The present invention relates generally to gas turbine engines, and more particularly, to impingement cooling passages used in gas turbine engines.
A gas turbine engine commonly includes a fan, a compressor, a combustor, a turbine, and an exhaust nozzle. During engine operation, working medium gases, for example air, are drawn into the engine and compressed by the compressor. The compressed air is channeled to the combustor where fuel is added to the air and the air-fuel mixture ignited. The products of combustion are discharged to the turbine section, which extracts a portion of the energy from the combustion products to power the fan and the compressor.
The compressor and turbine often include alternating sections of rotating blades and stationary vanes. The operating temperatures of some engine stages, such as in the high pressure turbine rotor and stator stages, may exceed the material limits of the airfoils and therefore necessitate cooling of the airfoils. Cooled airfoils may include cooling channels, sometimes referred to as passages through which a coolant, such as compressor bleed air, is directed to convectively cool the airfoil. Airfoil cooling channels may be oriented spanwise from the base to the tip of the airfoil or axially between leading and trailing edges. The channels may be fed by one or more supply channels toward the airfoil base, where the coolant flows radially into the cooling channels. In some configurations, the cooling channels include small cooling passages, referred to as impingent cooling passages, which connect the cooling channel with an adjacent cavity or channel. The impingement cooling passages are sized and placed to direct jets of coolant on to interior airfoil surfaces such as the interior surfaces of the leading and trailing edges.
Prior airfoil designs have continually sought to decrease airfoil temperatures through cooling. A particular challenge in prior impingement cooled airfoil designs is with respect to a region affected by the thermal boundary layer. The thermal boundary layer of an impinging coolant jet is the flow region near the interior surface of the airfoil distorted by the effects of the coolant interacting with the surface. Because the thermal boundary layer distortion redirects a portion of the impinging coolant jet away from the interior airfoil surfaces, the cooling efficiency of the impingement jet decreases. However, due to the relatively high temperatures encountered during operation, a need still exists to improve impingement cooling of turbine blade and vane airfoils.
An airfoil has an airfoil structure that defines a cooling passage for directing a cooling medium through the airfoil structure. A swirl structure is operatively associated with the cooling passage and configured to impart a tangential velocity to the cooling medium.
An airfoil has an airfoil structure that defines a first cooling passage and a second cooling passage for directing cooling medium through the airfoil structure. A first swirl structure is operatively associated with the first cooling passage, and a second swirl structure is operatively associated with the second cooling passage. Each swirl structure imparts tangential velocity to the cooling medium that can flow through the associated cooling passage. The first and second cooling passages have a hydraulic diameter and a centerline. The span between first and second passages is measured between centerlines. The ratio of the span divided by the hydraulic diameter is between 1.5 and 8.
A method of making an airfoil that includes forming an airfoil structure that defines a cooling passage for directing a cooling medium through the airfoil structure. The method also includes forming a swirl structure that is operatively associated with the cooling passage and is configured to impart tangential velocity to the cooling medium.
Airfoil 12 extends from platform 20 to outer diameter shroud 14 and includes leading edge 26, trailing edge 28, concave pressure wall 30, convex suction wall 32, and internal cooling channel 34. Concave pressure wall 30 and convex suction wall 32 extend from platform 20 to outer diameter shroud 14 and are joined at leading edge 26 and trailing edge 28. Working medium gas and combustion products exiting the combustor are guided through the turbine stage by leading edge 26, concave pressure wall 30 and convex suction wall 32, and exit the turbine stage downstream of trailing edge 28.
Increasing the temperature of the working medium gas improves the power output of the gas turbine engine. As such, the working medium gas temperature often exceeds limits for materials used in sections downstream of the combustor such as the turbine section. To overcome high temperatures from the working medium gas, downstream components are internally cooled to reduce the component temperature. In this particular embodiment, turbine blade 10 has internal cooling channel 34. Cooling channel 34 is supplied with a cooling medium, for example air bled from the compressor section of the gas turbine engine. The cooling medium enters cooling channel 34 through supply passages (not shown) that traverse fir tree 24, shank 22, and platform 20.
Cooling channel 34 communicates cooling medium with cooling passage 36. Cooling passage 36 directs the cooling medium into impingement cavity 44 and cools the interior surfaces of leading edge 26. Cooling passage 36 is formed within first rib 38 and can have a circular, rectangular, oval, or other cross-section. The cross-section of cooling passage 36 has a cross-sectional area that is smaller than the cross-sectional area of cooling channel 34 and is sized to produce a jet of cooling medium at the outlet of cooling passage 36. Cooling passage 36 includes swirl structure 42 (
Structure 42 can also be a partition as illustrated in
Although the
It will be appreciated that adding tangential velocity to the cooling medium that exits cooling passage 36 improves the cooling of the interior surfaces of leading edge 26. In general, impingement jets form thermal boundary layers surrounding the location impacted by the impingement jet. The thermal boundary layer is a region within the cooling medium in which the interaction between the cooled surface and the cooling medium locally decreases the cooling medium velocity relative to the impingement jet velocity. The thermal boundary layer acts to partially deflect cooler, more energetic cooling medium away from the cooled surface and to decrease the cooling of the surface locally. Providing the cooling medium with a tangential velocity between 10% and 80% of the absolute velocity of the impingement jet by flowing the cooling medium past structure 42 within cooling passage 36 will make the thermal boundary layer surrounding the impingement location thinner than it would be without adding the tangential velocity. It will be appreciated that reducing the thickness of the thermal boundary layer improves cooling of the interior surface of leading edge 26.
Other configurations of cooling passage 36 are possible, for example cooling passage 36 may direct cooling medium on to the interior surfaces of concave pressure wall 30, convex suction wall 32, or trailing edge 28. Structure 42 may have a twisting section that imparts tangential velocity and a straight section that does not impart tangential velocity where the twisting section is located downstream of the straight section.
Although the preceding embodiment describes the invention in the context of a shrouded turbine blade, the invention is equally applicable to other components in which impingement cooling is beneficial, for example, unshrouded turbine blades or turbine vanes. In the latter case, stationary turbine vanes are arranged between successive turbine blade stages and are used to redirect and guide the working medium gas into the next turbine stage. Each turbine vane stage is subjected to similar working medium gas temperatures and benefit from improved impingement cooling on the interior of the airfoil.
The manufacture of turbine blade 10 is enabled through the implementation of additive manufacturing techniques that allow formation of interlocked casting features. Typically, additive manufacturing creates turbine blade 10 through sequential layering of blade material. First, a three-dimensional model of airfoil 12, including ribs 38 and 40, cooling channels 34 and cooling passages 36 is created. Airfoil 12 is then additively manufactured layer-by-layer according to the model. Examples of additive manufacturing methods suitable for forming airfoil 12 include powder deposition coupled with direct metal laser sintering (DMLS) and electron beam melting (EBM). These additive manufacturing techniques allow the construction of airfoil 12 including the fine details present in cooling passage 36 such as structure 42.
Further, traditional casting methods utilizing additively created cores could be utilized to create the ceramic interior definition of cooling passage 36 with structure 42. This method of manufacture includes investment casting using a sacrificial core that defines cooling passage 36, including structure 42 using an additively built core or disposable core-die tooling. A cooling passage core is made from a ceramic or refractory metal material by casting or additive manufacturing. Cores for defining cooling channel 34 are similarly formed. All of the cores are arranged in a mold. The body of airfoil 12 is formed around the cores for the cooling channels and cooling passages. Once airfoil 12 is formed, the cores for the cooling channels and cooling passages are chemically removed to form cooling channels 34 and cooling passage 36 with structure 42.
The following are non-exclusive descriptions of possible embodiments of the present invention.
An airfoil can include an airfoil structure that defines a cooling passage for directing cooling medium within the airfoil structure and a swirl structure that is operatively associated with the cooling passage. The swirl structure can be configured to impart tangential velocity to the cooling medium.
A further embodiment of the foregoing airfoil can optionally include, additionally and/or alternatively, any one or more of the following features, configurations, and/or additional components:
A further embodiment of the foregoing airfoil can include a swirl structure that is at least partially within the cooling passage.
A further embodiment of any of the foregoing airfoils can include a swirl structure that is completely within the cooling passage.
A further embodiment of any of the foregoing airfoils can include a swirl structure protrusion that extends from at least one surface of the cooling passage.
A further embodiment of any of the foregoing airfoils can include a swirl structure partition that extends from at least one surface of the cooling passage. The cooling passage partition can divide the cooling passage volume into a plurality of volumes through which the cooling medium can flow.
A further embodiment of any of the foregoing airfoils can include a swirl structure that has between a quarter twist and fours twists about an axis extending between an inlet and an outlet of the cooling passage.
A further embodiment of any of the foregoing airfoils can include a swirl structure that has a straight portion and a twisting portion, the straight portion located upstream of the twisting portion.
A further embodiment of any of the foregoing airfoils can include a swirl structure configured to direct cooling medium on to an interior surface of a leading edge of the airfoil.
A further embodiment of any of the foregoing airfoils can include a swirl structure that imparts tangential velocity to the cooling medium that is 10% to 80% of an absolute velocity of the cooling medium flowing through the cooling passage.
A further embodiment of any of the foregoing airfoils can include a swirl structure that is generally a spiral ramp.
A further embodiment of any of the foregoing airfoils can include a swirl structure that is generally a helicoid.
An airfoil can include an airfoil structure that defines a first cooling passage and a second cooling passage. A first swirl structure can be operatively associated with the first cooling passage, and a second swirl structure can be operatively associated with the second cooling passage. Each swirl structure can impart tangential velocity to the cooling medium that can flow through the associated cooling passage. The first and second cooling passage can have a hydraulic diameter and a centerline. The span between the first and second cooling passages can be measured between cooling passage centerlines. The ratio of the span divided by the hydraulic diameter of the cooling passages can be between 1.5 and 8.
A method of cooling an airfoil can include forming an airfoil structure that defines a cooling passage for directing cooling medium through the airfoil structure and forming a swirl structure that is operatively associated with the cooling passage. The method can further include configuring the swirl structure to impart tangential velocity to the cooling medium.
A further embodiment of the foregoing method can optionally include, additionally and/or alternatively, any one or more of the following features, configurations, and/or additional components:
The further embodiment of the foregoing method can include forming a swirl structure that is at least partially within the cooling passage.
The further embodiment of any of the foregoing methods can include forming a swirl structure that is completely with the cooling passage.
The further embodiment of any of the foregoing methods can include forming a swirl structure protrusion that extends from at least one surface of the cooling passage.
The further embodiment of any of the foregoing methods can include forming a swirl structure partition that extends from at least one surface of the cooling passage. The swirl structure partition can divide the cooling passage into a plurality of volumes through which cooling medium can flow.
The further embodiment of any of the foregoing methods can include forming a swirl structure with between a quarter twist and four twists about an axis extending from an inlet to an outlet of the cooling passage.
The further embodiment of any of the foregoing methods can include forming a swirl structure that imparts tangential velocity to the cooling medium that can be between 10% and 80% of an absolute velocity of the cooling medium flowing through the cooling passage.
The further embodiment of any of the foregoing methods can include creating a three-dimensional computer model of a casting core for an airfoil that includes an airfoil structure and a swirl structure. The airfoil structure can define a cooling passage for directed cooling medium through the airfoil structure. The swirl structure can be operatively associated with the cooling passage and be configured to impart to the cooling medium tangential velocity. The method may further include forming a casting core in progressive layers by selectively curing a ceramic-loaded resin with ultraviolet light. The method may further include processing the casting core thermally such that the casting core is suitable for casting.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/002,441, filed May 23, 2014.
Number | Date | Country | |
---|---|---|---|
62002441 | May 2014 | US |