The following disclosure relates generally to computer air conditioning systems and, more particularly, to airflow management apparatus and associated methods for use with such air conditioning systems.
Supercomputers and other large computer systems typically include a large number of computer cabinets arranged in close proximity to one another.
Many of the electronic devices typically found in supercomputers, such as fast processing devices, generate considerable heat during operation. This heat can damage the device and/or degrade performance if not dissipated during operation. Consequently, supercomputers typically include both active and passive cooling systems to maintain device temperatures at acceptable levels.
To dissipate heat generated by the computer modules 112, the prior art supercomputer system 100 further includes a plurality of fans 120 mounted to upper portions of corresponding computer cabinets 110. In operation, each of the fans 120 draws cooling air into the corresponding computer cabinet 110 through a front inlet 114 and/or a back inlet 115 positioned toward a bottom portion of the computer cabinet 110. The cooling air flows upwardly through the computer cabinet 110, past the computer modules 112, and into a central inlet 122 of the fans 120. The fans 120 then exhaust the cooling air outward in a radial pattern through a circumferential outlet 124.
The fans 120 may be unable to move a sufficient amount of air through the computer cabinet 110 for adequate cooling when the power consumption and the corresponding heat dissipation increase in the processors and/or other microelectronic devices carried by the computer modules 112. For example, as the power consumption of the processors increases, the computer modules 112 in the first module compartment 118a heat the incoming cooling air to a higher temperature. To compensate for the higher temperature of the cooling air entering the second module compartment 118b, conventional techniques use baffle plates (not shown) to direct more cooling air over the processors. This, however, can increase the pressure drop over the processors, for which the fans 120 may be unable to compensate. As a result, the cooling air flowing past the processors may be insufficient and cause overheating of the processors, and thus adversely affect performance of the computer system 100.
The following disclosure describes several embodiments of airflow management systems and associated methods for use with computers and other systems. Other embodiments of the invention can have different configurations, components, or procedures than those described below. A person of ordinary skill in the art, therefore, will accordingly understand that the invention can have other embodiments with additional elements, or the invention can have other embodiments without several of the features shown and described below with reference to
In the Figures, identical reference numbers identify identical or at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refer to the Figure in which that element is first introduced. Element 202, for example, is first introduced and discussed with reference to
The computer cabinet 210 can also include an air mover assembly 202 positioned toward the bottom portion of the computer cabinet 210 to drive cooling air through the computer cabinet 210. The air mover assembly 202 can include an air mover 220 attached to a mounting plate 230 that includes a plate opening 204 positioned proximate to the air mover 220. In one embodiment, the air mover 220 can include a vane-axial blower (not shown). In other embodiments, the air mover 220 can include a centrifugal fan, an axial fan, and/or other types of suitable air moving devices known in the art.
The airflow restrictor 200 is positioned proximate to the air outlet 224 on the computer cabinet 210. The airflow restrictor 200 can include a substrate 201 (e.g., a plate, a sheet, and/or other suitable substrate structure) having one or more open portions 203 (two are shown for illustration purposes) proximate to a plurality of restricted portions 205. An enlarged plan view of the airflow restrictor 200 is illustrated in
As described in greater detail below, the open portions 203 are generally aligned with passageways through the computer cabinet 210 in which processors and/or other high-power microelectronic devices are located. Conversely, the restricted portions 205 are generally aligned with other passageways in which memory modules, network interface modules, and/or other low-power microelectronic devices are located. As used hereinafter, the phrases “high-power” and “low-power” are generally relative terms. For example, a memory module may be considered a high-power device because its power consumption is higher than, e.g., a network interface module, but a low-power device because its power consumption is lower than, e.g., a processor. As a result, the memory module may be a high-power microelectronic device in one arrangement, but a low-power microelectronic device in a different arrangement.
The computer cabinet 210 can optionally include one or more sensors (not shown) for monitoring operating conditions of the computer modules 212. For example, the computer cabinet 210 can include one or more temperature sensors (e.g., thermocouples, resistive temperature detectors, infrared temperature monitors, etc.), flow sensors (e.g., flow switches and flow transmitters), pressure sensors (e.g., pressure switches, pressure transmitters, etc.), and/or other types of sensors capable of measuring parameters indicative of operating conditions of the computer modules 212. For instance, the computer cabinet 210 can include thermocouples (not shown) positioned in each module compartment 218 to monitor operating temperatures inside the computer cabinet 210. In another embodiment, the computer cabinet 210 can include a flow transmitter (not shown) positioned toward the top portion of the computer cabinet 210 to measure the flow rate of cooling air through the top portion.
In operation, the air mover assembly 202 draws cooling air (represented by arrows 219) into the computer cabinet 210 via the front air inlet 214 and the back inlet 215. The air mover 220 compresses the cooling air and drives the compressed cooling air upwardly through the plate opening 204 (represented by arrows 221). The cooling air then flows past the computer modules 212 in the module compartments 218 and absorbs heat generated by the computer modules 212 during operation. The heated cooling air then flows through the airflow restrictor 200 before exiting the computer cabinet 210 through the outlet 224. During operation, one or more of the optional sensors described above can monitor the operating conditions of the computer modules 212. The airflow restrictor 200 modifies the flow pattern of cooling air flowing through individual passageways in the computer cabinet 210. As a result, the airflow restrictor 200 can improve temperature profiles in the computer cabinet 210 without significantly increasing the pressure drop of the cooling air flowing through the computer cabinet 210, as described in more detail below with reference to
The individual computer modules 212a-c can include a motherboard 301 with a plurality of dividers 316 that separate the computer modules 212a-c into discrete regions 312 (identified individually as first to fifth regions 312a-e, respectively). Each region 312 can hold various types of microelectronic devices. For example, in the illustrated embodiment, the motherboard 301 carries memory modules 314, network interface modules 315, and/or other suitable low-power microelectronic devices in the first, third, and fifth regions 312a, 312c, and 312e, respectively (hereinafter referred to as the “low-power regions”). The motherboard 301 also carries processors with cooling fins 317 and/or other high-power microelectronic devices in the second and fourth regions 312b and 312d, respectively (hereinafter referred to as the “high-power regions”). In other embodiments, the motherboard 301 can have the dividers 316 in other arrangements and/or can carry different microelectronic devices in at least one of the regions 312a-e.
The individual computer modules 212a-c can also include a plurality of shrouds (not shown) corresponding to one or more of the individual regions 312a-e. The shrouds and the dividers 316 together form discrete airflow passageways 302 (identified individually as first to fifth passageways 302a-e, respectively) generally corresponding to each of the regions 312. For example, the first, third, and fifth passageways 302a, 302c, and 302e (hereinafter referred to as “low-power passageways”) generally correspond to the low-power regions. The second and fourth passageways 302b and 302d (hereinafter referred to as “high-power passageways”) generally correspond to the high-power regions. In the illustrated embodiment, the passageways 302 of the computer modules 212a-c are generally aligned vertically in the computer cabinet 210. In other embodiments, the passageways 302 of individual computer modules 212a-c may be offset from one another or may be aligned in other directions.
In the illustrated embodiment, the airflow restrictor 200 is positioned adjacent to the third computer module 212c and the outlet 224. In this embodiment, the open portions 203 are generally aligned with the high-power passageways, and the restricted portions 205 are generally aligned with the low-power passageways. In other embodiments, other correspondence can be used, e.g., in certain embodiments, at least one of the open portions 203 can be generally aligned with at least one of the low-power passageways.
In operation, the air mover assembly 202 (
In the illustrated embodiment, the cooling air streams 221 flow through the first and second module compartments 218a-b and past the first and second computer modules 212a-b without restriction. As a result, the air streams 221 flow through each of the passageways 302 along paths of least resistance. For example, the low-power passageways typically have a lower flow resistance than the high-power passageways. As a result, the first, third, and fifth cooling air streams 221a, 221c, and 221e, respectively (hereinafter referred to as the “low-power air streams”) flowing through the low-power passageways have higher flow rates than the second and fourth cooling air streams 221b and 221d, respectively (hereinafter referred to as the “high-power air streams”) flowing through the high-power passageways.
As the cooling air flows through the third module compartment 218c, the airflow restrictor 200 can restrict the low-power air streams more than the high-power air streams. For example, as shown in
Without being bound by theory, it is believed that the airflow restrictor 200 can thus increase flow rates of the high-power air streams past the computer modules 212 proximate to the outlet 224, while decreasing the flow rates of the adjacent low-power air streams. For example, as the low-power air streams leave the second module compartment 218b, the restricted portions 205 increase the pressure drop in the low-power air streams through the airflow restrictor 200 and force a portion of the cooling air to flow laterally (as indicated by arrows 223) through the second gap 217b into the high-power passageways. As a result, the high-power air streams have higher flow rates entering the third module compartment 218c than those entering the second module compartment 218b.
The increased flow rates in the high-power passageways can improve the temperature profile in the computer cabinet 210 without significantly increasing the pressure drop of the cooling air. As the cooling air flows through the module compartments 218, the temperature of the cooling air increases, and thus the heat capacitance of the cooling air decreases. As a result, the temperature of the third computer module 212c is higher than that of the first and second computer modules 212a-b. This temperature gradient requires a large amount of cooling air to adequately cool the third computer module 212c. However, the air mover 220 may not produce sufficient discharge pressure to force sufficient cooling air past the computer modules 212a-c. By restricting a portion of the cooling air exiting the computer cabinet 210 and allowing cross-mixing of cooling air between adjacent module compartments 218, as disclosed herein, however, the amount of cooling air supplied to the high-power passageways of the third computer module 212c can be increased without significantly increasing the pressure drop across the computer cabinet 210.
Furthermore, the airflow restrictor 200 can also force a portion of the cooling air to flow laterally (as indicated by arrows 225) through the first gap 217a into the high-power passageways of the second computer module 212b. As a result, the high-power air streams can have increasing flow rates as the cooling air flows from one module compartment 218 to the next. In addition, the airflow restrictor 200 can be selected or tailored so that a generally constant temperature can be achieved in the high-power microelectronic devices in the first, second, and third module compartments 218.
Even though the computer cabinet 210 is shown in
As shown in
A subsequent stage 403 of the method 400 includes calculating flow rates for the cooling air streams 221 flowing through each passageway 302 (
ΔP=ΔP1+ΔP2+ΔP3+ΔPM
where ΔP is the total pressure drop, ΔP1, ΔP2, ΔP3 are pressure drops through the first to third module compartments 218a-c, respectively, and ΔPM is the pressure drop across the airflow restrictor 200. The pressure drop of the cooling air across the computer modules 212 and the airflow restrictor 200 can be determined empirically, calculated based on a friction loss for a particular flow rate, e.g., based on a Reynolds number and a friction coefficient, or a combination of both.
Stage 404 of the method 400 includes calculating module temperatures for the computer modules 212. In one embodiment, the heat transfer from the computer modules 212 to the cooling air can be calculated based on a convention, conduction, radiation, or a combination of these heat transfer modes. In another embodiment, the module temperatures can be determined empirically.
At stage 406, a determination is made to decide whether the module temperatures provide a satisfactory temperature profile. For example, in one embodiment, if the module temperatures are generally equal to one another, the satisfactory temperature profile is indicated. In another embodiment, if the module temperatures vary within a threshold (e.g., 2° C.), the satisfactory temperature profile is indicated. In other embodiments, other suitable criteria may be used to indicate the satisfactory temperature profile.
If the satisfactory temperature profile is indicated, the process ends. Otherwise, the method 400 includes another stage 408 in which the restriction parameter is adjusted, and the process reverts to stage 403. In one embodiment, adjusting the restriction parameter can be based on the temperature profile. For example, if the temperature profile indicates that the module temperature in the third module compartment 218c is above a threshold, the pressure drop across the airflow restrictor 200 can be increased to force more cooling air into the high-power passageways. In other embodiments, adjusting the restriction parameter can be based on the total pressure drop in the computer cabinet 210 and/or other suitable parameters.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, although elements of the invention described above have been presented in one or more arrangements, in other embodiments, other arrangements are possible depending on the particular situation. Further, while advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2628018 | Koch | Feb 1953 | A |
2673721 | Dickinson | Mar 1954 | A |
2861782 | Swartz | Nov 1958 | A |
3120166 | Lyman | Feb 1964 | A |
3192306 | Skonnord | Jun 1965 | A |
3236296 | Dubin | Feb 1966 | A |
3317798 | Chu et al. | May 1967 | A |
3348609 | Dubin et al. | Oct 1967 | A |
3525385 | Liebert | Aug 1970 | A |
3559728 | Lyman et al. | Feb 1971 | A |
3648754 | Sephton | Mar 1972 | A |
3903404 | Beall et al. | Sep 1975 | A |
3942426 | Binks et al. | Mar 1976 | A |
4016357 | Abrahamsen | Apr 1977 | A |
4158875 | Tajima et al. | Jun 1979 | A |
4261519 | Ester | Apr 1981 | A |
4270362 | Lancia et al. | Jun 1981 | A |
4271678 | Liebert | Jun 1981 | A |
4306613 | Christopher | Dec 1981 | A |
4313310 | Kobayashi et al. | Feb 1982 | A |
4315300 | Parmerlee et al. | Feb 1982 | A |
4386651 | Reinhard | Jun 1983 | A |
4449579 | Miyazaki et al. | May 1984 | A |
4458296 | Bryant et al. | Jul 1984 | A |
4473382 | Cheslock | Sep 1984 | A |
4513351 | Davis et al. | Apr 1985 | A |
4528614 | Shariff et al. | Jul 1985 | A |
4535386 | Frey, Jr. et al. | Aug 1985 | A |
4642715 | Ende | Feb 1987 | A |
4644443 | Swensen et al. | Feb 1987 | A |
4691274 | Matouk et al. | Sep 1987 | A |
4702154 | Dodson | Oct 1987 | A |
4728160 | Mondor et al. | Mar 1988 | A |
4767262 | Simon | Aug 1988 | A |
4774631 | Okuyama et al. | Sep 1988 | A |
4797783 | Kohmoto et al. | Jan 1989 | A |
4798238 | Ghiraldi | Jan 1989 | A |
4860163 | Sarath | Aug 1989 | A |
4874127 | Collier | Oct 1989 | A |
4901200 | Mazura | Feb 1990 | A |
4911231 | Horne et al. | Mar 1990 | A |
4993482 | Dolbear et al. | Feb 1991 | A |
5000079 | Mardis | Mar 1991 | A |
5019880 | Higgins, III | May 1991 | A |
5035628 | Casciotti et al. | Jul 1991 | A |
5060716 | Heine | Oct 1991 | A |
5090476 | Immel | Feb 1992 | A |
5101320 | Bhargava et al. | Mar 1992 | A |
5131233 | Cray et al. | Jul 1992 | A |
5150277 | Bainbridge et al. | Sep 1992 | A |
5161087 | Frankeny et al. | Nov 1992 | A |
5165466 | Arbabian | Nov 1992 | A |
5196989 | Zsolnay | Mar 1993 | A |
5263538 | Amidieu et al. | Nov 1993 | A |
5273438 | Bradley | Dec 1993 | A |
5297990 | Renz et al. | Mar 1994 | A |
5323847 | Koizumi et al. | Jun 1994 | A |
5326317 | Ishizu et al. | Jul 1994 | A |
5329425 | Leyssens et al. | Jul 1994 | A |
5339214 | Nelson | Aug 1994 | A |
5345779 | Feeney | Sep 1994 | A |
5365402 | Hatada et al. | Nov 1994 | A |
5376008 | Rodriguez | Dec 1994 | A |
5395251 | Rodriguez et al. | Mar 1995 | A |
5402313 | Casperson et al. | Mar 1995 | A |
5410448 | Barker, III et al. | Apr 1995 | A |
5414591 | Kimura et al. | May 1995 | A |
5467250 | Howard et al. | Nov 1995 | A |
5467609 | Feeney | Nov 1995 | A |
5471850 | Cowans | Dec 1995 | A |
5491310 | Jen | Feb 1996 | A |
5493474 | Schkrohowsky et al. | Feb 1996 | A |
5547272 | Paterson et al. | Aug 1996 | A |
5572403 | Mills | Nov 1996 | A |
5603375 | Salt | Feb 1997 | A |
5684671 | Hobbs et al. | Nov 1997 | A |
5685363 | Orihira et al. | Nov 1997 | A |
5707205 | Otsuka | Jan 1998 | A |
5709100 | Baer et al. | Jan 1998 | A |
5718628 | Nakazato et al. | Feb 1998 | A |
5749702 | Datta et al. | May 1998 | A |
5782546 | Iwatare | Jul 1998 | A |
5793610 | Schmitt et al. | Aug 1998 | A |
5829676 | Ban et al. | Nov 1998 | A |
5880931 | Tilton et al. | Mar 1999 | A |
5927386 | Lin | Jul 1999 | A |
5979541 | Saito | Nov 1999 | A |
6021047 | Lopez et al. | Feb 2000 | A |
6026565 | Giannatto et al. | Feb 2000 | A |
6034870 | Osborn et al. | Mar 2000 | A |
6039414 | Melane et al. | Mar 2000 | A |
6046908 | Feng | Apr 2000 | A |
6052278 | Tanzer et al. | Apr 2000 | A |
6061237 | Sands et al. | May 2000 | A |
6104608 | Casinelli et al. | Aug 2000 | A |
6115242 | Lambrecht | Sep 2000 | A |
6132171 | Fujinaka et al. | Oct 2000 | A |
6135875 | French | Oct 2000 | A |
6158502 | Thomas | Dec 2000 | A |
6164369 | Stoller | Dec 2000 | A |
6167948 | Thomas | Jan 2001 | B1 |
6182787 | Kraft et al. | Feb 2001 | B1 |
6183196 | Fujinaka | Feb 2001 | B1 |
6185098 | Benavides | Feb 2001 | B1 |
6205796 | Chu et al. | Mar 2001 | B1 |
6208510 | Trudeau et al. | Mar 2001 | B1 |
6236564 | Fan | May 2001 | B1 |
6272012 | Medin et al. | Aug 2001 | B1 |
6305180 | Miller et al. | Oct 2001 | B1 |
6310773 | Yusuf et al. | Oct 2001 | B1 |
6332946 | Emmett et al. | Dec 2001 | B1 |
6351381 | Bilski et al. | Feb 2002 | B1 |
6359779 | Frank, Jr. et al. | Mar 2002 | B1 |
6361892 | Ruhl et al. | Mar 2002 | B1 |
6396684 | Lee | May 2002 | B2 |
6416330 | Yatskov | Jul 2002 | B1 |
6435266 | Wu | Aug 2002 | B1 |
6439340 | Shirvan | Aug 2002 | B1 |
6462944 | Lin | Oct 2002 | B1 |
6481527 | French et al. | Nov 2002 | B1 |
6501652 | Katsui | Dec 2002 | B2 |
6515862 | Wong et al. | Feb 2003 | B1 |
6519955 | Marsala | Feb 2003 | B2 |
6524064 | Chou et al. | Feb 2003 | B2 |
6542362 | Lajara et al. | Apr 2003 | B2 |
6546998 | Oh et al. | Apr 2003 | B2 |
6550530 | Bilski | Apr 2003 | B1 |
6554697 | Koplin | Apr 2003 | B1 |
6557357 | Spinazzola et al. | May 2003 | B2 |
6557624 | Stahl et al. | May 2003 | B1 |
6564571 | Feeney | May 2003 | B2 |
6564858 | Stahl | May 2003 | B1 |
6582192 | Tseng | Jun 2003 | B2 |
6587340 | Grouell et al. | Jul 2003 | B2 |
6609592 | Wilson | Aug 2003 | B2 |
6628520 | Patel et al. | Sep 2003 | B2 |
6631078 | Alcoe | Oct 2003 | B2 |
6644384 | Stahl | Nov 2003 | B2 |
6661660 | Prasher et al. | Dec 2003 | B2 |
6679081 | Marsala | Jan 2004 | B2 |
6684457 | Holt | Feb 2004 | B2 |
6690576 | Clements et al. | Feb 2004 | B2 |
6705625 | Holt et al. | Mar 2004 | B2 |
6714412 | Chu et al. | Mar 2004 | B1 |
6724617 | Amaike et al. | Apr 2004 | B2 |
6742068 | Gallagher et al. | May 2004 | B2 |
6745579 | Spinazzola et al. | Jun 2004 | B2 |
6755280 | Porte et al. | Jun 2004 | B2 |
6761212 | DiPaolo | Jul 2004 | B2 |
6772604 | Bash et al. | Aug 2004 | B2 |
6775137 | Chu et al. | Aug 2004 | B2 |
6776707 | Koplin | Aug 2004 | B2 |
6796372 | Bear | Sep 2004 | B2 |
6801428 | Smith et al. | Oct 2004 | B2 |
6819563 | Chu et al. | Nov 2004 | B1 |
6836407 | Faneuf et al. | Dec 2004 | B2 |
6854287 | Patel et al. | Feb 2005 | B2 |
6854659 | Stahl et al. | Feb 2005 | B2 |
6860713 | Hoover | Mar 2005 | B2 |
6867966 | Smith et al. | Mar 2005 | B2 |
6875101 | Chien | Apr 2005 | B1 |
6876549 | Beitelmal et al. | Apr 2005 | B2 |
6881898 | Baker et al. | Apr 2005 | B2 |
6882531 | Modica | Apr 2005 | B2 |
6904968 | Beitelmal et al. | Jun 2005 | B2 |
6909611 | Smith et al. | Jun 2005 | B2 |
6914780 | Shanker et al. | Jul 2005 | B1 |
6932443 | Kaplan et al. | Aug 2005 | B1 |
6975510 | Robbins et al. | Dec 2005 | B1 |
6992889 | Kashiwagi et al. | Jan 2006 | B1 |
6997245 | Lindermuth et al. | Feb 2006 | B2 |
6997741 | Doll | Feb 2006 | B2 |
6999316 | Hamman | Feb 2006 | B2 |
7016191 | Miyamoto et al. | Mar 2006 | B2 |
7051802 | Baer | May 2006 | B2 |
7051946 | Bash et al. | May 2006 | B2 |
7059899 | Doll | Jun 2006 | B2 |
7120017 | Shieh | Oct 2006 | B2 |
7120027 | Yatskov et al. | Oct 2006 | B2 |
7123477 | Coglitore et al. | Oct 2006 | B2 |
7144320 | Turek et al. | Dec 2006 | B2 |
7152418 | Alappat et al. | Dec 2006 | B2 |
7154748 | Yamada | Dec 2006 | B2 |
7177156 | Yatskov et al. | Feb 2007 | B2 |
7182208 | Tachibana | Feb 2007 | B2 |
7187549 | Teneketges et al. | Mar 2007 | B2 |
7193846 | Davis et al. | Mar 2007 | B1 |
7193851 | Yatskov et al. | Mar 2007 | B2 |
7209351 | Wei | Apr 2007 | B2 |
7215552 | Shipley et al. | May 2007 | B2 |
7218516 | Yu et al. | May 2007 | B2 |
7226353 | Bettridge et al. | Jun 2007 | B2 |
7242579 | Fernandez et al. | Jul 2007 | B2 |
7255640 | Aldag et al. | Aug 2007 | B2 |
7259963 | Germagian et al. | Aug 2007 | B2 |
7286351 | Campbell et al. | Oct 2007 | B2 |
7304842 | Yatskov et al. | Dec 2007 | B2 |
7314113 | Doll | Jan 2008 | B2 |
7315448 | Bash et al. | Jan 2008 | B1 |
7330350 | Hellregel | Feb 2008 | B2 |
7362571 | Kelley et al. | Apr 2008 | B2 |
7385810 | Chu et al. | Jun 2008 | B2 |
7397661 | Campbell et al. | Jul 2008 | B2 |
7411785 | Doll | Aug 2008 | B2 |
7418825 | Bean, Jr. | Sep 2008 | B1 |
7420805 | Smith et al. | Sep 2008 | B2 |
7430118 | Noteboom et al. | Sep 2008 | B1 |
7513923 | Lewis et al. | Apr 2009 | B1 |
7542287 | Lewis, II et al. | Jun 2009 | B2 |
7554803 | Artman et al. | Jun 2009 | B2 |
20010052412 | Tikka | Dec 2001 | A1 |
20020072809 | Zuraw | Jun 2002 | A1 |
20020172007 | Pautsch | Nov 2002 | A1 |
20020181200 | Chang | Dec 2002 | A1 |
20030010477 | Khrustalev et al. | Jan 2003 | A1 |
20030056941 | Lai et al. | Mar 2003 | A1 |
20030161102 | Lee et al. | Aug 2003 | A1 |
20030183446 | Shah et al. | Oct 2003 | A1 |
20040008491 | Chen | Jan 2004 | A1 |
20040020225 | Patel et al. | Feb 2004 | A1 |
20040033135 | Chang | Feb 2004 | A1 |
20040052052 | Rivera | Mar 2004 | A1 |
20040250990 | Schaper | Dec 2004 | A1 |
20050120737 | Borror et al. | Jun 2005 | A1 |
20050161205 | Ashe et al. | Jul 2005 | A1 |
20050162834 | Nishimura | Jul 2005 | A1 |
20050168945 | Coglitore | Aug 2005 | A1 |
20050186070 | Zeng et al. | Aug 2005 | A1 |
20050207116 | Yatskov | Sep 2005 | A1 |
20050225936 | Day | Oct 2005 | A1 |
20050241810 | Malone et al. | Nov 2005 | A1 |
20060018094 | Robbins et al. | Jan 2006 | A1 |
20060044758 | Spangberg | Mar 2006 | A1 |
20060102322 | Madara | May 2006 | A1 |
20060180301 | Baer | Aug 2006 | A1 |
20070030650 | Madara et al. | Feb 2007 | A1 |
20070211428 | Doll | Sep 2007 | A1 |
20080018212 | Spearing et al. | Jan 2008 | A1 |
20080078202 | Luo | Apr 2008 | A1 |
20080092387 | Campbell et al. | Apr 2008 | A1 |
20080098763 | Yamaoka | May 2008 | A1 |
20080158814 | Hattori | Jul 2008 | A1 |
20080174953 | Fuke et al. | Jul 2008 | A1 |
20080216493 | Lin et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
2004-079754 | Aug 2002 | JP |
WO 0186217 | Nov 2001 | WO |
WO 2005027609 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090244826 A1 | Oct 2009 | US |