily fall within the scope of a descriptive term even though the term also has a strict definition.
Elements and their associated aspects that are described in detail with reference to one embodiment may, whenever practical, be included in other embodiments in which they are not specifically shown or described. For example, if an element is described in detail with reference to one embodiment and is not described with reference to a second embodiment, the element may nevertheless be claimed as included in the second embodiment.
It is to be understood that the particular examples and embodiments set forth herein are non-limiting, and modifications to structure, dimensions, materials, and methodologies may be made without departing from the scope of the present teachings.
Other embodiments in accordance with the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the inventions disclosed herein. It is intended that the specification and embodiments be considered as exemplary only, with the following claims being entitled to their fullest breadth, including equivalents, under the applicable law.
Number | Name | Date | Kind |
---|---|---|---|
8388246 | Spence et al. | Mar 2013 | B2 |
9944094 | Herrmann et al. | Apr 2018 | B1 |
10688778 | Fromm et al. | Jun 2020 | B2 |
20010046404 | Wotton | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
112824284 | May 2021 | CN |
1 319 510 | Sep 2009 | EP |
2 374 834 | Oct 2002 | GB |
Entry |
---|
Barberan Latorre, J F; Vacuum System For Fixing Substrate; May 21, 2021; China, All (Year: 2021). |
Barberan Latorre, J F; Vacuum System For Fixing Substrate, May 21, 2021, China, All Pages (Year: 2021). |
Takahashi, Masahiro, Sheet Material Carrying Device, Aug. 19, 1997, Japan, All Pages (Year: 1997). |
Barbaren, Latorre, J F, Vacuum System For Fixing Substrate, May 21, 2021, China, All Pages (Year: 2021). |
Number | Date | Country | |
---|---|---|---|
20220314655 A1 | Oct 2022 | US |