(1) Field of the Invention
The invention relates to gas turbine engine components, and more particularly to an airfoil insert for discharging an increased volume of cooling air.
(2) Description of the Related Art
In a gas turbine engine, incoming air is pressurized by a compressor and mixed with fuel in a combustor. The fuel and air mixture is burned and expelled from the combustor as hot combustion gases. The hot combustion gases are directed to a turbine disposed downstream of the combustor, where the turbine extracts power from the gases and rotates the compressor via a common shaft.
The turbine is comprised of alternating axial stages of rotating blades and stationary vanes. The blades within each stage are circumferentially spaced about a disk attached to the common shaft, whereas the vanes are cantilevered inward from an outer casing structure. A spacer located radially inboard of the vanes, controls the axial spacing of successive bladed disks. A rotating seal, affixed to the spacer, discourages interstage leakage of the combustion gases by mating with a stationary land attached to the inner diameter of the vanes. The interstage seal and land are crucial to the operating efficiency and performance of the gas turbine engine.
Protecting turbine components from the hot combustion gases is very important, since the combustion gas temperature may exceed the melting temperature of the component's base material. For protection, these components are typically insulated with high-temperature coatings and convectively cooled with a portion of the compressor air. This portion of the compressor air bypasses the combustion process and is hereinafter referred to as cooling air.
Since the interstage seal and land are located radially inboard of the vanes, the cooling air must first be channeled through the vanes to reach them. Typically, a tubular insert is located inside each vane to apportion the cooling air between the vane and the interstage seal and land. The insert is open at a first end to allow cooling air to enter from an outboard annular plenum, and is perforated along its length to generate impingement-cooling jets within the vane. The second end of the insert is partially restricted by a perforated cover to increase the velocity of the impingement-cooling jets in the vane and to allow for a portion of the cooling air to discharge to the interstage seal and land. The cover also adds structural strength to the tubular insert, which may deform during assembly and from the extreme combustion gas temperatures.
As the cooling air passes through the vanes and other components, its temperature increases, diminishing its ability to cool the interstage seal and land. Since the longevity of the interstage seal and land is crucial to maintaining the overall efficiency and performance of the gas turbine engine, any improvement in durability is advantageous. If the operating temperature of the interstage seal and land is reduced, the durability is improved and the serviceable life is extended. Utilizing a lower temperature cooling air source, or providing a greater volume of available cooling air will reduce the operating temperature of the interstage seal and land. Since a lower temperature cooling air source does not have sufficient pressure to ensure constant flow, then the vane insert must distribute an increased volume of available cooling air to the interstage seal and land.
Reducing the level of restriction in the second end of the insert increases the volume of cooling air; however, simply adding additional perforations in the existing cover will weaken the cover and make it more susceptible to thermal fatigue cracks and oxidation. Introducing oblong holes in the existing cover is expensive and the remaining cover material is susceptible to cracking and oxidation. Removing the existing cover entirely reduces the velocity of the impingement-cooling jets in the vane and jeopardizes the structural integrity of the insert.
What is needed is an insert for distributing an increased volume of available cooling air to the interstage seal and land, without reducing the velocity of the impingement-cooling jets or diminishing the structural integrity of the insert. Additionally, the insert must be capable of being produced in a robust and repeatable manner, with existing manufacturing processes and tooling and at a reasonable cost.
Provided is an airfoil insert for discharging an increased volume of cooling air to an interstage seal and land. The insert comprises a perforated, tubular-shaped body with a first end for introducing available cooling air. A second end approximates a castellated wall and comprises one or more tabs extending from the body and spaced about a second end periphery. Separate covers may be joined to the tabs by bridging across the second end, or opposing tabs may be joined together by bridging across the second end. The bridging of the second end creates a partial restriction, apportioning the available cooling air between the vane and the interstage seal and land. Alternating between the tabs are notches in the body, providing passages for discharging an increased volume of cooling air to the interstage seal and land.
The volume of cooling air discharged by the notches is greater than is discharged by a perforated cover, since the notches extend radially into the body of the insert. The tabs also act as ligaments and provide the structural support necessary to prevent the insert from deforming during assembly and under the extreme combustion gas temperatures. Other features and advantages will be apparent from the following more detailed descriptions, taken in conjunction with the accompanying drawings, which illustrate, by way of example, several exemplary embodiment inserts.
When referring to the drawings, it is to be understood that like reference numerals designate identical or corresponding parts throughout the several views.
Referring to
A high-pressure turbine 30, partially shown in more detail in
For protection against the hot combustion gases 25, the interstage seal 46 and land 48 must be convectively cooled. Since these crucial components are located radially inboard of the vanes 36, cooling air 50 must be directed through the vanes 36 and other components to reach them. First, the cooling air 50 is directed from the compressor 20 to an outer plenum 52 of a turbine case 38 by a distribution manifold 54. The outer plenum 52 then directs the cooling air 50 into perforated, tubular inserts 62 disposed within a hollow passage 68 of each vane 36. Each insert 62 apportions the cooling air 50 between the vane 36 and the interstage seal 46 and land 48. A first portion of the cooling air 50 is discharged as cooling air jets 70 through holes 72 in the insert 62 to cool the vane 36. The remaining portion of the cooling air 50 is discharged as seal and land cooling air 78 through a partially restricted second end 74 of the insert 62. The second end 74 of the insert 62 exits the vane 36 at a radially inner platform 76. The seal and land cooling air 78 is then directed into a forward inboard chamber 80 by an injector 82, and finally cools the interstage seal 46 and land 48. After cooling the interstage seal 46 and land 48, the cooling air 78 is directed through a rearward inboard chamber 84 and eventually mixes with the combustion gases 25 at a trailing edge 86 of the vane 36.
As the seal and land cooling air 78 passes through the vanes 36 and other components, its temperature increases and its cooling effectiveness is diminished. The inventive insert 62 distributes an increased volume of the seal and land cooling air 78, thus improving the durability and extending the life of the interstage seal 46 and land 48. Since the interstage seal 46 and land 48 is crucial to maintaining the overall efficiency and performance of the gas turbine engine, any improvement in durability is desirable.
Referring now to
A first end 60 as shown in
Several examples of a second end 74, for discharging the seal cooling air 78, are shown in
Referring now to an embodiment of an insert of
In an alternate example of a second end 74 of
In yet another alternate example of
In yet another alternate example of
In each of the examples described above, an inventive insert 62 distributes an increased volume of seal and land cooling air 78 without reducing the velocity of the impingement-cooling jets 70 or diminishing the structural integrity of the insert 62. Additionally, it has been shown that the inventive insert 62 is capable of being produced in a robust and repeatable manner, with existing manufacturing processes and tooling and at a reasonable cost.
While the present invention has been described in the context of specific embodiments thereof, other alternatives, modifications and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications and variations as fall within the broad scope of the appended claims.