In hard disk drive operation, it is important to filter airflow while keeping the circulation of the air as smooth as possible. Anytime the airflow is disturbed vibration of one or more components within the hard disk drive can occur. The overall effect of the disturbance may be dependent upon the size of the airflow disruption as well as the size of the component being vibrated.
As hard disk drives and the associated components are reduced in size, vibration of the smaller components is more easily achieved. For example, as a component is reduced in size, less force is required to instill a deleterious vibration.
Similarly, as revolutions per minute (RPM) increase in hard disk drive operation, airflow disturbances may gain a greater strength or force. For example, components of similar size would be more detrimentally affected by disruptions in airflow at 15,000 RPM versus 5000 RPM.
Thus, as hard disk drives are reduced in size, provided with higher RPM operations, or a combination thereof, the deleterious effects of airflow disturbances are magnified. In other words, an airflow disturbance that may have been within tolerances in a hard disk drive designed for operation at 5000 RPM may cause out of tolerance operation when operated at 7500 or more RPM. Similarly, a component at an initial size may have been within tolerances with respect to an airflow disturbance. However, at a reduced size, the component may not be able to encounter a similar airflow disturbance and remain within operational tolerances.
A hard disk drive including a base portion, a motor-hub assembly to which at least one disk is coupled, the motor-hub assembly coupled with the base portion. An airflow shroud is also coupled with the base portion. The airflow shroud including an airflow inlet oriented parallel to the disk and an airflow outlet oriented perpendicular to the disk. In so doing, the airflow shroud reduces vibration of a rotating disk in a hard disk drive.
Reference will now be made in detail to embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the technology will be described in conjunction with various embodiment(s), it will be understood that they are not intended to limit the present technology to these embodiments. On the contrary, the present technology is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims.
Furthermore, in the following description of embodiments, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, the present technology may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present embodiments.
One embodiment provides a hard disk drive having an airflow shroud. The airflow shroud includes an airflow inlet oriented parallel to a disk and an airflow outlet oriented perpendicular to the disk. In one embodiment, the outlet for the airflow is between the shroud wall and the hard disk drive cover. By changing the outlet location, the airflow shroud reduces vibration of the rotating magnetic disk so there is no drop in performance in terms of reading from or writing to the magnetic disk regardless of whether the hard disk drives are reduced in size, provided with higher RPM operations, or a combination thereof. In other words, in one embodiment the deleterious effects of airflow disturbances, with respect to the shroud outlet, are moved away from the disk and its associated airflow.
With reference now to
In general, HDD 100 has an internal base plate 113 and an internal cover (not shown). In one embodiment, internal housing 113 contains a disk pack having at least one media or magnetic disk 138. The disk pack (as represented by disk 138) defines an axis of rotation and a radial direction relative to the axis in which the disk pack is rotatable.
A spindle motor assembly having a central drive hub 130 operates as the axis and rotates the disk 138 or disks of the disk pack in the circumferential direction relative to internal base plate 113. An actuator assembly 115 includes one or more actuator arms 116. When a number of actuator arms 116 are present, they are usually represented in the form of a comb that is movably or pivotally mounted to base/housing 113. A controller 150 is also mounted to internal base plate 113 for selectively moving the actuator arms 116 relative to the disk 138. Actuator assembly 115 may be coupled with a connector assembly, such as a flex cable to convey data between arm electronics (AE) and a host system, such as a computer, wherein HDD 100 resides.
In one embodiment, each actuator arm 116 has extending from it at least one cantilevered integrated lead suspension (ILS) 120. The ILS 120 may be any form of lead suspension that can be used in a data access storage device. The level of integration containing the slider or magnetic head 121, ILS 120, and read/write head is called the Head Gimbal Assembly (HGA).
The ILS 120 has a spring-like quality, which biases or presses the air-bearing surface of slider 121 against disk 138 to cause slider 121 to fly at a precise distance from disk 138. ILS 120 has a hinge area that provides for the spring-like quality, and a flexing cable-type interconnect that supports read and write traces and electrical connections through the hinge area. A voice coil 112, free to move within a conventional voice coil motor magnet assembly is also mounted to actuator arms 116 opposite the head gimbal assemblies. Movement of the actuator assembly 115 by controller 150 causes the head gimbal assembly to move along radial arcs across tracks on the surface of disk 138.
With reference now to
In general, airflow 205 defines the direction of the airflow with respect to shroud 188 when disk 138 is rotated. The airflow 205 produced by the rotation of disk 138 includes air which enters from inlet 215 is then directed to the top of shroud 188 and escapes via outlet 216 between shroud 188 and the top cover.
With reference to
In one embodiment, grooves for holding filter 217 are formed in base 113 and in the opposite side of shroud surface 218. Single inlet 215 is formed at the front most portion of shroud 188 with respect to the direction of rotation of disk 138. A lower portion 224 and upper portion 223 are provided for clarity. In general, lower portion 224 is located proximal to base 113 while upper portion 223 is located proximal to the hard disk drive cover.
In one embodiment of
It is also known that vibration of the magnetic disk can be better reduced the narrower the gap between the magnetic disk and the shroud. This is because narrowing the gap makes it possible to reduce the amount of air flowing perpendicular to the magnetic disk surface.
In one embodiment, shroud 188 and base 113 are formed as a single piece. For example, they may be molded, cast, milled, or the like. In one embodiment, when the formed base 113 and shroud 188 is removed from the mold, the length of the cutaway in the direction of rotation of the magnetic disk needs to be such that the length at upper portion 223 is longer than the length at lower portion 224 in order to prevent damage to the completed base 113.
With reference now to
In
Similar to
In
With reference now to
With reference now to
In one embodiment, first part 219 of shroud 188 is fixed to base 113 with a retaining device such as a pin which may fit into a hole 415 provided in base 113. In one embodiment, there is no play between the retaining device and hole 415, and therefore it is possible to improve the degree of accuracy with which the separate member is attached to the base. In one embodiment, by utilizing a pin in a hole instead of a screw as the retaining device, costs can be reduced and assembly time may also be reduced.
With reference now to
At 510 of
In one embodiment, shroud 188 is located in a corner of base 113 of hard disk drive 100. In addition, shroud 188 includes a shroud surface 218 designed to follow a shape of an outer periphery of the disk 138 in hard disk drive 100. In one embodiment, shroud 188 is formed in conjunction with base 113 such that shroud 188 is fixedly coupled with base 113.
In another embodiment, only a portion of shroud 188 is formed in conjunction with base 113 and fixedly coupled therewith. In addition, a mounting location such as hole 415 is also formed in base 113 for mounting a second portion of shroud 188 which may be removably coupled with base 113.
At 520 of
At 530 of
In one embodiment, a filter element 217 is removably coupled with shroud 188. In one embodiment, filter element 217 is located between the airflow inlet 215 and the airflow outlet 216 of shroud 188.
Various embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the following claims.