The invention relates to turbine airfoils having structures which provide cooling channels within gas turbine blades and vanes.
A typical gas turbine engine includes a fan, compressor, combustor, and turbine disposed along a common longitudinal axis. Fuel and compressed air discharged from the compressor are mixed and burned in the combustor. The resulting hot combustion gases (e.g., comprising products of combustion and unburned air) are directed through a conduit section to a turbine section where the gases expand to turn a turbine rotor. In electric power applications, the turbine rotor is coupled to a generator. Power to drive the compressor may be extracted from the turbine rotor.
With the efficiency of a gas turbine engine increasing with operating temperature, it is desirable to increase the temperature of the combustion gases. However, temperature limitations of the materials with which the engine and turbine components are formed limit the operating temperatures. Airfoils are exemplary. The term airfoil as used herein refers to a turbine airfoil which may be a rotor (rotatable) blade or a stator (stationary) vane. Due to the high temperature of the combustion gases, airfoils must be cooled during operation in order to preserve the integrity of the components. Commonly, these and other components are cooled by air which is diverted from the compressor and channeled through or along the components. It is also common for components (e.g., nozzles) to be cooled with air bled off of the fan rather than the compressor.
Effective cooling of turbine airfoils requires delivering the relatively cool air to critical regions such as along the trailing edge of a turbine blade or a stationary vane. The associated cooling apertures may, for example, extend between an upstream, relatively high pressure cavity within the airfoil and one of the exterior surfaces of the turbine blade. It is a desire in the art to provide increasingly effective cooling designs and methods which result in more effective cooling with less air. It is also desirable to provide more cooling in order to operate machinery at higher levels of power output. Generally, cooling schemes should provide greater cooling effectiveness to create more uniform material temperature or greater heat transfer from the material.
Ineffective cooling can result from poor heat transfer characteristics between the cooling fluid and the material to be cooled with the fluid. In the case of airfoils, it is known to establish film cooling along a wall surface. A cooling air film traveling along the surface of a wall can be an effective means for increasing the uniformity of cooling and for insulating the wall from the heat of hot core gases flowing thereby. However, film cooling is difficult to maintain in the turbulent environment of a gas turbine.
Consequently, airfoils commonly include internal cooling channels which remove heat from the pressure sidewall and the suction sidewall in order to minimize thermal stresses. A high cooling efficiency, based on the rate of heat transfer, is an important design consideration in order to minimize the volume of air diverted from the compressor for cooling. By way of comparison, the aforementioned film cooling, providing a film of cooling air along outer surfaces of the airfoil, via holes from internal cooling channels, is somewhat inefficient due to the number of holes are needed and the resulting high volume of cooling air diverted from the compressor. Thus, film cooling has been used selectively and in combination with other cooling techniques. It is also known to provide serpentine cooling channels within a component.
However, the relatively narrow trailing edge portion of a gas turbine airfoil may include up to about one third of the total airfoil external surface area. The trailing edge is made relatively thin for aerodynamic efficiency. Consequently, with the trailing edge receiving heat input on two opposing wall surfaces which are relatively close to each other, a relatively high coolant flow rate is desired to provide the requisite rate of heat transfer for maintaining mechanical integrity. In the past, trailing edge cooling channels have been configured in a variety of ways to increase the efficiency of heat transfer. For example U.S. Pat. No. 5,370,499, incorporated herein by reference, discloses use of a mesh structure comprising cooling channels which exit from the trailing edge.
The present invention increases heat transfer efficiency and uniformity of cooling via channels placed in the trailing edge of a turbine airfoil.
The invention is explained in the following description in view of the drawings wherein:
Like reference numbers are used to denote like features throughout the figures.
The combustion chamber 26, and other components (e.g., vanes and blades) along which the hot exhaust gases flow, are cooled to counter the high temperature effects which the hot exhaust gases would otherwise have on component materials. Commonly, at least the initial blade stages within the turbine 18 are cooled using air bled from various stages of the compressor 14 at a suitable pressure and temperature to effect flow of cooling fluid along exterior surfaces of materials which are in the path of the hot exhaust gases. For example, a plurality of cooling openings may be formed through pressure and suction sidewalls of the blade. Conventionally, cooling fluid which flows through the base of the blade to the airfoil portion may follow a serpentine path within the airfoil to reach the openings.
For described embodiments of the invention, the cooling fluid also flows through mesh cooling passages. Prior designs of mesh cooling passages are described in U.S. Pat. No. 5,370,499. A feature of the invention is provision of a variety of arrays of cooling passageways disposed within airfoils along the path of the hot exhaust gases in the turbine 18. Thermal energy is transferred from the pressure and suction sidewalls of the airfoils to cooling fluid which passes through the cooling passageways in the arrays. One or more arrays of the modules can be disposed in any airfoil that requires cooling, e.g., airfoils having walls for which temperature must be limited to preserve the integrity of the associated component.
With reference to the several embodiments of the invention described herein, the rotatable turbine blade 50 shown in the perspective view of
As is well known, turbine blades are castings, commonly formed with intricate interior features to facilitate flow of cooling fluid. Arrays of cooling passageways according to numerous embodiments of the invention may be formed between the pressure and suction side walls 74, 76 of the turbine blade 50 in such a casting process from, for example, a ceramic core, although other suitable materials may be used. An exemplary process for fabrication is available from Mikro Inc., of Charlottesville Va. See, for example, U.S. Pat. No. 7,141,812 which is incorporated herein by reference. Also, for the embodiments illustrated in the figures, the arrays of cooling passageways may be integrally formed with one another in the casting process. Multiple arrays of cooling passageways can be formed in the casting process to create a series of cooling arrays extending along the interior of the blade 50. For purposes of describing features of the illustrated embodiments, the passageways in each array are rectangular-shaped volumes formed with pairs of parallel opposing walls, but the various passageways may be formed with many other geometries and the cross sectional shapes and sizes of the various passageways may vary, for example, to meter the flow of cooling gases.
In one example application of the invention, an array 100 of cooling passageways is formed between the pressure and suction side walls 74, 76 of the turbine blade 50, extending from near the platform 54 to near the upper end 68 of the blade. See
The array 100 is integrally formed with the metal casting of the walls 74, 76 and other features of the turbine blade 50. The turbine blade 50 has an interior chamber 102 intermediate the leading edge region 70 and the trailing edge 72. Other chambers, not illustrated, may be positioned between the leading edge region 70 and the chamber 102. The chamber 102 is configured to receive a flow of cooling fluid, e.g., from the compressor 14. With the series of apertures 78 formed along the trailing edge 72, cooling fluid received from the chamber 102 travels through the array 100 of passageways and exits the blade through the apertures 78. In the casting process first and second series of cooling passageways of the array are formed with the passageways extending between the chamber 102 and the apertures 78. See, also,
The array 100 includes a first series of cooling passageways 110 extending along a first direction 112, and a second series of cooling passageways 120 extending along a second direction 122. Cooling passageways 110 of the first series and cooling passageways 120 of the second series intersect with one another. The array 100 also includes a plurality of solid regions 124 each defined by a pair of adjacent cooling passageways 110 of the first series and a pair of adjacent cooling passageways 120 of the second series. The solid regions 124 are integrally formed as part of the metal casting from which the pressure and suction sidewalls 74, 76 are fabricated. The resulting structure 128, i.e., a matrix comprising the plurality of solid regions 124 and associated passageways 110 and 120, provides a connection path for cooling fluid to pass along interior surfaces of the blade 50 for transfer of thermal energy from the pressure and suction sidewalls 74, 76 to the cooling fluid. The structure 128 forms a wall 140 of the chamber 102, having a series of inlets 130 to the passageways 110 and 120, essentially creating a manifold for distribution of cooling fluid 144 into the passageways.
A feature of the invention included in the embodiment shown in
The above-described tapering feature of the structure 128 and other structures described herein, and the variable size of the associated passageways, may be further understood with reference to an element 150 of the casting core from which the blade 50 is fabricated. The element 150 is the portion of the core which defines chamber 102, the passageways 110 and 120 and the solid regions 124. See the perspective view of the element 150 in
The grid members 110C and 120C extend from the solid portion 102C to an edge region 154C which corresponds to a transition of the array 42 along the trailing edge 72 to the series of apertures 78. The casting element 150 is essentially wedge-shaped or tapered, having a greatest thickness along an edge 160C corresponding to a wall 160 opposite the chamber wall 140 and closest to the leading edge region 70, and having a minimum thickness along the edge region 154C which adjoins the apertures 78. Consequently, the thickness of the grid members 110, 120 diminishes from a maximum thickness tc1 along the edge 160C to a minimum thickness tc2 along the edge 154. With this geometry the casting results in a variable size for the openings in each of the passageways 110 and 120. That is, the area of the cross section of the passageways diminishes as a function of position relative to the chamber 102 and the apertures 78. The term cross section as used herein refers to a section taken across a passageway which section is in a plane transverse to the direction of the passageway about that plane. For a passageway having a cross section in the shape of a circle, the area of the cross section is the area of the circle.
In an alternate embodiment of the invention, first, second and third arrays 200A, 200B and 200C of cooling passageways are formed between the pressure and suction side walls 74, 76 of the turbine blade 50, extending from near the platform 54 to near the upper end 68 of the blade. See
The arrays 200A, 200B and 200C are integrally formed with the metal casting of the walls 74, 76 and other features of the turbine blade 50. The turbine blade 50 has an interior chamber 102 intermediate the leading edge region 70 and the trailing edge 72. Other chambers, not illustrated, may be positioned between the leading edge region 70 and the chamber 102. The arrays 200A and 200B are positioned along side one another and the chamber 200C is positioned between the pair of chambers 200A, 200B and the apertures 78. The chamber 102 is configured to receive a flow of cooling fluid, e.g., from the compressor 14. With the series of apertures 78 formed along the trailing edge 72, cooling fluid received from the chamber 102 first travels along parallel paths through each in the pair of the arrays 200A and 200B of passageways, then into an intermediate or junction chamber 204. From the junction chamber 204 the cooling fluid flows into the array 200C of passageways and then exits the blade 50 through the apertures 78. In the casting process first and second series of cooling passageways of each array 200A, 200B, 200C, are formed with the passageways extending between the chamber 102 and the apertures 78. See, also,
The array 200A includes a first series of cooling passageways 110a extending along a first direction 112a, and a second series of cooling passageways 120a extending along a second direction 122a. Cooling passageways 110a of the first series and cooling passageways 120a of the second series intersect with one another. The array 200A also includes a plurality of solid regions 124a each defined by a pair of adjacent cooling passageways 110a of the first series and a pair of adjacent cooling passageways 120a of the second series. The solid regions 124a are integrally formed as part of the metal casting from which the pressure and suction sidewalls 74, 76 are fabricated. The resulting structure 128a, i.e., a matrix comprising the plurality of solid regions 124a and associated passageways 110a and 120a, provides a connection path for cooling fluid to pass along interior surfaces of the blade 50 for transfer of thermal energy from the pressure and suction sidewalls 74, 76 to the cooling fluid. The structure 128a forms a wall portion 210a of the chamber 102, having a series of inlets 130a to the passageways 110a and 120a, essentially creating a manifold for distribution of cooling fluid 144 into the passageways of the array 200A. The structure 128a also forms a wall portion 212a of the chamber 204 opposite the array 200C, having a series of outlets 216a from the passageways 110a and 120a.
The array 200B includes a first series of cooling passageways 110b extending along a first direction 112b, and a second series of cooling passageways 120b extending along a second direction 122b. Cooling passageways 110b of the first series and cooling passageways 120b of the second series intersect with one another. The array 200B also includes a plurality of solid regions 124b each defined by a pair of adjacent cooling passageways 110b of the first series and a pair of adjacent cooling passageways 120b of the second series. The solid regions 124b are integrally formed as part of the metal casting from which the pressure and suction sidewalls 74, 76 are fabricated. The resulting structure 128b, i.e., a matrix comprising the plurality of solid regions 124b and associated passageways 110b and 120b, provides a connection path for cooling fluid to pass along interior surfaces of the blade 50 for transfer of thermal energy from the pressure and suction sidewalls 74, 76 to the cooling fluid. The structure 128b forms a wall portion 210b of the chamber 102, having a series of inlets 130b to the passageways 110b and 120b, essentially creating a manifold for distribution of cooling fluid 144 into the passageways of the array 200B. The structure 128b also forms a wall portion 212b of the chamber 204 opposite the array 200C, having a series of outlets 216b from the passageways 110a and 120a.
The array 200C includes a first series of cooling passageways 110c extending along a first direction 112c, and a second series of cooling passageways 120c extending along a second direction 122c. Cooling passageways 110c of the first series and cooling passageways 120c of the second series intersect with one another. The array 200C also includes a plurality of solid regions 124c each defined by a pair of adjacent cooling passageways 110c of the first series and a pair of adjacent cooling passageways 120c of the second series. The solid regions 124c are integrally formed as part of the metal casting from which the pressure and suction sidewalls 74, 76 are fabricated. The resulting structure 128c, i.e., a matrix comprising the plurality of solid regions 124c and associated passageways 110c and 120c, provides a connection path for cooling fluid to pass along interior surfaces of the blade 50 for transfer of thermal energy from the pressure and suction sidewalls 74, 76 to the cooling fluid. The structure 128c forms a wall 220 of the chamber 204, opposing the wall portions 212a and 212b of the structures 128a and 128b. Along the wall 220 there are formed a series of inlets 130c to the passageways 110c and 120c, essentially creating a manifold for distribution of cooling fluid 144 into the passageways of the array 200C. The passageways 110c and 120c terminate in a series of outlets 230 adjoining or merging into the series of apertures 78.
A feature of the invention included in the embodiment shown in
Another feature of the embodiment of the invention shown in
This variation in thickness along the structure 128c is analogous to the characterization of the array 100 having t1>t2, the structure 128c being tapered, having a maximum thickness along the wall 220 in the chamber 102 and a minimum thickness at positions closest to the trailing edge 72, with a continuous change in thickness between the wall 220 and the trailing edge. The illustrated tapered geometry is one wherein the structure 128c has a constant change in thickness per unit length along the passageways from the wall 220 in the chamber 204 to the outlets 230.
Consequently, cross sectional flow areas of the passageways 110c and 120c also change as a function of position between the chamber 204 and the outlets 230 so that the passageways are of maximum size near the chamber 204 and a minimum size near the outlets 230, i.e., at positions farthest away from the chamber 204. Such variations in cross sectional flow areas of the passageways 110c and 120c increase the velocity of cooling fluid as the fluid progresses through the narrowest portion of the blade, i.e., along portions of the walls adjacent the trailing edge 72. This can be particularly beneficial as the increased velocity can result in a higher rate of heat transfer in the relatively narrow trailing edge portion of the gas turbine airfoil which may comprise up to about one third of the total airfoil external surface area. With the trailing edge made relatively thin for aerodynamic efficiency, and receiving heat input on two opposing wall surfaces which are relatively close to each other, a relatively high coolant flow speed is desired to provide the requisite rate of heat transfer for maintaining mechanical integrity. In accord with the invention, variations in cross sectional flow areas of the passageways 110c and 120c increase the velocity of cooling fluid as the fluid progresses through the narrowest portion of the blade to maximize the rate of heat transfer from the walls 74 and 76 to the cooling fluid flowing through the passageways.
The above-described features of a turbine blade 50 incorporating the arrays 200A, 200B and 200C of passageways in the structure 128a, 128b and 128c, and the variable size of the associated passageways, may be further understood with reference to an element 250 of the casting core from which this alternate embodiment of the blade 50 is fabricated. The element 250 is the portion of the core which defines the chamber 102, the passageways 110a, 110b, 110c, and 120a, 120b and 120c, the chamber 204 and the solid regions 124a, 124b and 124c. See the partial perspective view of the element 250 in
A third mesh section 300C adjoins the solid ceramic section 204C and corresponds to the array 200C of passageways and the structures 128c. The mesh section 300C comprises an array 280 of grid members each member similar to members in the series of grid members 110C and 120C of the casting core element 150 of
The casting element 250 is essentially wedge-shaped or tapered, having a greatest thickness along or near the transition from the solid section 102C to the pair of spaced-apart mesh sections 300A and 300B, and a minimum thickness along the edge region 290C.
Consequently, the thickness of the grid members in the array 280 diminishes from a maximum thickness, along or near the transition of the array to the solid section 102C, to a minimum thickness along or near the edge region 290C. With this geometry the casting element 250 provides a variable size for the openings in each of the passageways 110c and 120c. That is, the area of the cross section of the passageways 110c and 120c diminishes as a function of position relative to the chamber 204 and the apertures 78.
Analogous to the views in cross section shown in
An advantage of the embodiment shown in
As a first example of this design flexibility,
As a second example of this design flexibility,
The invention has been described in the context of an airfoil, e.g., a turbine blade, and a gas turbine engine having a compressor, a combustor, and turbine, the turbine including an airfoil. In each context, an embodiment of the airfoil has leading and trailing edges, opposing pressure and suction sidewalls extending between the leading and trailing edges, and an interior chamber intermediate the leading and trailing edges. Also in accord with the example embodiment, the chamber is configured to receive a flow of cooling fluid, and the airfoil has a first structure containing cooling passageways extending between the chamber and a series of apertures positioned along the trailing edge through which cooling fluid received from the chamber exits the airfoil. The first structure includes a first series of cooling passageways extending along a first direction and a second series of cooling passageways extending along a second direction. Cooling passageways of the second series intersect cooling passageways of the first series. The first structure includes a plurality of solid regions each defined by a pair of adjacent cooling passageways of the first series and a pair of adjacent cooling passageways of the second series and the structure is characterized by a variable thickness between the pressure and suction sidewalls as a function of position along the cooling passageways. Each in a plurality of the cooling passageways of the first and second series are characterized by a cross sectional flow area which decreases as a function of distance from the chamber. Also in accord with the disclosed examples, cooling passageways of the first series extend along the first direction substantially parallel with one another and cooling passageways of the second series extend along the second direction substantially parallel with one another.
As illustrated in
As illustrated in
The second structure may comprise a plurality of solid regions each defined by a pair of adjacent cooling passageways of the first series and a pair of adjacent cooling passageways of the second series, with the structure characterized by a variable thickness between the pressure and suction sidewalls as a function of position along the cooling passageways. See, again,
A method has also been described for operating a gas turbine engine whereby cooling fluid effects heat transfer from a pressure sidewall of an airfoil in a turbine section. The airfoil, as described above, is of the type having a leading edge, a trailing edge and a series of apertures along the trailing edge for emitting the cooling fluid. The method includes providing a chamber within the airfoil for receiving the cooling fluid, and providing a series of passageways extending between the chamber and the apertures. A plurality of the passageways vary in cross sectional area as a function of distance from the chamber so that when fluid received in the chamber travels through a passageway, the fluid has an increasing flow speed as the fluid moves away from the chamber and toward the apertures. In one example embodiment of this method, the step of providing the passageways includes forming the passageways with a first series of the passageways extending along a first direction and a second series of the passageways extending along a second direction, such that passageways of the second series intersect passageways of the first series.
Also, with reference to
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Many modifications and changes will be apparent to those skilled in the art. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
This application claims priority to the Provisional U.S. Patent Application Ser. No. 61/253,120 filed 20 Oct. 2009, which is incorporated herein by reference in the entirety. This application relates to co-pending application Ser. No. 12/832,124 filed on 8 Jul. 2010.
Number | Date | Country | |
---|---|---|---|
61253120 | Oct 2009 | US |