The present invention is directed to a shim to be received in a cavity defined by a first recess in an airfoil structure and a second recess in a retention member and, further, is directed to an airfoil structure, shim and retention member combination.
A conventional combustible gas turbine engine includes a compressor, a combustor, and a turbine. The compressor compresses ambient air. The combustor combines the compressed air with a fuel and ignites the mixture creating combustion products defining a working gas. The working gases travel to the turbine. Within the compressor are a series of rows of stationary vanes and rotating blades. Each pair of rows of vanes and blades is called a stage. The rotating blades are coupled to a shaft and rotor disc assembly.
For each row of blades, a separate rotor disc is provided. The rotor discs form part of the shaft and rotor disc assembly. One or more of the rotor discs is provided with a dovetail slot extending 360 degrees about the disc so as to receive dovetail bases or roots of blades. For each row of vanes, a retention casing fixedly coupled to a housing of the gas turbine engine is provided. One or more of the retention casings is provided with a dovetail slot so as to receive dovetail bases or roots of vanes.
In order to frictionally hold a root of a blade in the dovetail slot, a solid shim is provided within a cavity defined by recesses in the blade root and the rotor disc. Similarly, in order to frictionally maintain a root of a vane in a dovetail slot, a shim is provided within a cavity defined by recesses in the vane root and the retention casing. If, for example, a range of cavity sizes varies, due to tolerances, from 15.00 mm to 15.30 mm and a minimum allowable gap within the cavity is 0.05 mm, a plurality of solid shims would need to be available during assembly of the blades with the rotor discs and the vanes with the retention casings, with each solid shim corresponding to a particular cavity size. For example, six shim height sizes (15.00 mm; 15.05 mm; 15.10 mm; 15.15 mm; 15.20 mm; and 15.25 mm) would be needed for the cavity size tolerance range of 15.00 mm to 15.30 mm. Hence, during assembly of a blade in its dovetail slot, a solid shim of an appropriate size would be selected from the six available sizes and inserted into the recess. Likewise, during assembly of a vane in its dovetail slot, a solid shim of an appropriate size selected from the six available sizes would be selected and inserted into the recess.
Instead of a solid shim, a thin wave-shaped spring shim may be provided. Such a shim is disadvantageous because it is susceptible to loosing its spring force, allowing relative motion of a corresponding blade or vain resulting in wear.
In accordance with a first aspect of the present invention, a shim is provided which is adapted to be received in a cavity defined by a first recess in an airfoil structure and a second recess in a retention member. The shim comprises a main body and a plurality of first fins extending outwardly from a first side of the main body and a plurality of second fins extending outwardly from a second side of the main body.
In a first embodiment, each of the first and second fins may have a width of from about 0.5 mm to about 3 mm and a height of from about 0.5 mm to about 3.0 mm. In a second embodiment, each of the first and second fins may have a width of from about 1 mm to about 3 mm and a height of from about 1.5 mm to about 6 mm.
The main body may have height of from about 2 mm to about 15 mm, a width of from about 2 mm to about 20 mm, and a length of from about 8 mm to about 200 mm.
The first and second fins may extend in an axial direction of the retention member.
In one embodiment, the airfoil structure may comprise a blade and the retention member may comprise a rotor disk. In a further embodiment, the airfoil structure may comprise a vane and the retention member may comprise a retention casing.
The second side of the main body may be transverse to the main body first side.
The main body of the shim may have a length along a first axis and the first fins may have a length along that same first axis, wherein the length of the main body along the first axis is greater than the length of the first fins along the first axis.
In accordance with a second aspect of the present invention, an airfoil structure, shim and retention member combination is provided. The combination comprises an airfoil structure, a retention member and a shim. The airfoil structure may comprise a first recess. The retention member may comprising a second recess. The first and second recesses may define a cavity. The shim may comprise a main body and a plurality of first fins extending outwardly from a first side of the main body. The first fins may further extend transverse to a longitudinal axis of the main body. The shim may be positioned in the cavity such that the first fins extend in a direction substantially transverse to a longitudinal axis of the cavity.
The shim may further comprise a plurality of second fins extending outwardly from a second side of the main body, which is transverse to the main body first side. In one embodiment, each of the first and second fins may have a width of from about 0.5 mm to about 3 mm and a height of from about 0.5 mm to about 3 mm. In another embodiment, each of the first and second fins may have a width of from about 1 mm to about 3 mm and a height of from about 1.5 mm to about 6 mm.
In
In the
The airfoil structure 20 comprises a blade 22 having a dovetail root or base 24, a platform 26 and an exposed blade portion 28. The dovetail base 24 is 5 provided with a recess 27. As noted above, the rotor disc 50 is provided with a dovetail slot 52. The rotor disc dovetail slot 52 is adapted to receive the dovetail base 24 of the blade 22. The blade dovetail base 24 functions to couple the blade 22 to the rotor disc 50 when received in the slot 52. When the blade dovetail base 24 is positioned in the rotor disc dovetail slot 52, the recess 27 in the base 24 becomes aligned with and is located opposite the recess 54 in the base of the dovetail slot 52. The two aligned recesses 27 and 54 define a cavity 70. As illustrated in
The shim 30 comprise a main body 32 and a plurality of fins 34 extending outwardly from a first side 32A of the main body 32, see
In a first embodiment, each of the fins 34 may have a width W34 of from about 0.5 mm to about 3 mm and a height H34 of from about 0.5 mm to about 3 mm, see
After the blade base 24 has been inserted into the dovetail slot 52, the shim 30 is inserted into the cavity 70 defined by the two aligned recesses 27 and 54 in the blade base 24 and the rotor disc dovetail slot 52 so as to frictionally hold or immobilize the dovetail base 24 of the blade 22 in the dovetail slot 52 in the rotor disc 50, i.e., prevent the blade 22 from dithering, rocking, sliding or otherwise moving in the slot 52. A spacer, not shown, may be inserted into the slot 52 between each blade 22. The longitudinal axis AL of the shim 30 extends in a circumferential direction DC50, see
The shim 30 of the present invention is capable of being used during assembly of blades 22 in the slot 52 of a rotor disc 50 where the cavities 70 defined by aligned recesses 27 and 54 fall within a fairly broad range of sizes, due to tolerances. For example, if the range of cavity sizes varies, due to tolerances, from 15.00 mm to 15.30 mm and a minimum allowable gap (the distance between the shim 30 and the rotor disc 50, the distance between the shim 30 and the blade 22 or a combined distance between the shim 30 and the rotor disc 50 and the shim 30 and the blade 22) within the cavity 70 is equal to or less than 0.05 mm, a shim 30 having an overall height H30 failing within a range of from about 2.5 mm to about 21 mm may be used. For example, a shim 30 having an overall height H30 equal to 15.25 mm may be provided. Hence, if the cavity size is 15.00 mm, the shim fins 34 will either deform or be sheared off by an amount equal to about 0.25 mm. Alternatively, if the cavity size is 15.30 mm, the gap within the cavity will only be 0.05 mm, which is within the acceptable minimum allowable gap range.
In
The airfoil structure 120 comprises a vane 122 having a dovetail root or base 124, a platform 126 and an exposed blade portion 128. The dovetail base 124 is provided with a recess 127. As noted above, the retention casing 150 is provided with a dovetail slot 152. The retention casing dovetail slot 152 is adapted to receive a dovetail base 124 of a vane 122. The vane dovetail base 124 functions to couple the vane 122 to the retention casing 150 when received in the slot 152. When the vane dovetail base 124 is positioned in the retention casing dovetail slot 152, the recess 127 in the vane dovetail base 124 becomes aligned with and is located opposite the recess 154 in the base of the dovetail slot 152. The two aligned recesses 127 and 154 define a cavity 170.
The shim 130 comprise a main body 132 and a plurality of first fins 134 extending outwardly from a first side 132A of the main body 132 and a plurality of second fins 136 extending outwardly from a second side 132B of the main body 132, see
In a first embodiment, each of the first fins 134 may have a width W134 of from about 0.5 mm to about 3 mm and a height H134 of from about 0.5 mm to about 3 mm and each of the second fins 136 may have a width W136 of from about 0.5 mm to about 3 mm and a height H136 of from about 0.5 mm to about 3 mm, see
The shim 130 is inserted into the cavity 170 defined by the two aligned recesses 127 and 154 in the vane base 124 and the retention casing slot 152 so as to frictionally hold the dovetail base 124 of the vane 122 in the dovetail slot 152 in the retention casing 150. In the
In an embodiment illustrated in
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2686656 | Abild | Aug 1954 | A |
2825530 | Schum et al. | Mar 1958 | A |
3809495 | Stahl | May 1974 | A |
3836282 | Mandelbaum et al. | Sep 1974 | A |
4505640 | Hsing et al. | Mar 1985 | A |
4563128 | Rossmann | Jan 1986 | A |
4722184 | Chaplin et al. | Feb 1988 | A |
5100292 | Matula et al. | Mar 1992 | A |
6151950 | Wilhelm et al. | Nov 2000 | A |
6202273 | Watts | Mar 2001 | B1 |
6273683 | Zagar et al. | Aug 2001 | B1 |
6290466 | Ravenhall et al. | Sep 2001 | B1 |
6431835 | Kolodziej et al. | Aug 2002 | B1 |
6533544 | Tiemann et al. | Mar 2003 | B1 |
6619924 | Miller | Sep 2003 | B2 |
6860722 | Forrester et al. | Mar 2005 | B2 |
6984108 | Anderson et al. | Jan 2006 | B2 |
7137997 | Paul | Nov 2006 | B2 |
7264448 | Garner | Sep 2007 | B2 |
7854583 | Wichmann et al. | Dec 2010 | B2 |
20040062652 | Grant et al. | Apr 2004 | A1 |
20040244948 | Luo | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20090214349 A1 | Aug 2009 | US |