Airflow power generating apparatus

Information

  • Patent Grant
  • 11746751
  • Patent Number
    11,746,751
  • Date Filed
    Saturday, February 3, 2018
    6 years ago
  • Date Issued
    Tuesday, September 5, 2023
    7 months ago
  • Inventors
  • Examiners
    • Cuevas; Pedro J
    Agents
    • Liu; Stephen Y.
    • Carstens, Allen & Gourley, LLP
Abstract
Electric and hydrogen technology automobiles and vehicles such as trucks, buses, ships and boats are believed to be the future of transportation; however for the time being, the problems surrounding the technologies are significant and have kept the consumers away for various reasons including the capacity of batteries and fuel cells, the lack of filling stations, and most of all the limited distance the vehicles can travel without a recharge, which for small electric vehicles can take up to 20 minutes before they can continue to travel with a full battery or fuel cell. Commercial vehicles in particular; cannot take the time to stop frequently and worst yet take the significant amount of time that it would take to recharge their systems. Hybrid vehicles still rely on gasoline which is available to increase the travel distance, but customers concerned for the environment have not yet embraced the solution and larger vehicles such as commercial trucks are not about to take the risk of being left out without fuel under any circumstances. This current invention “Airflow Power Generating Apparatus’ is for use in present and future electric and hydrogen technology vehicles and solves the challenges present today as it provides a system to charge batteries and fuel cells while the vehicle is moving forward. This system will extend the distance vehicles can travel or may eliminate completely the need to recharge batteries of fuel cells at homes or at charge stations.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present patent application expands the use of the turbine apparatus for installation in buildings, U.S. Pat. No. 9,546,644 B2 issued in my name as the inventor, on Jan. 17, 2017; disclosure of which herein is incorporated by reference to the extent not inconsistent with the present disclosure. The present invention of Airflow Power Generating Apparatus intended for use in electric and hydrogen technology vehicles shares some of the concepts which are not in conflict as I am the inventor of both.


BACKGROUND OF THE INVENTION

The present invention uses air flow power to recharge batteries or fuel cells while an electric or hydrogen technology vehicle is in motion. As air flows through capturing openings and or funnels, it rotates a turbine or a plurality of turbines which transform kinetic energy to electrical DC current through generators which feed energy to recharge the batteries and/or fuel cells in the vehicle. The Airflow Power Generating Apparatus for use in electric or hydrogen technology vehicles addresses the challenge of refueling the vehicle frequently either with fossil fuels or hydrogen or with electrical charge at plug in stations.


There is an effort by manufacturers of new electric or hydrogen vehicles to locate filling stations where there is a concentration of consumers such as near important roads and highways. The first challenge with these locations is that the consumer does not want to take the time to sit and wait while the vehicle is recharged, and the second challenge is that filling stations are not available in most locations. Ideal places for recharge are parking lots and garages where recharge can occur. Vehicles may be charged at homes, commercial and residential use buildings, malls, grocery stores, etc.; where the consumer can recharge the batteries or fuel cells during the time he is away from it for extended periods and taking the time to recharge during those periods does not become an inconvenience. My Airflow Power Generating Apparatus for use in electric and hydrogen technology vehicles provides an external continuous feed of DC energy while the vehicle is in forward motion. There is no previous art addressing the challenges this invention resolves such as reducing or eliminating the use of added fuels to compensate for and to recharge batteries or fuel cells.


There is neither perpetual motion without an external source of energy, nor there is a way to get more energy from less, therefore for an electric or hydrogen technology vehicle to move; the batteries and fuel cells need to be sufficiently charged to maintain the level required for a vehicle to travel a distance satisfactory to the consumer needs. Currently batteries and fuel cells cannot keep enough charge to support travel distance without having to be recharged frequently. The Chevy Volt one of GM's most celebrated electric vehicle can travel up to 400 miles, however only 53 miles of these miles are with battery power alone, which makes the Volt not technically and electric vehicle but rather a standard vehicle with an electric accessory to extend its travel distance.


A travelling vehicle has many forces acting against it such as wind, environmental friction, road friction and even the resistance of the vehicle's own running parts. These conditions have made it impossible to run any vehicle without recharging batteries or fuel cells with energy coming from external sources. The Airflow Power Generating Apparatus when used in Electric and Hydrogen Technology Vehicles, provides de needed external energy for recharge by using air flowing through its turbines which convert airflow to kinetic energy and further electrical energy that is converted into electrical DC current through generators driven by the turbines. Air flow provides an infinite and constant source of power to charge batteries and fuel cells while the vehicle is in forward motion.


Depending on the size and weight of the vehicle and the capacity of batteries or fuel cells; a vehicle with the Airflow Power Generating Apparatus used in an electric or hydrogen technology vehicle may not need any other external sources of energy and could operate on demand for as long as batteries or fuel cells can be charged. The Air flow apparatus or a plurality of apparatuses installed in a vehicle that travels at a given speed will have a constant air flow at an equivalent speed for the rotation of the apparatus turbine. As an example, a vehicle traveling at 75 miles per hour will provide an airflow through the turbines at an equivalent speed. Air flow turbines will rotate and produce energy at any travel speed. Turbines may be aided by magnets to keep them rotating in slow motion, so they may have immediate rotation as soon as the vehicle moves forward. On board voltage regulators will control produced DC current to prevent damage to batteries and fuel cells during recharge.


Some vehicles may have batteries or systems where batteries or fuel cells can be charged while the vehicle is traveling. Others may require that the battery or fuel cell is not used while charging, thus a plurality of batteries or fuel cells should be used with a switching mechanism that would allow one battery to be charged while the other one is in use. Once the charge of the battery or fuel cell being used has reached the level for recharge, the switching system will shift to connect with the fully charged battery or fuel cell and the vehicle will then use the power of the fully charged battery or fuel cell. The one previously being used, after switching will be independent from the vehicle and will get charged while the other battery or fuel cell provides the power to the vehicle.


Variable vehicle speed will provide variable voltage and while batteries and fuel cells will charge under a range of power supply; it is best if current supply is level, or the range between high and low is reduced to a steadier voltage output. To achieve a steadier supply; the generators should spin at a mostly steady speed so an automatic transmission using gears, belts or chains is introduced to connect the turbine to the generators and shift to the gear that is more suitable to keep the rotating speed of the generator relatively constant. For example, at 70 miles per hour vehicle speed, the gear driven by the fast spinning turbine may be connected to the generator through a gear of the same dimension; and if the speed of the vehicle is for example 40 mph the connection might be between the large gear of the turbine and a medium size gear that drives the generator thus raising the speed of the generator while the turbine is at low speed. At a 20-mph vehicle speed, the turbine will spin even slower, so the large gear of the turbine may be connected to the smaller gear that drives the generator and so on. Gears, pulleys or chains connections will have the same effect for speed of spin transition.


The first reason why most consumers do not use electric or hydrogen technology cars are that charging stations are far from each other, and even as stations will increase in major highways; country roads and most state roads will not have the facilities as frequently available. People don't like the idea of being stranded and whether this might not be true; the perception of the consumer is that it might happen and thus will not put himself at risk. Second reason of concern is the distance one can travel with a full charge; people like to go as far as possible with a full tank of gas and spend 5 minutes at a convenience store while they fill up their tanks and buy some food or drinks. People don't have the time to wait and unless recharging stations for electric cars are as frequent as gas stations, with as numerous pumps in each station; no consumer will accept the concept of an electric or hydrogen technology vehicle if the convenience and the speed of service are not there. In most highways; one can find in gas stations several pumps which serve a car every five minutes or an average of 12 vehicles per hour per pump. If each car however took 20 minutes to recharge the pump would be able to serve only three vehicles per hour. The station owner to keep his cashflow would have to charge four times more for charging an electric vehicle than refueling a standard gas or diesel vehicle or have 4 times more charging stations to accommodate the same number of consumers who would be passing through his fueling station.


The Airflow Power Generating Apparatus to be used for electric and hydrogen technology vehicles resolves the challenges mentioned above. With the apparatus on board the consumer will either never have to stop to charge batteries or fuel cells as they are constantly being recharged; or he may be able to recharge less often as his distance of travel would have been significantly increased. There isn't a more reliable energy source than air flow power on a moving vehicle


SUMMARY OF INVENTION

The present invention consists of one or a plurality of air flow turbines installed in electric, hybrid or hydrogen technology vehicles to generate electrical current to charge batteries or fuel cells while the vehicle is in motion. This apparatus may be installed in multiple types of vehicles such as ships, boats, trucks, busses and any other type of vehicle. This invention is not limited to over land vehicles.


The turbines may be installed on vehicle rooftops, sides or bottoms. FIGS. 16 through 21. Air flow capture may be through funnels (7) or air flow openings (27) which may be positioned by vehicle designers to optimize air flow power driving the turbines in their models. The figures on this application show as a mode of illustration only; some possible locations and apparatus variations to provide air flow power to electric and hydrogen technology vehicles in a variety of vehicles types.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention installed in an electric or hydrogen technology vehicle captures air flow through an optional capturing funnel (7) or air flow opening (27) and directs it to a turbine (10) with cups (25), concave elongated vanes (9) or blades (22) on a single or a plurality of drums or converter wheels, which rotate with the rapid air flow. The air will flow through the inlet opening at approximately the same speed being travelled by a moving vehicle. Air flow speed may be further enhanced by the installation of the funnel (7), which with a greater area of air flow capture, in relationship to the smaller area at the opposite side of the funnel, will increment air flow speed through the airflow cavity (4) as per the Venturi principle. The air flow passing through the smaller opening will have a jet stream effect hitting the cups (25), blades (22), or concave elongated vanes (9) of the turbine (10) which will rotate at a greater speed. Air flow then exits freely through the opposite end of the air flow cavity (4) where an optional airflow diffuser (14) may be installed to reduce whistling that may be produced by fast exiting air flow.


The turbine (10) or plurality of turbines rotate a shaft (3) at its center which supports the converter wheels (25) or drums. The shaft (3) may be connected directly to generators attached to the shaft (3), or may be connected to gears (20), chains or pulleys to further increase the speed of rotation of the generators (17). The generators in turn produce DC current which is used to charge the batteries, fuel cells or the like of the vehicle. Voltage will be controlled by regulators or other systems which are components of the vehicle.


The cups (25), blades (22) or concave elongated vanes (9), drums or converter wheels may be constructed or light weight non-corrosive metals or alloys; some plastics may be an alternative if weight and resistance to bending or warping is equivalent to metal such as coated aluminum which is the preferred material for the turbine. The drums are rigid and hollow thus making them lighter. Components of the Airflow Power Apparatus must be non-corrosive and resistant to oxidation. The Airflow Power Apparatus will be subject to extreme cold and hot weather conditions as well as dry and wet environments. For vehicles traveling in coastal areas, extreme care must be used on selecting materials that will resist salt air.


The air flow funnel (7) or airflow opening (27) includes a grill (8) for preventing large objects to go through. The openings in the grill are large enough to allow for small leaves to pass by, larger pieces of debris could interfere with the rotation of the turbine. The grille (8) is designed to prevent large objects such large size leaves to remain stuck to the grill and reduce airflow passage. Turbine rotation and cleanliness of the turbine cavity is achieved by pumping water with anti-freeze into the cavity (12) through a hose/tube connection fitting (11) and sprayed into the turbine cavity through spray nozzles (13). A small on board electric pump activated by the user from the interior of the vehicle is used on demand. Water exits the turbine cavity through drain (6) at the lower area of the turbine cavity and it can be recycled after filtering the fluid. In wet conditions, water entering the air flow cavity from the exterior will also find its way out through the drain. Considering that the space between the turbine (10) and the turbine cavity is millimetric; only a small amount of dirt will be accumulated and then washed clean by the fluid from the spray nozzles (13). Larger grains of dusts, bugs, mud, etc. will be ejected by the turbine through the exiting air flow cavity.


As the turbines will also operate in temperatures and environments which are subject to freezing temperatures, snow and ice, the turbine casing (1) is heated automatically when these conditions are present. The temperature of the casing (1) is controlled by a thermostat (22) which activates heating elements (2) thus de-icing snow or freezing water that otherwise may block the air flow cavity (4) or prevent the turbine (10) from spinning. When the vehicle starts in freezing conditions; it will initially run on its batteries or fuel cells which at the time would have been charged by previous travel; these will start the deicing process allowing the turbines (10) to start once conditions are stable.


The Airflow Power Generating Apparatus to be used in electric and hydrogen technology vehicles may be installed on vehicle roof tops, sides or bottoms and configurations may widely vary from one vehicle to another FIF 16 (26), FIG. 17 (27) FIG. 19 (28), thus the drawings in this application also include embodiments of the apparatus illustrated in varying positions and locations; these are demonstrative but are not intended to be limitative in any way. The shape of the capturing funnel (7), air flow opening (27) and the apparatus itself may be modified as these are incorporated in different vehicles types, styles, models and designs; however, the components of air capture, airflow cavity, turbine, generator, deicing and wash systems are integral and intrinsic parts of this invention regardless of the shape these may take to serve the overall design of the vehicle. Air flow capture may be through existing type of vent grills or through new air flow cavities which may be created by vehicle designers to optimize the air flow under their specific conditions and parameters. The figures include different vehicle types, cars, trucks, vans and trailers with the apparatus incorporated, however these are not limitative and are for illustration only.


Trailers (31) hauled by trucks may have a fixed or removable apparatus attached or installed, thus being able to generate additional air flow power to recharge batteries or fuel cells of the truck to compensate for the added load and for the increased battery or fuel cell demand. Achieving balance among battery or fuel cell energy loss with airflow power energy charge, will allow manufacturers of vehicles to eliminate fossil fuel engines and all their components and ancillary parts; this reduction of significant weight and space will result for example in trucks and other vehicles to be lighter and with more space to place batteries or fuel cells making them a strong competitor of the fossil fuel engine counterparts with the significant advantage of producing their own fuel as they travel.


DESCRIPTION OF THE FIGURES


FIG. 1. Is an isometric view of the Air Flow Power Generating Apparatus where (1) is the apparatus casing, (2) heating elements, (3) shaft, (4) airflow cavity, (6) drain, (7) Funnel and (8) grill.



FIG. 2. Is an isometric view of a section cut of the Air Flow Power Generating Apparatus where (4) is airflow cavity, (7) is funnel, (9) are elongated vanes and (10) is the drum turbine.



FIG. 3. Is an isometric view of the drum turbine where (3) is the shaft, (9) are the elongated vanes and (10) is the drum turbine.



FIG. 4. Is an isometric view of a drum turbine (10) where blades (22) are used instead of elongated vanes and (3) is the shaft of the turbine.



FIG. 5. Is a section of the Air Flow Power Generating Apparatus depicted in FIGS. 1 and 2 where (1) is the turbine casing, (2) the heating elements, (3) the shaft, (4) the airflow cavity, (6) the apparatus drain, (7) the funnel, (9) the elongated vanes, (10) the turbine, (11) the fitting for attachment of a hose or tube connected to vessel and a pump for delivery of water mixed with antifreeze, (12) is a chamber into which water mixed with antifreeze will be pumped to be sprayed into the turbine casing by nozzles (13) with the purpose of washing away dirt and cleaning the turbine (10) and (1) the turbine casing.



FIG. 6. Is an isometric section cut of an Airflow Power Generating Apparatus with a configuration where the turbine (10) is located in the underside of the unit. This figure demonstrates the flexibility in design which may be altered into multiple versions further discussed and based on vehicle designs, models and functionality. Drawing depicts (2) heating elements, (4) airflow cavity, (6) turbine casing drain, (7) funnel, (10) drum turbine, (11) the fitting for attachment of a hose or tube connected to vessel and a pump for delivery of water mixed with antifreeze, (12) is a chamber into which water mixed with antifreeze will be pumped to be sprayed into the turbine casing by nozzles (13) with the purpose of washing away dirt and cleaning the turbine and the turbine casing, and (14) an airflow diffuser which may be used to reduce any airflow noise that may come from the airflow cavity.



FIG. 7. Is a section of the Airflow Power Generating Apparatus depicted in FIG. (6)



FIG. 8. Depicts the Airflow Power Generating Apparatus and other components vital for the apparatus to transform airflow power to kinetic energy and to electrical DC current for recharging the batteries or fuel cells. In the figure are depicted (1) the turbine casing, (15) the apparatus support, (20) a gear or pulley to drive an automatic transmission (19) intended to shift gears as necessary to maintain the rotation of the generators (17) at a stable rotation speed. An inverse tachometer (16) will control the speed of the turbine be used to rotate several generators in tandem; these generators are interconnected, thus doubling the DC current every time a generator (17) is added to the series chain.



FIG. 9. Is a top view of the Airflow Power Generating Apparatus depicted in FIG. 8, where (1) is the turbine casing, (2) are heating elements, (3) turbine shaft, (7) funnel and (22) a thermostat to control the temperature of the heating elements.



FIG. 10. Is a reflected bottom view of the Airflow Power Generating Apparatus depicting (1) turbine casing, (2) heating elements, (3) turbine shaft and (6) turbine casing drains.



FIG. 11. Is a cross section view of an Airflow Power Generating Apparatus in a vertical position for use in similar cases like those depicted in FIG. 16 (26) and FIG. 17 (26). This section cut of the apparatus shown in FIG. 11; depicts (1) a turbine casing, (2) heating elements, (3) turbine shaft, (4) airflow cavity, (9) elongated vanes, (10 drum turbine, (27) airflow opening.



FIG. 12. Is a front view of an Airflow Power Generating Apparatus in vertical position for use in cases like those depicted in FIG. 16 (26) and FIG. 17 (26). The figure depicts; (2) heating elements, (3) turbine shaft, (6) turbine casing drains and (8) a grill.



FIG. 13. Depicts a possible configuration of a combination of the systems depicted in FIG. 8 and FIG. 12 where multiple system configurations are combined, and generators are connected in series to further increase the DC voltage for charging batteries or fuel cells.



FIG. 14. Depicts a version of the Airflow Power Generating Apparatus for use in shallow environments. The unit due to size and air flow capture capability may be used in smaller vehicles. This turbine apparatus is of tubular air flow cavity with components comparable to the larger systems depicted in previous figures and labeled as such, followed by the letter A for ease of interpretation. Because of its shape, capacity, and airflow capability; cups are used on a converter wheel which in turn will spin a generator (17.)



FIGS. 16 through 21. Depict a number of vehicles where Airflow Power Generating Apparatuses are shown as examples of vehicle types and apparatus location which may vary as determined by vehicle designers selecting areas beneficial for airflow capture.



FIG. 22. Displays three scenarios of embodiments with use of traditional, inverter or variable speed generator and permanent magnet synchronous generator most used in turbine systems.



FIG. 23. Section view and detail of permanent magnet rotor coupled to the interior of the turbine hollow and rigid turbine drum.



FIG. 24. Section view of a crossflow turbine with permanent magnets coupled to the turbine shaft inside the cavity of the hollow and rigid turbine drum. In this embodiment the generator may be fully inserted into the hollow drum providing the condition for the turbine to extend the full width of the space allocated for the apparatus.



FIG. 25. Is a listing of some of the permanent magnet synchronous generators designed for use with the crossflow turbines of lower RPM requirements, the rated output power in KW, the starting torque requirements, and the voltage output.



FIG. 26. Displays section views of positioning of the constant magnets inside the turbine; these may be coupled to the interior wall of the turbine hollow drum or to the turbine shaft and may be used to couple to a synchronous generator stator to generate electricity.



FIG. 27. Displays a section of the apparatus installed inside a trailer, the position and design of the capturing funnel as described pushes away larger debris letting smaller pieces of debris to enter the airflow cavity where they are ejected by the spin of the turbine, centrifugal force, and speeding airflow.



FIG. 28. Displays the switching system in charge and release positions of energy supply to enhance the power of the vehicle manufacturer's on-board batteries already in the vehicle prior to the installation of the Airflow Power Generating Apparatus.



FIG. 29. Displays air resistance on a tractor trailer without the Airflow Power Generating Apparatus installed.



FIG. 30. Displays same tractor trailer of FIG. 29 where a plurality of Airflow Power Generating apparatuses are installed in areas of air resistance. With the installation of such apparatuses, air resistance is reduced while providing electrical energy. Systems shown are inside the trailer and smaller apparatuses are shown taking the place where the exhaust and air filter units might have been as shown on FIG. 16. Grey arrows show airflow after passing through turbine.



FIG. 31. Displays air flow and resistance on a typical tractor trailer.



FIG. 32. Shows aerodynamic air resistance in a typical tractor trailer noting lower and higher values on most affected areas of the tractor trailer. These are locations best suited for the installation of Airflow Power Generating apparatuses.



FIG. 33. Figure indicates some of the areas of highest air resistance in a typical tractor trailer.



FIG. 34. Displays airflow funnels connected to apparatuses inside the trailer where airflow follows as those areas of highest air resistance become areas of least resistance within the affected surface areas. The installation of apparatuses in such locations diminish air resistance rather than increase it. In the figure, a side exhaust opening is also visible displaying how airflow crossing along the opening further reduces air resistance by the chimney effect that is produced by the fast-moving air along the side of the vehicle. The position of the funnels are the position of the Airflow Power Generating Apparatuses inside the trailer.



FIG. 35. Displays some areas of air resistance in a tractor trailer suitable for the installation of the Airflow Power Generating Apparatus.



FIG. 36. Sows some locations where apparatuses may be installed in areas as displayed in FIG. 35.



FIG. 37. Displays position of two apparatuses installed within the interior of a trailer and notes the reduction of air resistance values when apparatuses are installed in those locations; the installation of apparatuses does not add exterior surface area subject to air resistance.



FIG. 38. Further displays values of air resistance on the front of a trailer and how air resistance is reduced after Apparatuses' funnels are positioned in the same locations. Airflow exit openings are also shown where exhaust airflow would be subjected to the chimney affect by the air flowing along the exterior surface of the vehicle. The chimney effect will further reduce air resistance by creating a vacuum at the exit opening.



FIG. 39. Displays an add-on section at the front of the trailer where apparatuses are installed when cargo space may not be available inside the trailer.



FIG. 40. Is a graphic of the relationship of air resistance versus speed. Air resistance increases exponentially every time speed increases. This is beneficial to the Airflow Power Generating Apparatus as increasing air resistance contributes to higher production of electricity as turbines spin at a greater RPM.



FIG. 41. Displays turbulence in rear of trailer causing air resistance on the area.



FIG. 42. Further displays areas of air resistance at the rear of a tractor trailer, suggesting a preferred location for apparatuses to be installed.



FIG. 43. Displays a common existing system used to reduce air resistance at the rear of a trailer.



FIG. 44. Displays the installation of apparatuses at the front and rear of a trailer. Apparatuses at the rear convert tail resistance into usable airflow to drive apparatuses that convert kinetic force to electrical energy. Figure shows this to be another location suitable for the installation of apparatuses.



FIG. 45. Is a lateral view of a standard SUV



FIG. 46. Is a lateral view of the SUV of FIG. 45 where an add-on apparatus is installed.



FIG. 47. Is a side view of a typical pickup truck.



FIG. 48. Shows the areas of air resistance on a pickup truck such as the one displayed on FIG. 47.



FIG. 49. Is of a horizontally positioned apparatus installed in the vehicle displayed in FIG. 47.



FIG. 50. Shows airflow pattern on a typical pickup truck.



FIG. 51. Displays an SUV where add-on turbines are installed in vertical position behind the two lateral rear areas of the vehicle. These locations as all others displayed in other figures are possible because of the flexibility for the installation of the Airflow Power Generating Apparatus in multiple locations.

Claims
  • 1. A system for generating renewable energy, the system comprising: a turbine;a casing that defines a cavity housing the turbine and a flowpath for air, wherein the flowpath includes an inlet and an outlet, and wherein the air passing through the flowpath causes the turbine to rotate within the cavity;a generator connected to the turbine which converts rotational motion of the turbine to electrical energy;a plurality of batteries connected to a battery switching system that selectively connects the plurality of batteries to one of the generator and an electric load, wherein at least one battery of the plurality of batteries in a charging state that is isolated from the electric load to store the electrical energy generated by the generator while at least one other battery of the plurality of batteries in a discharging state that is isolated from the generator to supply stored electrical energy to the electrical load, wherein the battery switching system switches the at least one battery from the charging state to the discharging state and switches the at least one other battery from the discharging state to the charging state; andwherein the casing further comprises: a grille that spans the inlet;a set of spray nozzles that sprays a fluid into the cavity; anda set of de-icing elements disposed on the casing.
  • 2. The system of claim 1, wherein the casing further comprises a diffuser located at the outlet of the flowpath.
  • 3. The system of claim 1, wherein the turbine includes a plurality of blades, and wherein the flowpath is positioned to expose only some blades in the plurality of blades to the air flowing through the flowpath.
  • 4. The system of claim 1, wherein components of the system are housed within a vehicle, and wherein the inlet of the flowpath is exposed at an external surface of the vehicle at a location that experiences wind resistance when the vehicle is in forward motion.
  • 5. The system of claim 1, wherein the turbine is connected to the generator through a gear system.
  • 6. The system of claim 5, wherein the turbine is connected to a plurality of generators.
  • 7. The system of claim 1, wherein the set of de-icing elements is disposed on a portion of the casing that envelops the turbine.
  • 8. A vehicle comprising: a system for generating renewable energy while the vehicle is in motion and exposed to wind resistance, the system including: a turbine;a casing that defines a cavity housing the turbine and a flowpath for air, wherein the flowpath includes an inlet and an outlet, and wherein the air passing through the flowpath causes the turbine to rotate within the cavity;a generator connected to the turbine which converts rotational motion of the turbine to electrical energy;a plurality of batteries connected to a battery switching system that selectively connects the plurality of batteries to one of the generator and an electric load, wherein at least one battery of the plurality of batteries in a charging state that is isolated from the electric load to store the electrical energy generated by the generator while at least one other battery of the plurality of batteries in a discharging state that is isolated from the generator to supply stored electrical energy to the electrical load, wherein the battery switching system switches the at least one battery from the charging state to the discharging state and switches the at least one other battery from the discharging state to the charging state; andwherein the casing further comprises: a grille that spans the inlet;a set of spray nozzles that sprays a fluid into the cavity; anda set of de-icing elements disposed on the casing.
  • 9. The vehicle of claim 8, wherein the casing further comprises a diffuser located at the outlet of the flowpath.
  • 10. The vehicle of claim 8, wherein the turbine includes a plurality of blades, and wherein the flowpath is positioned to expose only some blades in the plurality of blades to the air flowing through the flowpath.
  • 11. The vehicle of claim 8, wherein components of the system are housed within the vehicle, and wherein the inlet of the flowpath is exposed at an external surface of the vehicle at a location that experiences wind resistance when the vehicle is in forward motion.
  • 12. The vehicle of claim 8, wherein the turbine is connected to the generator through a gear system.
  • 13. The vehicle of claim 12, wherein the turbine is connected to a plurality of generators.
  • 14. The vehicle of claim 8, wherein the set of de-icing elements is disposed on a portion of the casing that envelops the turbine.
  • 15. A method for generating renewable energy, the method comprising: directing air from wind resistance into an inlet of a flowpath defined by a casing, wherein the casing also defines a cavity housing a turbine that rotates within the cavity as a result of the air flowing through the flowpath from the inlet to an outlet, wherein the casing further comprises a grille that spans the inlet, a set of spray nozzles that sprays a fluid into the cavity, and a set of de-icing elements disposed on the casing;converting, by a generator connected to the turbine, rotational motion of the turbine into electrical energy;storing the electrical energy in at least one battery of a plurality of batteries while the at least one battery is in a charging state and isolated from an electric load;supplying stored electrical energy to an electrical load by at least one other battery while the at least one other battery is in a discharging state and isolated from the generator, and while the at least one battery is in a charging state;switching, by a switching system, the at least one battery to a discharging state by isolating the at least one battery from the generator and connecting the at least one battery to the electric load; andswitching, by the switching system, the at least one other battery to a charging state by isolating the at least one other battery from the electric load and connecting the at least one other battery to the generator.
  • 16. The method of claim 15, further comprising: controlling activation of the set of de-icing elements based on a thermostat.
  • 17. The method of claim 15, further comprising: spraying the cavity with fluid from the set of spray nozzles.
  • 18. The method of claim 15, further comprising: expelling the air from the casing through a diffuser positioned at the outlet of the flowpath.
  • 19. The method of claim 15, further comprising: synchronizing a rotational speed of the generator with a rotational speed of the turbine.
  • 20. The method of claim 15, wherein the at least one battery is switched from the charging state to the discharging state and the at least one other battery is switched from the discharging state to the charging state in response to reaching a level of charge in the at least one battery or the at least one other battery.
US Referenced Citations (126)
Number Name Date Kind
299563 Martin Jun 1884 A
1586914 Palm Jun 1926 A
3556239 Spahn Jan 1971 A
3713503 Haan Jan 1973 A
3876925 Stoeckert Apr 1975 A
4002218 Horvat Jan 1977 A
4075545 Haberer Feb 1978 A
4084918 Pavlecka Apr 1978 A
4134469 Davis Jan 1979 A
4168759 Hull Sep 1979 A
4179007 Howe Dec 1979 A
4254843 Han Mar 1981 A
4423368 Bussiere Dec 1983 A
4437698 Tantalo Mar 1984 A
4520273 Rowe May 1985 A
4729072 Oroza Mar 1988 A
5009569 Hector, Sr. Apr 1991 A
D336762 Miller Jun 1993 S
5280827 Taylor Jan 1994 A
5287004 Finley Feb 1994 A
5296746 Burkhardt Mar 1994 A
5463257 Yea Oct 1995 A
5490572 Tajiri Feb 1996 A
5680032 Pena Oct 1997 A
5986429 Mula, Jr. Nov 1999 A
6138781 Hakala Oct 2000 A
6700215 Wu Mar 2004 B2
6758295 Fleming Jul 2004 B2
6765309 Tallal, Jr. Jul 2004 B2
6838782 Vu Jan 2005 B2
6857492 Liskey Feb 2005 B1
6882059 DePaoli Apr 2005 B1
6897575 Yu May 2005 B1
6926346 Wong Aug 2005 B1
6943461 Kaploun Sep 2005 B2
6966394 Fleming Nov 2005 B2
7135786 Deets Nov 2006 B1
7385302 Jonsson Jun 2008 B2
7387182 Fleming Jun 2008 B2
7434636 Sutherland Oct 2008 B2
7445064 Kim Nov 2008 B2
7497287 Kunikata Mar 2009 B2
7635924 Chen Dec 2009 B1
7641005 Cong Jan 2010 B2
7665554 Walsh Feb 2010 B1
7780411 Yan Aug 2010 B2
7789182 Bradley Sep 2010 B2
7816802 Green Oct 2010 B2
7854278 Kaufman Dec 2010 B2
7942624 Erb May 2011 B1
8098040 Botto Jan 2012 B1
8109357 Glover Feb 2012 B1
8162589 Moore Apr 2012 B2
8177479 Watts May 2012 B2
8181724 Cong May 2012 B2
8220570 Knickerbocker Jul 2012 B1
8240416 Cong Aug 2012 B2
8281442 Eggleston Oct 2012 B2
8371401 Illustrato Feb 2013 B1
8443571 Tadayon May 2013 B2
8509992 Bosworth Aug 2013 B1
8579054 Knickerbocker Nov 2013 B2
8710691 Haddad Apr 2014 B2
8829704 Grigg Sep 2014 B2
8911703 McAlister Dec 2014 B2
8967302 Tran Mar 2015 B2
9103317 Garcia Aug 2015 B2
9115685 Ross Aug 2015 B2
9428061 Ripley Aug 2016 B1
9446670 McCorkindale Sep 2016 B1
9546644 Oroza Jan 2017 B2
9669702 Lozano Jun 2017 B2
9731608 Knickerbocker Aug 2017 B1
9738330 Wolf Aug 2017 B2
9745960 Dietzel Aug 2017 B2
9803623 Burkle Oct 2017 B2
10160329 Abou-Zeid Dec 2018 B2
10160330 Kim Dec 2018 B2
10173533 Bird Jan 2019 B1
10479197 Kim Nov 2019 B1
10500963 Sikroria Dec 2019 B2
10563897 Gongate Feb 2020 B2
10583707 Kaskowicz Mar 2020 B2
10641241 Wang May 2020 B2
10655604 Parker May 2020 B1
10712068 Gongate Jul 2020 B2
10723193 Kaskowicz Jul 2020 B2
11136964 Parker Oct 2021 B2
11203242 Kaskowicz Dec 2021 B2
20020066608 Guenard Jun 2002 A1
20020109358 Roberts Aug 2002 A1
20020153178 Limonius Oct 2002 A1
20030122380 Harbison Jul 2003 A1
20030205482 Allen Nov 2003 A1
20040084908 Vu May 2004 A1
20040113431 Huang Jun 2004 A1
20040238248 Fleming Dec 2004 A1
20050029027 Kunikata Feb 2005 A1
20060113118 Kim Jun 2006 A1
20060137927 Fleming Jun 2006 A1
20060275105 Roberts Dec 2006 A1
20080023037 Kool Jan 2008 A1
20080309089 Lin Dec 2008 A1
20100101874 Cong Apr 2010 A1
20100101884 Cong Apr 2010 A1
20100122855 Cong May 2010 A1
20100122857 Cong May 2010 A1
20100122858 Cong May 2010 A1
20100132137 Eggleston Jun 2010 A1
20100213719 Botan Aug 2010 A1
20100237627 Socolove Sep 2010 A1
20110067353 Tadayon Mar 2011 A1
20110133468 Leith Jun 2011 A1
20120049525 Owens Mar 2012 A1
20120068464 Farb Mar 2012 A1
20120119504 Vigaev May 2012 A1
20120299526 Lambert Nov 2012 A1
20130043082 Tran Feb 2013 A1
20130127393 Garcia May 2013 A1
20130158828 McAlister Jun 2013 A1
20140097082 Oroza Apr 2014 A1
20170175711 Burkle Jun 2017 A1
20170342964 Cianflone Nov 2017 A1
20180156192 Wang Jun 2018 A1
20190249913 Gongate Aug 2019 A1
20200141622 Gongate May 2020 A1