The present invention generally relates to vehicle electronic throttle control, and more particularly to throttle area compensation systems and methods in a vehicle throttle control.
Engine control systems employ electronic throttle control (ETC) systems that relate commanded throttle position and airflow, which improve driving performance and stable idle speed. The ETC systems, however, do not adapt to airflow variation due to throttle body deposits, throttle sensor variation, mass airflow meter variation, and manufacturing tolerances.
Throttle body deposits commonly occur in internal combustion engines during operation. Understanding and compensating for throttle body deposits is challenging. Statistical build variations in the ETC system components can alter the relationship between throttle position and airflow.
A throttle area compensation system for use with an electronic throttle control of a vehicle includes a compensation datastore of compensation values indexed by desired throttle area, also referred to as pre-compensated throttle area. A compensation vector learning module receives a desired throttle area and at least one sensed vehicle condition, and informs the compensation datastore based on the desired throttle area and the sensed vehicle condition. A throttle area compensation module communicates with the compensation datastore, receives the desired throttle area, and determines a compensated throttle area based on the desired throttle area and a corresponding compensation value of the compensation data store.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring now to
Air is drawn into an intake manifold 138 of the engine 128 through an inlet 140. A throttle 142 regulates the air flow through the inlet 140. Fuel and air are combined in the cylinder 132 and are ignited by the spark plug 136. The throttle 142 is actuated to control air flowing into the intake manifold 138. The controller 130 adjusts the flow of fuel through the fuel injector 134 based on the air flowing into the cylinder 132 to control the A/F ratio within the cylinder 132.
The controller 130 communicates with an engine speed sensor 144, which generates an engine speed signal. The controller 130 also communicates with mass air flow (MAF) and manifold absolute pressure (MAP) sensors 146 and 148, which generate MAF and MAP signals respectively. The controller 130 communicates with a throttle position sensor (TPS) 150, which generates a TPS signal.
By way of overview and with reference to
The present invention employs a throttle area compensation subsystem to generate compensated throttle area 30 based on desired or pre-compensated throttle area 22 and one or more of sensed vehicle conditions 16. For example, system 10 includes throttle area compensation module 36, having datastore 38 of compensation values indexed by desired throttle area. In operation, throttle area compensation module 36 obtains a compensation value for desired or pre-compensated throttle area 22 from datastore 38, and generates compensated throttle area 30 based on two criteria: desired or pre-compensated throttle area 22 and the corresponding compensation value obtained from datastore 38. Also, system 10 includes compensation vector learning module 40, which is adapted to inform datastore 38 on a regular basis during vehicle operation based on two criteria: desired or pre-compensated throttle area 22; and one or more sensed vehicle conditions 16. Further, system 10 includes data validation module 41, which analyzes datastore 38 on a regular basis during vehicle operation. This analysis is performed to determine whether the information stored in datastore 38 is valid based on predetermined criteria. Validation module 41 takes one or more measures to ensure that invalid data is not used by module 36 to generate compensated throttle area 30. The predetermined criteria may relate to a slope and/or magnitude of the data, while the measures may include reinitializing datastore 38 whenever the data is deemed invalid.
As illustrated in
As illustrated in
Module 68 includes compensation value generator 82. Generator 82 rate limits residual airflow rate 66 based on rate limit variables 74 and/or old, neighboring compensation values 86 stored in the datastore. Compensation value generator 82 also generates new compensation value 84 based on three criteria: desired or pre-compensated throttle area 22; rate-limited residual airflow rate 66; and one or more old compensation values 86 associated by offset with index 78. It should be readily understood that the rate limiting can alternatively or additionally be applied to new compensation value 84. For example, the rate limit variable 74 can be applied to rate limit residual airflow rate 66, while old, neighboring compensation values are applied to new compensation value 84 as an additional rate limiting technique. Still further, generator 82 is adapted to replace an old compensation value in the datastore of compensation values. Replacement is accomplished by storing new compensation value 84 in the datastore in association with index 78.
With reference to
Determining if the learning conditions are met at 96 may entail several steps illustrated in
Returning to
The method according to the present invention includes further steps performed by a vehicle throttle control employing throttle area compensation. For example, the method includes compensating the desired throttle area based on a recorded compensation value for the desired throttle area at step 126. Also, the method includes determining the throttle position based on the compensated throttle area at step 128. Finally, the method includes controlling the vehicle throttle according to the determined throttle position at step 130.
Pseudocode for implementing data validation module 41 (
Activate function Determine_High_Low_Limits:
End function Determine_High_Low_Limits
Pseudocode for implementing throttle area compensation module 36, and compensation vector learning module 40 to develop, maintain, and use compensation datastore 38 is further provided below:
Activate function Learn_And_Correct:
Increment (Air_Learn_Stability_Timer)
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
| Number | Name | Date | Kind |
|---|---|---|---|
| 6698398 | Bauerle | Mar 2004 | B1 |
| Number | Date | Country | |
|---|---|---|---|
| 20050187699 A1 | Aug 2005 | US |