This disclosure relates to an airfoil, such as an airfoil for a gas turbine engine.
Turbine, fan and compressor airfoil structures are typically manufactured using die casting techniques. For example, the airfoil is cast within a mold that defines an exterior airfoil surface. A core structure may be used within the mold to form impingement holes, cooling passages, ribs or other structures in the airfoil. The die casting technique inherently limits the geometry, size, wall thickness and location of these structures. Thus, the design of a traditional airfoil is limited to structures that can be manufactured using the die casting technique, which in turn may limit the performance of the airfoil.
An airfoil according to an exemplary aspect of the present disclosure includes an airfoil body defining a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body. At least one of the first side wall and the second side wall includes at least one longitudinally elongated buttress that tapers longitudinally. The at least one longitudinally elongated buttress defines an increased thickness of, respectively, the first side wall or the second side wall. The at least one longitudinally elongated buttress projects partially across the cavity toward the other of the first side wall or the second side wall.
In a further non-limiting embodiment of the above example, the at least one longitudinally elongated buttress includes a plurality of first longitudinally elongated buttresses on the first side wall and a plurality of second longitudinally elongated buttresses on the second side wall.
In a further non-limiting embodiment of any of the foregoing examples, the first plurality of longitudinally elongated buttresses are laterally offset from the second plurality of longitudinally elongated buttresses with respect to the longitudinal axis.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress extends a full longitudinal length of the cavity.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress includes a plurality of longitudinally elongated buttresses that are laterally spaced apart from each other with respect to the longitudinal axis.
In a further non-limiting embodiment of any of the foregoing examples, the airfoil body includes a base and a tip end, and the at least one longitudinally elongated buttress tapers longitudinally from the base to the tip end.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress tapers in a direction perpendicular to the longitudinal axis.
In a further non-limiting embodiment of any of the foregoing examples, one of the first side wall and the second side wall that includes at least one longitudinally elongated buttress includes a wall through-thickness, exclusive of the at least one longitudinally elongated buttress, of 0.010 inches/254 micrometers to 0.060 inches/1524 micrometers.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress includes a first longitudinally elongated buttress and a second longitudinally elongated buttress laterally spaced apart from the first longitudinally elongated buttress on the same one of the first side wall or the second side wall. The first side wall or the second side wall that has the first longitudinally elongated buttress and the second longitudinally elongated buttress further includes at least one cross-rib extending from the first longitudinally elongated buttress to the second longitudinally elongated buttress. The at least one cross-rib projects partially across the cavity toward the other of the first side wall or the second side wall.
In a further non-limiting embodiment of any of the foregoing examples, the at least one cross-rib includes a plurality of cross-ribs.
In a further non-limiting embodiment of any of the foregoing examples, the at least one cross-rib includes intersecting ribs.
A further non-limiting embodiment of any of the foregoing examples includes at least one support arm projecting from the at least one longitudinally elongated buttress and connecting to the other of the first side wall or the second side wall.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress includes a first buttress on the first side wall and a second buttress on the second side wall, and further includes at least one support arm projecting from the first buttress and connecting to the second buttress.
A turbine engine according to an exemplary aspect of the present disclosure includes, optionally a fan, a compressor section, a combustor in fluid communication with the compressor section, and a turbine section in fluid communication with the combustor. The turbine section is coupled to drive the compressor section and the fan. At least one of the fan, the compressor section and the turbine section includes an airfoil having an airfoil body defines a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body, and at least one of the first side wall and the second side wall includes a longitudinally elongated buttress that tapers longitudinally. The longitudinally elongated buttress defines an increased thickness of, respectively, the first side wall or the second side wall. The longitudinally elongated buttress projects partially across the cavity toward the other of the first side wall or the second side wall.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress includes a plurality of first longitudinally elongated buttresses on the first side wall and a plurality of second longitudinally elongated buttresses on the second side wall.
In a further non-limiting embodiment of any of the foregoing examples, the first plurality of longitudinally elongated buttresses are laterally offset from the second plurality of longitudinally elongated buttresses with respect to the longitudinal axis.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress extends a full longitudinal length of the cavity.
In a further non-limiting embodiment of any of the foregoing examples, one of the first side wall and the second side wall that includes at least one longitudinally elongated buttress includes a wall through-thickness, exclusive of the at least one longitudinally elongated buttress, of 0.010 inches/254 micrometers to 0.060 inches/1524 micrometers.
In a further non-limiting embodiment of any of the foregoing examples, the at least one longitudinally elongated buttress includes a first longitudinally elongated buttress and a second longitudinally elongated buttress laterally spaced apart from the first longitudinally elongated buttress on the same one of the first side wall or the second side wall, and the first side wall or the second side wall that has the first longitudinally elongated buttress and the second longitudinally elongated buttress further includes at least one cross-rib extending from the first longitudinally elongated buttress to the second longitudinally elongated buttress. The at least one cross-rib projects partially across the cavity toward the other of the first side wall or the second side wall.
A method for processing a blade according to an exemplary aspect of the present disclosure includes depositing multiple layers of a powdered metal onto one another, joining the layers to one another with reference to data relating to a particular cross-section of a blade, and producing the blade with an airfoil body defining a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body. At least one of the first side wall and the second side wall include a longitudinally elongated buttress that tapers longitudinally. The longitudinally elongated buttress defines an increased thickness of, respectively, the first side wall or the second side wall, the longitudinally elongated buttress projecting partially across the cavity toward the other of the first side wall or the second side wall.
An airfoil according to an exemplary aspect of the present disclosure includes an airfoil body defining a longitudinal axis. The body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially defining a cavity in the body. At least one of the first side wall and the second side wall includes at least one rib defining an increased thickness of, respectively, the first side wall or the second side wall. At least one rib projects partially across the cavity toward the other of the first side wall or the second side wall. At least one rib includes a flange.
In a further non-limiting embodiment of any of the foregoing examples, the at least one rib has an I-beam cross-section.
In a further non-limiting embodiment of any of the foregoing examples, the at least one rib has a T-beam cross-section.
In a further non-limiting embodiment of any of the foregoing examples, the at least one rib extends from at least one longitudinally elongated buttress that tapers longitudinally.
The various features and advantages of the present disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
The engine 20 generally includes a first spool 30 and a second spool 32 mounted for rotation about an engine central axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
The first spool 30 generally includes a first shaft 40 that interconnects a fan 42, a first compressor 44 and a first turbine 46. The first shaft 40 may be connected to the fan 42 through a gear assembly of a fan drive gear system 48 to drive the fan 42 at a lower speed than the first spool 30. The second spool 32 includes a second shaft 50 that interconnects a second compressor 52 and second turbine 54. The first spool 30 runs at a relatively lower pressure than the second spool 32. It is to be understood that “low pressure” and “high pressure” or variations thereof as used herein are relative terms indicating that the high pressure is greater than the low pressure. An annular combustor 56 is arranged between the second compressor 52 and the second turbine 54. The first shaft 40 and the second shaft 50 are concentric and rotate via bearing systems 38 about the engine central axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the first compressor 44 then the second compressor 52, mixed and burned with fuel in the annular combustor 56, then expanded over the second turbine 54 and first turbine 46. The first turbine 46 and the second turbine 54 rotationally drive, respectively, the first spool 30 and the second spool 32 in response to the expansion.
The airfoil 60 includes an airfoil portion 62, a platform 64 and a root 66. The platform 64 and the root 66 are particular to the turbine blade and thus may differ in other airfoil structures or be excluded in other airfoil structures.
The airfoil 60 includes a body 68 that defines a longitudinal axis L between a base 70 at the platform 64 and a tip end 72. The longitudinal axis L in this example is perpendicular to the engine central axis A. The body 68 includes a leading edge (LE) and a trailing edge (TE) and a first side wall 74 (pressure side) and a second side wall 76 (suction side) that is spaced apart from the first side wall 74. The first side wall 74 and the second side wall 76 join the leading edge (LE) and the trailing edge (TE) and at least partially define a cavity 78 (
The airfoil portion 62 connects to the platform 64 at a fillet 80. The platform 64 connects to the root 66 at buttresses 82. The root 66 generally includes a neck 84 and a serration portion 86 for securing the airfoil 60 in a disk.
It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” “circumferential,” “radial” and the like are with reference to the normal operational attitude and engine central axis A, unless otherwise indicated. Furthermore, with reference to the engine 20, the tip end 72 of the airfoil 60 is commonly referred to as the outer diameter of the airfoil 60 and the root 66 is commonly referred to as the inner diameter of the airfoil 60. The platform 64 includes an upper surface 64a that bounds an inner diameter of a gas path, generally shown as G, over the airfoil portion 62. Some airfoils may also include a platform at the tip end 72 that bounds an outer diameter of the gas path G.
The airfoil 60 in this example includes a plurality of such longitudinally elongated buttresses 88, and each of the first side wall 74 and the second side wall 76 includes longitudinally elongated buttresses 88. It is to be understood, however, that the airfoil 60 may include fewer or more of the longitudinally elongated buttresses 88 and that a single one of the side walls 74 or 76 may include one or more longitudinally elongated buttresses 88. In this example, each of the longitudinally elongated buttresses 88 has facet surfaces 88a/88b/88c that meet at respective corners 91. The facet surfaces 88a/88b/88c and corners 91 form a strong, stiff structural feature that facilitates reinforcing the side walls 74 and 76 and carrying the pull load of the airfoil 60 as it rotates during operation.
In this example, each of the first side wall 74 and the second side wall 76 has a respective through-thickness represented, respectively, as t1 and t2. The longitudinally elongated buttress 88 defines an increased thickness t3 of, respectively, the first side wall 74 or the second side wall 76. Each of the longitudinally elongated buttresses 88 projects partially across the cavity 78 toward the other of the first side wall 74 or the second side wall 76. Thus, the longitudinally elongated buttresses 88 do not connect, or bridge, the side walls 74 and 76.
In this example, the first side wall 74 includes a first plurality of longitudinally elongated buttresses 88 and the second side wall 76 includes a second plurality of the longitudinally elongated buttresses 88. Here, each of the side walls 74 and 76 include three longitudinally elongated buttresses 88. The longitudinally elongated buttresses 88 on the first side wall 74 are laterally spaced apart from each other with respect to the longitudinal axis L. Likewise, the longitudinally elongated buttresses 88 on the second side wall 76 are laterally spaced apart from each other. In this example, each of the longitudinally elongated buttresses 88 extends a full length of the cavity 78. It is to be understood, however, that the longitudinally elongated buttresses 88 may alternatively extend less than the full longitudinal length of the cavity 78.
Each of the longitudinally elongated buttresses 88 tapers longitudinally. In this example, the longitudinally elongated buttresses 88 taper from the base 70 toward the tip end 72 of the airfoil body 68.
In a further example, the thicknesses t1 and t2 of the side walls 74 and 76 is 0.010 inches/254 micrometers to 0.060 inches/1524 micrometers, or more specifically 0.015 inches/381 micrometers or less. That is, exclusive of the longitudinally elongated buttresses 88, the side walls 74 and 76 have a through-thickness in the prescribed range over at least a portion of the span of the airfoil body 68, such as the outer 25%. Such a wall thickness is not available using traditional die-casting techniques. Moreover, the thinner that the side walls 74 and 76 are made, the more the airfoil 60 may vibrate during operation of the engine 20. In that regard, the longitudinally elongated buttresses 88 reinforce the side walls 74 and 76, limit vibration and carry the pull load of the airfoil 60 as it rotates during operation.
Optionally, as also shown in
Optionally, the airfoil 60 may also include at least one support arm 94 that projects from the longitudinally elongated buttress 88 and connects to the other of the first side wall 74 or the second side wall 76, or another of the buttresses 88 as shown in
The geometries disclosed herein may be difficult to form using conventional casting technologies. Thus, a method of processing an airfoil having the features disclosed herein includes an additive manufacturing process, as schematically illustrated in
Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.