Airflow generating device air intake

Information

  • Patent Grant
  • 6729859
  • Patent Number
    6,729,859
  • Date Filed
    Friday, September 7, 2001
    23 years ago
  • Date Issued
    Tuesday, May 4, 2004
    20 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Look; Edward K.
    • Patel; Vinod D.
    Agents
    • Nipper; Stephen M.
    • Dykas; Frank J.
    • Shaver; Robert L.
Abstract
An improved vacuum motor air intake for use on vacuum motor device with a funnel shaped shroud enclosing a portion of the vacuum motor housing adjacent a fan assembly. Combined with the funnel shaped shroud, a conical air deflection body directs air entering the motor in a laminar flow pattern.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention generally relates to air intakes for vacuum motors, and more particularly relates to improved vacuum motor air intakes for creating a more laminar flow into a vacuum motor housing.




2. Background Information




Various types of airflow generating devices, for example vacuum cleaner motors, are known in the prior art. Vacuum cleaner motors typically have a motor located within a housing, with the motor configured for driving a shaft. Attached to this driven shaft is an air moving diffuser plate of fan blades. The motor housing extends above and around the diffuser plate/fan blade, enclosing it and creating a compression chamber. Adjacent to the compression chamber is typically located an air intake aperture though which air is drawn into the motor housing, from which it is vented out of the bottom of the motor housing. Other types of airflow generating devices are also known in the prior art.




One of the greatest sources of inefficiency in this style of airflow generating device is turbulence. The fan is typically held onto the motor through use of a retaining means such as a nut and bolt. As airflow enters through the air intake aperture, turbulence forms as the air deflects at less than ideal angles off the nut, rotor spindle and washer surfaces, and off the flat surface of the diffuser plate/fan. What is needed is a manner of making the airflow into such an airflow-generating device housing more laminar and less turbulent.




SUMMARY OF THE INVENTION




The present invention is an improved vacuum motor air intake for use on a vacuum motor device or other airflow-generating device. The vacuum motor device has a motor, including a driven shaft, typically electrically powered, a motor housing and a fan assembly which is mounted on the drive shaft. Additionally, the motor housing has a shroud extending above and adjacent to the fan assembly enclosing a portion of the motor housing. The shroud includes an air intake aperture for allowing air to be drawn into the motor housing. This air is then moved through the vacuum motor housing and out through an exit.




One embodiment of the improved vacuum motor air intake utilizes an airflow deflection body which attaches to the vacuum motor device. This airflow deflection body is used to make airflow into and through the intake aperture and into the motor housing more laminar. In some embodiments, this airflow deflection body will be attached, either to the fan blade itself, or to the driven shaft, to the air intake aperture itself, or it may be suspended above or into the air intake aperture. Other attachments are also envisioned. Another embodiment of the improved vacuum motor air intake utilizes a cowl having a generally funnel shaped aperture for directing airflow to and through the air intake aperture and into the motor housing. This cowl attaches to the motor housing through use of a cowl attachment means. The combination airflow deflection body and the cowl serve to make airflow into and through the motor housing more laminar, less turbulent, and therefore more efficient, faster, and higher volume.




Still other objects and advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description wherein I have shown and described only the preferred embodiment of the invention, simply by way of illustration of the best mode contemplated by carrying out my invention. As will be realized, the invention is capable of modification in various obvious respects all without departing from the invention. Accordingly, the drawings and description of the preferred embodiment are to be regarded as illustrative in nature, and not as restrictive.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-sectional view of a prior art vacuum motor.





FIG. 2

is a perspective view of one embodiment of an airflow deflection body of the present invention.





FIG. 3

is a perspective view of one embodiment of a cowl utilized with the present invention.





FIG. 4

is an exploded, cross-sectional view of a second embodiment of the present invention.





FIG. 5

is an exploded, cross-sectional view of one embodiment of the present invention.





FIG. 6

is a side view of the embodiment of

FIG. 5

shown assembled.





FIG. 7

is an exploded, cross-sectional view of a third embodiment of the present invention.





FIG. 8

is a cross-sectional view of the embodiment of

FIG. 7

shown assembled.





FIG. 9

is a cross-sectional view of the fourth embodiment of the present invention.





FIG. 10

is a cross-sectional view of the fifth embodiment of the present invention shown assembled.





FIG. 11

is a perspective view of an embodiment of the invention.





FIG. 12

is an exploded perspective view of an embodiment of the invention.





FIG. 13

is a perspective view of an embodiment of the invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




While the invention is susceptible of various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific form disclosed, but, on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined in the claims.




The present invention is an improved vacuum motor air intake for use on a vacuum motor device, the improved air intake providing for more laminar flow of air into and through the motor's housing.




Referring initially to

FIG. 1

, a prior art style of a vacuum motor is shown. The vacuum motor has a motor assembly


74


which drives a spindle


76


. A fan blade or diffuser plate


72


is attached to the motor assembly through use of a nut


78


and typically a washer, which is threaded onto the threaded spindle


76


. Extending from or attaching to the motor assembly


74


is a shroud cover


80


which has an air inlet


82


adjacent to the center of the diffuser plate


72


. A space is formed between the shroud cover and the upper surface of the diffuser plate


72


so as to create a compression chamber


84


. The rotation of the diffuser plate


72


causes air to be drawn into the inlet


82


, and compresses the air within the compression chamber, thereby causing movement and exhaust of the air out of the compression chamber


84


. The arrows marked as


100


shows the general airflow through such a motor and compression chamber.




One of the largest losses of efficiency with such a motor is the fact that airflow coming in through the inlet


82


is turbulent, and thus does not flow in a laminar flow. Turbulence occurs as air impacts and passes over the spindle, nut, washer, and diffuser plate upper surface. This turbulent flow impedes airflow through the motor housing, thereby decreasing the airflow. This decrease in airflow has the result of decreasing the amount of suction the vacuum motor can provide.




Referring now to

FIG. 2

, one embodiment of an airflow deflection body


20


utilized in the present invention is shown. The airflow deflection body


20


serves as a means of creating a laminar flow of air through the inlet


82


, and deflecting such air through the compression chamber for diffusion by the diffusion plate. The airflow deflection body


20


is configured to attach to or cover the vacuum motor's spindle and nut, thereby providing a smooth surface for the air to flow across as it is moved into and through the motor housing of the vacuum motor. A recess in the side not shown would accommodate the spindle, nut, and washer of the diffusion plate. One method of attachment is to include in the airflow deflection body shown in

FIG. 2

a threaded shaft (not shown) which threads on the spindle, thus replacing the nut.




Referring now to

FIG. 3

, one embodiment of a cowl


40


utilized in the present invention is shown. This embodiment of a cowl


40


is, through use of a shroud connection


44


, configured to attach to the shroud cover of a vacuum motor. This is done in such a matter that the air inlet or orifice


50


defined therein is aligned with the air inlet or orifice of the shroud cover. Leading to the orifice


50


is a direction body


48


, which is generally funnel shaped, as shown. By directing airflow in such a manner into the inlet of the vacuum motor, a more laminar airflow is achieved. The shroud connection


44


can be a friction fit, can twist into a locking position, can be glued or screwed in position, and can be attached by any conventional means.





FIG. 4

shows a partial exploded view of the embodiment of an airflow deflection body


20


shown in

FIG. 2 and a

cowl embodiment shown in

FIG. 3

, utilized with a motor assembly


74


. This motor assembly


74


has a diffuser plate


72


, a shroud cover


80


, and a compression chamber


84


between them. The airflow deflection body


20


is able to pass through the inlet


82


and attach to the spindle


76


and/or nut


78


, through use of a nut connection


22


, or other means. Examples of such attachment means include friction fits, adhesives, threading, pressing, etc. In use, airflow through the inlet


82


is more laminarly deflected past the nut and spindle, and along the flat upper surface of the diffuser plate. Optionally, a cowl


40


can be utilized to further increase the laminar flow of air through the inlet


82


. The cowl embodiment shown has a shroud connection means


44


for allowing the cowl to attach through the use of a friction fit to the shroud cover and/or motor housing. Other types of shroud connections are also envisioned, such as a snap-on fitting, twist and lock, use of adhesives, threading, pressing, screwing, etc. Obviously, the cowl could also be molded in the same piece as the shroud cover


80


. The direction body


48


will extend inwards for defection of air into the inlet


82


through an orifice


50


defined therein, which aligns with the inlet


82


of the shroud cowl


80


. Initial testing of the version shown in

FIG. 4

shows an increase in efficiency of about 8%, and eventual improvements in efficiency of 8-12% are expected with the various embodiments.




Referring now to

FIG. 5

, another embodiment of the present invention


10


is shown. In this embodiment, the airflow deflection body


20


, and the cowl


40


are integrated into a solitary unit. The cowl


40


has a shroud connection


44


for connecting to the inlet


82


. The cowl


40


preferably also contains a number of airflow direction veins


52


for directing airflow into the inlet


82


and for attaching to and supporting the airflow deflection body


20


. The cowl


40


could also be attached to the shroud at the periphery.





FIG. 6

shows a view of the embodiment of

FIG. 5

as installed. This embodiment snaps into place over a prior art motor assembly


74


and shroud cover


80


. It is thus useful as a retrofit to existing vacuum or air blowing motors. When installed as shown, the nut


78


, spindle


76


and washer are shielded from interaction with incoming air. The airflow deflecting body is suspended above the nut


78


, and spindle


76


.




Referring now to

FIG. 7

, another embodiment of the present invention


10


is shown. In this embodiment the airflow deflecting body


20


is integrally connected to the inlet


50


of the cowl


40


by a series of support vanes


48


which hold the airflow deflection body


20


suspended above the nut and washer assembly when installed, as shown in

FIG. 8. A

series of channeling canals are defined by the interface of the support vanes


52


. The sides of the funnel inlet and the air deflecting body


20


direct the flow of incoming air away from the nut and spindle


76


and washer assembly and on to the blades of the fan assembly, thereby providing for a more laminar flow of air.




The cowl


40


further preferably comprises a dome filter connection for connection with a dome filter


60


or screen.

FIG. 8

shows an embodiment mounted on a prior art motor assembly and shroud cover


80


with a dome filter


60


.




The cowl containing the airflow deflecting body


20


, is attached to shroud cover


80


by means of a shroud connection


44


, which is configured for a friction fit over the shroud cover


80


.





FIG. 9

showed another embodiment of the present invention. In the embodiment shown in

FIG. 9

, a cowl


40


is fitted over the shroud cover


80


of a motor assembly


74


. The shroud cover


44


slopes from the periphery towards an orifice


50


with a direction body


48


. The function of the airflow directing body is accomplished by a modification of the fan blade or diffusion plate itself, in which the fan blade is shaped to include an airflow deflection body


24


. In the version shown in

FIG. 9

, a nut and spindle are used to hold the airflow deflection body and fan blade


24


to the spindle


76


for the motor. A further rounded conical shape insert could also be placed over the nut and the recess in which it is enclosed, to help achieve more laminar flow of air around the fan motor.





FIG. 10

shows the cowl


44


mounted on a motor assembly


74


. A direction body


48


causes air to be directed into the orifice


50


. An airflow directing body


20


replaces the nut and washer and attaches to the spindle


76


by means of threads


26


.





FIGS. 11 and 12

are perspective views of a cowl


40


such as that shown in

FIGS. 5 and 6

.

FIG. 13

is a perspective and cutaway view of a cowl


40


as shown in

FIGS. 7 and 8

.




While there is shown and described the present preferred embodiment of the invention, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the invention as defined by the following claims.



Claims
  • 1. An improved vacuum motor air intake for use on a vacuum motor device, said vacuum motor device comprising a motor having a driven shaft, a motor housing and a fan assembly mounted on said driven shaft, said motor housing further comprising a shroud having an air intake aperture therethrough enclosing a portion of said motor housing adjacent to said fan assembly, the improvement comprising:a cowl having a generally funnel shaped inner wall surrounding an aperture for directing airflow to said air intake aperture and into said motor housing, thereby making airflow through said motor housing more laminar, said cowl attaching to said motor housing through use of a cowl attachment means.
  • 2. The vacuum motor air intake of claim 1 wherein said cowl attachment means comprises a friction fit over said motor housing.
  • 3. The vacuum motor air intake of claim 1 wherein said cowl attachment means comprises a snap fit attachment to said air intake aperture.
  • 4. The vacuum motor air intake of claim 1 wherein said cowl is generally tubular in shape and wherein said cowl attachment means comprises a friction fit over said motor housing.
  • 5. An improved vacuum motor air intake for use on a vacuum motor device, said vacuum motor device comprising a motor having a driven shaft, a motor housing and a fan assembly mounted on said driven shaft, said motor housing further comprising a shroud having an air intake aperture therethrough enclosing a portion of said motor housing adjacent to said fan assembly, wherein said improved vacuum motor air intake comprises:an airflow deflection body configured for attachment to said vacuum motor device, said airflow deflection body for making airflow through said intake aperture and into said motor housing more laminar; and a cowl having a generally funnel shaped inner wall leading to an aperture for directing airflow to said air intake aperture and into said motor housing thereby making airflow through said motor housing more laminar, said cowl attaching to said motor housing through use of a cowl attachment means.
  • 6. The vacuum motor air intake of claim 5, wherein said airflow deflection body is generally conical in shape.
  • 7. The vacuum motor air intake of claim 5 wherein said driven shaft is threaded and airflow deflection body is like threaded and threads onto said drive shaft as an attachment means for attaching said airflow deflection body to said driven shaft.
  • 8. The vacuum motor air intake of claim 5 wherein said airflow deflection body attaches to said vacuum motor device by friction.
  • 9. The vacuum motor air intake of claim 5 wherein said airflow deflection body attaches to said air intake aperture.
  • 10. The vacuum motor air intake of claim 5 wherein said cowl attachment means comprises a friction fit over said motor housing.
  • 11. The vacuum motor air intake of claim 5 wherein said cowl attachment means comprises an attachment to said air intake aperture.
  • 12. The vacuum motor air intake of claim 5 wherein said cowl is generally tubular in shape and wherein said cowl attachment means comprises a friction fit over said motor housing.
  • 13. The vacuum motor air intake of claim 5 wherein said airflow deflection body attaches to said cowl.
  • 14. The vacuum motor air intake of claim 13 said attachment is through use of at least one support vane.
  • 15. The vacuum motor air intake of claim 13 wherein said cowl attachment means comprises an attachment to said air intake aperture.
  • 16. The vacuum motor air intake of claim 13 wherein said airflow deflection body attaches to said air intake aperture.
  • 17. An improved vacuum motor air intake for use on a vacuum motor device, said vacuum motor device comprising a motor having a driven shaft, a motor housing and a fan assembly mounted on said driven shaft, wherein said improved vacuum motor air intake comprises:an airflow deflection body configured for attachment to said vacuum motor device, said airflow deflection body for making airflow through said intake aperture and into said motor housing more laminar; and a shroud for said motor housing, said shroud having a generally flattened funnel shaped inner wall surrounding an aperture, for directing airflow through said air intake aperture and into said motor housing thereby making airflow through said motor housing more laminar, said shroud attaching to said motor housing.
  • 18. An improved vacuum motor air intake for use on a vacuum motor device, said motor device comprising;a motor having a driven shaft; a motor housing a fan assembly mounted on said driven shaft by an attachment means said motor housing further comprising a shroud having an air intake aperture therethrough enclosing a portion of said motor housing adjacent to said fan assembly, the improvement comprising: a cowl having a generally funnel shaped inner wall surrounding an aperture for directing airflow through said air intake aperture and into said motor housing, thereby making airflow through said motor housing more laminar, said cowl attaching to said motor housing through the use of a cowl attachment means.
  • 19. The cowl of claim 18 wherein a generally conical air deflection device is suspended by at least one vane from said funnel shaped inner wall of said cowl, and which is suspended above said attachment means of said fan assembly.
  • 20. The cowl of claim 18 wherein said cowl further comprises a dome filter mounted distal to said aperture on said funnel shaped inner wall.
  • 21. The cowl of claim 18 wherein said funnel shaped aperture extends through the air intake aperture of said motor housing and said air deflection device proximately covers said drive shaft fan assembly attachment means.
  • 22. An improved vacuum motor air intake for use on a vacuum motor device, said vacuum motor device comprising a motor having a driven shaft, a motor housing and a fan assembly mounted on said driven shaft, said motor housing further comprising a shroud having an air intake aperture therethrough enclosing a portion of said motor housing adjacent to said fan assembly, wherein said improved vacuum motor air intake comprises:an airflow deflection body configured for attachment to said vacuum motor device by friction, said airflow deflection body for making airflow through said intake aperture and into said motor housing more laminar.
  • 23. The air intake of claim 22 wherein said airflow deflection body is generally conical in shape.
US Referenced Citations (25)
Number Name Date Kind
2233825 Walsh et al. Mar 1941 A
3316848 Egger May 1967 A
3512788 Kilbane May 1970 A
3932070 Porter et al. Jan 1976 A
4315343 Neroda et al. Feb 1982 A
4370776 Kullik Feb 1983 A
4574210 Wieland Mar 1986 A
4621991 Smith et al. Nov 1986 A
4669952 Forsyth, III et al. Jun 1987 A
4698534 Smith et al. Oct 1987 A
4808090 Evans Feb 1989 A
5350281 Hagshenas Sep 1994 A
5734214 Gilliland et al. Mar 1998 A
5747900 Nakamura et al. May 1998 A
5755555 Swift May 1998 A
5944497 Kershaw et al. Aug 1999 A
6011331 Gierer et al. Jan 2000 A
6037688 Gilliland et al. Mar 2000 A
6069423 Miller et al. May 2000 A
6116864 Veser et al. Sep 2000 A
6166462 Finkenbinder et al. Dec 2000 A
6411000 Rew Jun 2002 B1
6439843 Finkenbinder Aug 2002 B1
6488486 Debleser Dec 2002 B1
6599105 Cahill Jul 2003 B1