This disclosure relates to power tools and in particular to grinding power tools.
Motorized power tools including grinders require a cooling fan to cool the motor and electronics components that control flow of current to the motor. A series of air intakes and outlets are provided in the tool housing, allowing the fan to generate an airflow for effective cooling of these elements. In some designs, air intakes are provided near the foot of the tool to create a substantially linear airflow path through the power tool.
In applications such as grinders, where high concentration of debris contaminates the air in the vicinity of the power tool, screens or air filters may be provided on air intake vents to filter out the contamination. While screens and filters significantly improve air quality of the airflow, small amounts of leakage dust and debris is often inevitable. What is needed is a mechanism that optimizes the airflow to reduce overall amount contamination entering through the air intake vents.
According to an embodiment of the invention, a power tool is provided including a housing including a motor case and a handle extending from the motor case; an electric motor housed within the motor case and rotatably driving a motor spindle; a gear case mounted on the housing; and an output spindle received at least partially within the gear case and rotatably coupled to the motor spindle. The output spindle is oriented perpendicularly to the motor spindle and together forming a plane through the housing. In an alternative and/or additional embodiment, the output spindle, motor spindle, and the handle form the plane through the housing. The power tool further includes a fan rotatably fixed to the motor spindle to generate an airflow through the electric motor; a first air inlet formed in the housing adjacent the electric motor on a first side of the plane; and a second air inlet formed in the housing adjacent the electric motor on a second side of the plane opposite the first air inlet. The first air inlet is larger than the second air inlet to allow a larger volume of air to enter the housing from the first side of the plane than from the second side of the plane.
In an embodiment, the output spindle rotates in a clockwise direction when viewed from a top of the gear case, and the first air inlet is located on the left side of the housing when viewed from the top of the gear case in a normal gripping position.
In an embodiment, the electric motor includes a stator and a rotor disposed within the stator, and the first and second air inlets are positioned around the electric motor such that the air entering through the first and second air inlets traverses along the electric motor in a direction opposite the gear case and is thereafter directed into the electric motor in the direction of the gear case.
In an embodiment, the power tool includes an exhaust vent positioned on the gear case through which the air is existed.
In an embodiment, the fan is positioned between the electric motor and the gear case.
In an embodiment, a width and/or diameter of the first air intake is 80% to 90% greater than a width and/or diameter of the second air intake.
In an embodiment, an area of the second air intake is in the range of approximately 400 to 500 mm2, and an area of the first air intake is in the range of approximately of 600 to 700 mm2.
In an embodiment, the air flows into the housing at an airflow volume of approximately 12 to 14 cubic-feet per minute through the second air inlet, and at an airflow volume of approximately 17 to 19 cubic-feet per minute through the first air inlet.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and they are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings.
The following description illustrates the claimed invention by way of example and not by way of limitation. The description clearly enables one skilled in the art to make and use the disclosure, describes several embodiments, adaptations, variations, alternatives, and uses of the disclosure, including what is presently believed to be the best mode of carrying out the claimed invention. Additionally, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
In an embodiment, the motor case 16 attaches to a rear end of the gear case 14 and houses a motor 28 operatively connected to the gear set 22. An intermediary plate or baffle may be disposed between the motor case 16 and the rear end of the gear case 14. In an embodiment, the motor 28 is a brushless direct-current (BLDC) motor having a stator 30 and a rotor 32 rotatable relative to the stator 30. The rotor 32 is mounted on a rotor shaft 34 that rotatably drives the output spindle 24 via the gearset 22. A fan 35 is mounted on the rotor shaft 34 between the motor 28 and the gear case 14, facing the intermediary plate or baffle, to generate an airflow for cooing the motor 28 and other components. The airflow generated by the fan 35 exits through an air exhaust vent 72 provided on the motor case 16 and/or the gear case 14.
In an embodiment, the handle portion 18 extends from a rear end of the motor case 16 and includes a trigger switch 36 operatively connected to a switch assembly 38. The switch assembly 38 is in turn coupled to a control module 37 that includes a programmable controller and controls a switching operation of a power module 39. In an embodiment, the control module 37 is disposed at a rear of the handle portion 18 adjacent the battery receiver 20. The battery receiver 20 is provided at the rear end of the handle portion 18 for detachable engagement with a battery pack (not shown) to provide power to the motor 28.
In an embodiment, a second handle 40 is provided that extends from the rear end of the motor case 16 to the battery receiver 20, at least partially in parallel to the handle portion 18. In an embodiment, second handle 40 is a D-handle designed to enhance structural support for the handle portion 18 and the battery pack and improve drop performance of the power tool 10. In an embodiment, second handle 40 is provided with a bumper 42 arranged to absorb shock during drop or impact. In an embodiment, bumper 42 is made of an overmold material.
In an exemplary embodiment, the battery pack may be a 60-volt max lithium-ion type battery pack, although battery packs with other battery chemistries, shapes, voltage levels, etc. may be used in other embodiments. In various embodiments, the battery receiver 20 and battery pack may be a sliding pack disclosed in U.S. Pat. No. 8,573,324, hereby incorporated by reference. However, any suitable battery receiver and battery back configuration, such as a tower pack or a convertible 20V/60V battery pack as disclosed in U.S. patent application Ser. No. 14/715,258 filed May 18, 2015, also incorporated by reference, can be used. The present embodiment is disclosed as a cordless, battery-powered tool. However, in alternate embodiments power tool can be corded, AC-powered tools. For instance, in place of the battery receiver and battery pack, the power tool 10 include an AC power cord coupled to a transformer block to condition and transform the AC power for use by the components of the power tools. Power tool 10 may for example include a rectifier circuit adapted to generate a positive current waveform from the AC power line. An example of such a tool and circuit may be found in US Patent Publication No. 2015/0111480, filed Oct. 18, 2013, which is incorporated herein by reference in its entirety.
In an embodiment, the power module 39 is disposed at a rear of the motor 28, i.e. between the motor case 16 and the handle portion 18. In an embodiment, power module 39 is a circuit board oriented radially adjacent the end of the motor 28 including a series of Field-Effect Transistors (FETs) interconnected as a multi-phase inverter circuit for powering the phases of the motor 28. In an embodiment, control module 37, switch assembly 38, and power module 39 may be provided discretely or integrated into sub-assemblies.
In an embodiment, the control module 37 uses the input from the trigger assembly 38 to set a target speed for the motor 28. This is done by controlling a pulse-width modulation (PWM) of the power switches within the power module 39. When the trigger switch 36 is released, in an embodiment, the control module 37 activates the low-side switches or the high-side switches of the power module 39 simultaneously for regenerative electronic braking of the motor 28. A description of the power and control modules and electronic braking of the motor can be found in US Patent Publication No. 2017/0234484, filed Feb. 10, 2017, which is incorporated herein by reference in its entirety.
Braking of the motor at high speed, either electronically or via a mechanical brake, causes rapid deceleration of the output spindle 24. Absent a mechanism to retain and protect the accessory wheel, high inertia of the accessory wheel can cause it to detach from the output spindle 24 upon rapid deceleration. For this reason, in some configurations, the nut 26 may be provided with a spring mechanism to apply an upward force on the accessory wheel to increase friction between the accessory disc and an upper flange of the power tool 10. Additionally, and/or alternatively, in some configurations, the power tool 10 may be provided with a wheel retention mechanism configured to apply a downward force on the accessory wheel to similarly increase the friction between the accessory disc and the upper flange of the power tool 10 as well as the friction between the threads of the accessory wheel and the output spindle 24, resulting in an increased accessory unseating torque. This increased friction significantly reduces the likelihood of the accessory wheel coming off the output spindle 24.
Referring to
In this configuration, during manufacturing and assembly, the transfer member 128 and spring member 130 are mounted over the rim 126 before the output spindle 124 is received through the bottom surface of the lower gear case cover 114b. The bearing 122 is then mounted on the output spindle 124 (e.g., by press-fitting or slip-fitting) with the spring member 130 in a preload condition. This process has been found to be slow and burdensome. In addition, since the force of the spring 130 is transferred to the bearing 122 during use, it has been found to adversely affect the press between the bearing 122 and the output spindle 124 and at times even cause displacement of the bearing 122 over time.
U.S. Pat. No. 9,399,278 is another example of a prior art wheel retention mechanism. In this configuration, a flange is mounted on the output spindle (either via threads or press-fitting) to support one end of the spring element. Thus, the force of the spring element is not transferred to the bearing. However, the transfer element is not self-supported on the output spindle and can only be mounted via a supporting flange.
The embodiment of the invention described herein overcomes the problems associated with the prior art configuration of
Referring to
In an embodiment, annular rim 210 is provided at approximately the same plane as a bottom portion of the lower gear case cover 14b with a diameter that is greater than a diameter of the spring elements 204 and at least twice the diameter of the output spindle 24. A bearing 212 is provided above the annular rim 210 to axially secure the output spindle 24 to the lower gear case cover 14b. Gearset 22 is provided above the bearing 212 to rotationally drive the output spindle 24. A threaded portion 214 of the output spindle 24, to which a threaded wheel accessory or a threaded nut is fastened, is positioned below the lower surface of the retention flange 202.
Both embodiments of the retention flange described above provide for a self-supporting wheel retention mechanism that can be manufactured and mounted on the output spindle as a sub-assembly prior to assembly of the output spindle into the gear case. Further, the spring force of the retention flange is transferred to the annular rim of the output spindle rather than the bearing, thus reducing wear and damage to the bearing over time.
Another aspect of the invention is described herein with reference to
In an embodiment, the fan 35 rotates with the motor shaft 32 to generate an airflow through the motor 28 and other power tool components. The power tool housing 12 is provided with two side air intakes 50 and 60 positioned in the motor case 16 around the motor 28 for entry of ambient air. Air intake 50 and 60 are provided with screens (or a filters) 52 and 62 that blocks entry of dust and particulate through the air intakes 50 and 60. The filtered air then enters into the motor casing 16 through two air inlets 54 and 64 positioned radially inwardly of the air intakes 50 and 60. While screens 52 and 62 filter out majority of the debris and particulate, small amounts of debris can still get in through the screens 52 and 62. The filtered air travels along the outer sides of the motor 28 in a direction opposite the direction of the gear case 14, enters into the motor 28 through a series of openings 70 at the end of the motor 28, and travels through the stator 30 and/or the rotor 32 to cool the motor 28 components. The air then enters the gear case 24 or exists via the air exhaust vent 72 provided close to the gear case 24.
In an embodiment, wheel accessory (not shown) is rotates in a clockwise direction (direction E in
In an embodiment, an area of the right-side air inlet 64 is in the range of 300 to 600 mm2, preferably in the range of 400 to 500 mm2, and an area of the left-side air inlet 54 is in the range of 500 to 800 mm2, preferably in the range of 600 to 700 mm2. In an embodiment, the area of the right-side air inlet 64 is approximately 60% to 90%, preferably 70% to 80%, preferably approximately 73% to 77%, of the area of the left-side air inlet 54.
This configuration provides for airflow through the right-side air inlet 64 in the range of approximately 10 to 16 cfm (cubic-feet per minute), preferably in the range of 12 to 14 cfm, and airflow through the left-side air inlet 54 in the range of 15-21 cfm, preferably in the range of 17-19 cfm. In an embodiment, the airflow through the right-side air inlet 64 is approximately 60% to 90%, preferably 65% to 80%, more preferably 70% to 75%, of the airflow through the left-side air inlet 54.
It should be understood that while in this example, the air inlets 54 and 64 are provided with different sizes, other components on the path of the airflow (e.g., the air intakes 50 and 60, the screens 52 and 62, the left and right air channels along the sides of the motor 28, etc.) may be similarly or alternatively provided with different sizes or shapes to provide a smaller airflow from the right-side air intakes 60 than the left-side air intakes 50. Similarly, the shape, thickness, or meshing of the screens 52 and 62 may be different to allow more airflow through the left-side screen 52 than the right-side screen 62.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
This patent application claims the benefit of U.S. Provisional Patent Application No. 63/071,416 filed Aug. 28, 2020 titled “POWER TOOL,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3912411 | Moffat | Oct 1975 | A |
4637170 | Block | Jan 1987 | A |
4980994 | Helm et al. | Jan 1991 | A |
5464365 | Kirn | Nov 1995 | A |
5545078 | Schulz et al. | Aug 1996 | A |
7192338 | Kausch et al. | Mar 2007 | B2 |
8573324 | Turner et al. | Nov 2013 | B2 |
8776657 | Menze | Jul 2014 | B2 |
9033767 | Schadow | May 2015 | B2 |
9073127 | Esenwein | Jul 2015 | B2 |
9399278 | Kuether | Jul 2016 | B2 |
20060181159 | Dehde | Aug 2006 | A1 |
20110179931 | Menze | Jul 2011 | A1 |
20120302147 | Trautner | Nov 2012 | A1 |
20140080387 | Kuether | Mar 2014 | A1 |
20150111480 | Vanko et al. | Apr 2015 | A1 |
20170234484 | Vanko et al. | Aug 2017 | A1 |
20170361416 | Lutz | Dec 2017 | A1 |
20190262753 | Miura et al. | Aug 2019 | A1 |
20200331138 | Ejiri | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
3012836 | Sep 1985 | DE |
8414271 | Sep 1985 | DE |
3613987 | Oct 1987 | DE |
3731026 | Mar 1989 | DE |
3742430 | Jun 1989 | DE |
3731026 | Mar 1990 | DE |
3917345 | Nov 1990 | DE |
199 38 299 | Mar 2001 | DE |
102004013014 | Oct 2005 | DE |
102006001986 | Jul 2007 | DE |
102008015955 | Aug 2009 | DE |
202014009916 | Feb 2015 | DE |
102005047402 | Feb 2016 | DE |
202018106210 | Dec 2018 | DE |
1371450 | Dec 2003 | EP |
1398865 | Mar 2004 | EP |
1343614 | Oct 2004 | EP |
1728592 | Dec 2006 | EP |
1663574 | Apr 2007 | EP |
1597023 | Oct 2008 | EP |
1763419 | Oct 2009 | EP |
2502704 | Sep 2012 | EP |
2214866 | Jun 2013 | EP |
2632636 | Jan 2015 | EP |
2946887 | Nov 2015 | EP |
3109001 | May 2019 | EP |
3507517 | Jul 2019 | EP |
3733347 | Nov 2020 | EP |
58049066 | Mar 1983 | JP |
2010036260 | Feb 2010 | JP |
2005039822 | May 2005 | WO |
2012126997 | Sep 2012 | WO |
WO-2019130981 | Jul 2019 | WO |
Entry |
---|
EP EESR, dated Feb. 1, 2022 in corresponding EP application 21193316.3. |
EP EESR, dated Dec. 20, 2021 in corresponding EP application 21193291.8. |
Number | Date | Country | |
---|---|---|---|
20220063080 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63071416 | Aug 2020 | US |