The subject matter disclosed herein generally relates to cooling flow in airfoils of gas turbine engines and, more particularly, to airfoil turn caps for cooling flow passages within airfoils in gas turbine engines.
In gas turbine engines, cooling air may be configured to flow through an internal cavity of an airfoil to prevent overheating. Gas temperature profiles are usually hotter at the outer diameter than at the inner diameter of the airfoils. In order to utilize cooling flow efficiently and minimize heat pickup and pressure loss, the cross-sectional area of the internal cooling flow may be configured to vary so that Mach numbers remain low where heat transfer is not needed (typically the inner diameter) and high Mach numbers where heat transfer is needed (typically the outer diameter). To do this in a casting, the walls of the airfoils tend to be thick in some areas and thin in other areas, which may add weight to the engine in which the airfoils are employed. Previously, baffles have been used to occupy some of the space within the internal cavity of the airfoils, referred to herein as “space-eater” baffles. The baffles extend from one end of the cavity all the way through the other end of the cavity within the airfoil. This configuration may result in relatively high Mach numbers to provide cooling throughout the cavity. Further, such configuration may provide high heat transfer, and pressure loss throughout the cavity.
In order to achieve metal temperatures required to meet full life with the cooling flow allocated, the “space-eater” baffles are required to be used inside an airfoil serpentine cooling passage. The serpentine turns are typically located outside gas path endwalls to allow the “space-eater” baffles to extend all the way to the gas path endwall (e.g., extend out of the cavity of the airfoil). However, because the airfoil may be bowed, the turn walls must also follow the arc of the bow to provide clearance for the “space-eater” baffles to be inserted. During manufacture, because the wax die end blocks do not have the same pull direction as the bow of the airfoil, the turn walls cannot be cast without creating a die-lock situation and trapping the wax die.
Thus it is desirable to provide means of controlling the heat transfer and pressure loss in airfoils of gas turbine engines, particularly at the endwall turn for serpentine gas paths.
According to some embodiments, airfoils for gas turbine engines are provided. The airfoils include a hollow body defining a first up-pass cavity and a first down-pass cavity, the hollow body having an inner diameter end and an outer diameter end, the first up-pass cavity having a respective first pressure side airfoil passage and a respective first suction side airfoil passage, a first airfoil platform at one of the inner diameter end and the outer diameter end of the hollow body, the first airfoil platform having a gas path surface and a non-gas path surface, wherein the hollow body extends from the gas path surface, a first up-pass cavity opening formed in the non-gas path surface of the first airfoil platform fluidly connected to the first up-pass cavity, a first down-pass cavity opening formed in the non-gas path surface of the first airfoil platform fluidly connected to the first down-pass cavity, and a first turn cap fixedly attached to the first airfoil platform on the non-gas path surface covering the first up-pass cavity opening and the first down-pass cavity opening of the first airfoil platform. The first turn cap includes a merging chamber fluidly connected to the first down-pass cavity when the turn cap is attached to the first airfoil platform, a first pressure-side turn passage fluidly connecting the first pressure side airfoil passage to the merging chamber when the turn cap is attached to the first airfoil platform, and a first suction-side turn passage fluidly connecting the first suction side airfoil passage to the merging chamber when the turn cap is attached to the first airfoil platform. Each of the first suction-side turn passage and the first pressure-side turn passage turn a direction of fluid flow from a first direction to a second direction such that a fluid flow exiting the first suction-side turn passage and the first pressure-side turn passage are aligned when entering the merging chamber.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the hollow body, the first airfoil platform, and the first turn cap are integrally formed.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the first suction-side turn passage and the first pressure-side turn passage form a first turning feature within the turn cap, the turn cap further comprising a second turning feature.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the turn cap further includes a first divider fluidly separating the first turning feature from the second turning feature.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the turn cap further includes a first merging passage fluidly located between (i) outlets of the first suction-side turn passage and the first pressure-side turn passage and (ii) the merging chamber.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that at least one of the first pressure-side turn passage and the first suction-side turn passage has an inlet that fluidly connects to the first up-pass cavity when the turn cap is attached to the first airfoil platform, an outlet that fluidly connects to the merging chamber, a first sidewall, a second sidewall, a first turning surface, and a second turning surface. Each of the first sidewall, the second sidewall, the first turning surface, and the second turning surface extend from the inlet to the outlet.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the inlet has a first aspect ratio that matches an aspect ratio of the first up-pass cavity and the outlet has a second aspect ratio.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the first aspect ratio and the second aspect ratio are different.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the second aspect ratio is less than four times the first aspect ratio.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that at least one of the first pressure-side turn passage and the first suction-side turn passage has an angular surface rotation turning rate or twist defined with a maximum twist angle per unit distance along a centerline of the respective passage.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include that the maximum angular surface rotation turning rate or twist angle is 25° and the unit distance is 0.100 inches.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include a “space-eater” baffle positioned in at least one of the up-pass cavities.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the airfoil may include a second up-pass cavity within the hollow body having a respective second pressure side airfoil passage and a respective second suction side airfoil passage, a second up-pass cavity opening formed in the non-gas path surface of the first airfoil platform fluidly connected to the second up-pass cavity, and the first turn cap covering the second up-pass cavity opening. the first turn cap having a second pressure-side turn passage fluidly connecting the second pressure side airfoil passage to the merging chamber when the turn cap is attached to the first airfoil platform and a second suction-side turn passage fluidly connecting the second suction side airfoil passage to the merging chamber when the turn cap is attached to the first airfoil platform. Each of the second suction-side turn passage and the second pressure-side turn passage turn a direction of fluid flow from a first direction to a second direction such that a fluid flow exiting the second suction-side turn passage and the second pressure-side turn passage are aligned when entering the merging chamber.
According to some embodiments, turn caps for airfoils of gas turbine engines are provided. The turn caps include a first pressure-side turn passage extending from a respective inlet to a respective outlet within the turn cap, a first suction-side turn passage extending from a respective inlet to a respective outlet within the turn cap, and a merging chamber fluidly connected to the outlets of the first pressure-side turn passage and the first suction-side turn passage. Each of the first suction-side turn passage and the first pressure-side turn passage turn a direction of fluid flow from a first direction to a second direction such that a fluid flow exiting the first suction-side turn passage and the first pressure-side turn passage are aligned when entering the merging chamber.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the turn caps may include that the first suction-side turn passage and the first pressure-side turn passage form a first turning feature within the turn cap, the turn cap further comprising a second turning feature.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the turn caps may include a first divider fluidly separating the first turning feature from the second turning feature.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the turn caps may include a first merging passage fluidly located between (i) outlets of the first suction-side turn passage and the first pressure-side turn passage and (ii) the merging chamber.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the turn caps may include that at least one of the first pressure-side turn passage and the first suction-side turn passage has a first sidewall extending from the inlet to the outlet, a second sidewall extending from the inlet to the outlet, a first turning surface extending from the inlet to the outlet, and a second turning surface extending from the inlet to the outlet. The inlet is oriented in a first direction and the outlet is oriented in a second direction different from the first direction.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the turn caps may include that the inlet has a first aspect ratio and the outlet has a second aspect ratio that is different from the first aspect ratio.
In addition to one or more of the features described herein, or as an alternative, further embodiments of the turn caps may include that at least one of the first pressure-side turn passage and the first suction-side turn passage has an angular surface rotation turning rate or twist defined with a maximum twist angle per unit distance along a centerline of the respective passage.
Technical effects of embodiments of the present disclosure include turn caps to be installed to or formed with platforms of airfoils to provide turning paths to improve the convective cooling of the airfoil within airfoil bodies and more particularly aid in turning airflows to enable low- or no-loss merging of multiple air streams within a turn cap. Further, technical effects include turn caps having angular surface rotation turning rate or twisted turn passages that are configured to turn airflow passing through an airfoil from one direction to another in a manner that minimizes and/or eliminates losses.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.
The subject matter is particularly pointed out and distinctly claimed at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine centerline longitudinal axis A. The low speed spool 30 and the high speed spool 32 may be mounted relative to an engine static structure 33 via several bearing systems 31. It should be understood that other bearing systems 31 may alternatively or additionally be provided.
The low speed spool 30 generally includes an inner shaft 34 that interconnects a fan 36, a low pressure compressor 38 and a low pressure turbine 39. The inner shaft 34 can be connected to the fan 36 through a geared architecture 45 to drive the fan 36 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 35 that interconnects a high pressure compressor 37 and a high pressure turbine 40. In this embodiment, the inner shaft 34 and the outer shaft 35 are supported at various axial locations by bearing systems 31 positioned within the engine static structure 33.
A combustor 42 is arranged between the high pressure compressor 37 and the high pressure turbine 40. A mid-turbine frame 44 may be arranged generally between the high pressure turbine 40 and the low pressure turbine 39. The mid-turbine frame 44 can support one or more bearing systems 31 of the turbine section 28. The mid-turbine frame 44 may include one or more airfoils 46 that extend within the core flow path C.
The inner shaft 34 and the outer shaft 35 are concentric and rotate via the bearing systems 31 about the engine centerline longitudinal axis A, which is co-linear with their longitudinal axes. The core airflow is compressed by the low pressure compressor 38 and the high pressure compressor 37, is mixed with fuel and burned in the combustor 42, and is then expanded over the high pressure turbine 40 and the low pressure turbine 39. The high pressure turbine 40 and the low pressure turbine 39 rotationally drive the respective high speed spool 32 and the low speed spool 30 in response to the expansion.
The pressure ratio of the low pressure turbine 39 can be pressure measured prior to the inlet of the low pressure turbine 39 as related to the pressure at the outlet of the low pressure turbine 39 and prior to an exhaust nozzle of the gas turbine engine 20. In one non-limiting embodiment, the bypass ratio of the gas turbine engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 38, and the low pressure turbine 39 has a pressure ratio that is greater than about five (5:1). It should be understood, however, that the above parameters are only examples of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines, including direct drive turbofans.
In this embodiment of the example gas turbine engine 20, a significant amount of thrust is provided by the bypass flow path B due to the high bypass ratio. The fan section 22 of the gas turbine engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. This flight condition, with the gas turbine engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC). TSFC is an industry standard parameter of fuel consumption per unit of thrust.
Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 without the use of a Fan Exit Guide Vane system. The low Fan Pressure Ratio according to one non-limiting embodiment of the example gas turbine engine 20 is less than 1.45. Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5, where T represents the ambient temperature in degrees Rankine. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example gas turbine engine 20 is less than about 1150 fps (351 m/s).
Each of the compressor section 24 and the turbine section 28 may include alternating rows of rotor assemblies and vane assemblies (shown schematically) that carry airfoils that extend into the core flow path C. For example, the rotor assemblies can carry a plurality of rotating blades 25, while each vane assembly can carry a plurality of vanes 27 that extend into the core flow path C. The blades 25 of the rotor assemblies create or extract energy (in the form of pressure) from the core airflow that is communicated through the gas turbine engine 20 along the core flow path C. The vanes 27 of the vane assemblies direct the core airflow to the blades 25 to either add or extract energy.
Various components of a gas turbine engine 20, including but not limited to the airfoils of the blades 25 and the vanes 27 of the compressor section 24 and the turbine section 28, may be subjected to repetitive thermal cycling under widely ranging temperatures and pressures. The hardware of the turbine section 28 is particularly subjected to relatively extreme operating conditions. Therefore, some components may require internal cooling circuits for cooling the parts during engine operation. Example cooling circuits that include features such as partial cavity baffles are discussed below.
As shown, counting from a leading edge on the left, the vane 102a may include six airfoil cavities 104 within the hollow body: a first airfoil cavity on the far left followed by a second airfoil cavity immediately to the right of the first airfoil cavity and fluidly connected thereto, and so on. Those of skill in the art will appreciate that the partitions 105 that separate and define the airfoil cavities 104 are not usually visible and
The airfoil cavities 104 are configured for cooling airflow to pass through portions of the vane 102a and thus cool the vane 102a. For example, as shown in
As shown in
Air is passed through the airfoil cavities of the airfoils to provide cooling airflow to prevent overheating of the airfoils and/or other components or parts of the gas turbine engine. The flow rate through the airfoil cavities may be a relatively low flow rate of air and because of the low flow rate, the convective cooling and resultant internal heat transfer coefficient may be too low to achieve the desired metal temperatures of the airfoils. One solution to this is to add one or more baffles into the airfoil cavities. That is, in order to achieve desired metal temperatures to meet airfoil full-life with the cooling flow allocated based on turbine engine design, “space-eater” baffles may be used inside airfoil serpentine cooling passages (e.g., within the airfoil cavities 104 shown in
Additionally, as will be appreciated by those of skill in the art, a cooling scheme generally requires the merging of cooling flow from several radial passages extending along the pressure and suction sides of the airfoil with minimum pressure loss. For example, a cooling flow from the leading edge-most passages of the airfoil must be able to get to the trailing edge passage(s) with as little pressure loss as possible, e.g., as traveling from the leading edge on the left of the airfoil 102a in
In cooling passages, the channel defining the passage has an aspect ratio associated or defined by the dimensions of the channel that are perpendicular to the flow direction. As will be appreciated by those of skill in the art, the term aspect ratio is typically used to define the relationship between the dimensions of a channel perpendicular to the flow direction. As used herein, the name of an aspect ratio will refer to the orientation of the longest dimension perpendicular to the flow direction. For example, an “axial aspect ratio” means the longest dimension that is perpendicular to the flow direction (e.g., W1 in
For example, with reference to
Accordingly, as noted above and as used herein, the “name” of an aspect ratio is defined as the direction of the longest dimension of a channel that is perpendicular to a direction of flow through the channel (e.g., axial, radial, circumferential). Thus, as described above, an aspect ratio of a channel within an airfoil having air flowing from the inner diameter to the outer diameter has a radial flow direction. With a “space-eater” baffle installed within such an airfoil, the longest dimension that is perpendicular to the flow direction is the axially oriented dimension and the circumferentially oriented dimension is the shorter dimension. As such, the channel has an “axial aspect ratio.” An axial aspect ratio can also have a direction of cooling flow in a circumferential direction, with the shorter dimension of the channel having a radial orientation. A “circumferential aspect ratio” channel is one that has a flow direction in either the radial or axial flow direction, with the longest dimension of the channel that is perpendicular to the flow direction having a circumferential orientation. Similarly, a “radial aspect ratio” channel is one that has an axial or circumferential flow direction, with the longest dimension of the channel that is perpendicular to the flow direction being circumferentially oriented.
The above described limited radial distance at the turning of airflows passing through airfoils may alter the direction of the channels and, thus, the associated aspect ratios. For example when transitioning from a radial flow direction to an axial flow direction, a flow passage may transition from an axial aspect ratio channel to a circumferential aspect ratio channel. Once all the internal cooling flow is travelling in the same predominantly axial streamwise direction, it can be merged.
Referencing
The airfoil 202 includes a plurality of interior airfoil cavities, with a first airfoil cavity 204a being an up pass of a serpentine cavity, a second airfoil cavity 204b being a down pass of the serpentine cavity, and a third airfoil cavity 204c being a trailing edge cavity. The airfoil 202 also includes a fourth airfoil cavity 204d that is a leading edge cavity. As illustratively shown, a cooling flow of air can follow an airflow path 210 by entering the airfoil 202 from the inner diameter, flowing radially outward to the outer diameter through the up pass of the first airfoil cavity 204a, turning at the outer diameter turning cavity 246, downward through the down pass of the second airfoil cavity 204b, turning at the inner diameter turning cavity 248, and then radially outward and out through the third airfoil cavity 204c. As shown, the first and second airfoil cavities 204a, 204b are configured with baffles 238a, 238b inserted therein.
To provide sufficient cooling flow and control of cooling air pressure within the airflow path 210, the airfoil 202 is provided with a first turn cap 242 and a second turn cap 244. The first turn cap 242 defines a first turning cavity 246 therein. Similarly, the second turn cap 244 defines a second turning cavity 248 therein. As illustratively shown, the first turn cap 242 is positioned at an outer diameter 208 of the airfoil 202 and fluidly connects the first airfoil cavity 204a with the second airfoil cavity 204b. The second turn cap 244 is positioned at an inner diameter 206 of the airfoil 202 and fluidly connects the second airfoil cavity 204b with the third airfoil cavity 204c. The first and second turning cavities 246, 248 define portions of the cooling airflow path 210 used for cooling the airfoil 202. The turn caps 242, 244 are attached to respective non-gas path surfaces 220b, 222b of the platforms 220, 222.
The first and second turn caps 242, 244 move the turn of the airflow path 210 outside of the airfoil and into the cavities external to the airfoil (e.g., within outer diameter cavity 118 and inner diameter cavity 114 shown in
As shown illustratively, the first turn cap 242 and the second turn cap 244 have different geometric shapes. The turn caps in accordance with the present disclosure can take various different geometric shapes such that a desired air flow and pressure loss characteristics can be achieved. For example, a curved turn cap may provide improved and/or controlled airflow at the turn outside of the airfoil body. Other geometries may be employed, for example, to accommodate other considerations within the gas turbine engine, such as fitting between the platform and a case of the engine. Further, various manufacturing considerations may impact turn cap shape. For example, flat surfaces are easier to fabricate using sheet metal, and thus it may be cost effective to have flat surfaces of the turn caps, while still providing sufficient flow control.
As shown in
As shown in
When the airflow passes into the first turn cap 242, the orientation of the aspect ratio changes to a circumferential aspect ratio channel. In this case, a second height H2 is the height of the first turn cap 242 from the non-gas path surface 220b of the platform 220. The width of the airflow channel within the first turn cap 242 (second width W2) is a distance between the pressure side and the suction side of the airfoil, as shown in
Turning now to
As schematically shown, airflow 310 flows radially outward through the airfoil 302 along multiple up-pass first airfoil cavities 304a. The airflow passes from the up-pass cavities 304a through respective cavity openings 399a and into the turning cavity 346 of the turn cap 342. To direct the airflow 310 through cavities 399b and into multiple down-pass cavities 304b, the turn cap 342 is provided. However, as shown, as the different branches of the airflow 310 enter the turn cap 342 and merge, turbulence (and thus losses) may arise. That is, multiple air flow streams of varying velocities and pressures are merged and travel axially toward the trailing edge of the airfoil 302. Because the different flow streams of airflow 310 enter the turn cap 342 at different positions, some of the airflow will be moving axially (e.g., axially forward-entering air streams) while other streams will be flowing radially (e.g., axially aftward-entering air streams). As a result of the merging of multi-directional flow streams large eddies are generated (as schematically shown in
Accordingly, as provided herein, turn cap geometry and features are provided within the turn cap to keep the cooling flow separated into the individual passages as the flows transition from a radial flow direction through an airfoil (axial aspect ratio) to an axial flow (circumferential aspect ratio) direction through a turn cap and then back to a radial flow into and through the airfoil. The turn cap dividers are configured and positioned to transition the airflow from the airfoil cavities into the turn cap to enable a smooth transition and merge one or more airflows without incurring significant pressure losses.
Embodiments provided herein are directed to a modified or unique turn cap geometry including an angular surface rotation in order to smoothly transition low aspect ratio channels from axial to circumferential. In some embodiments, each passage may have unique separate angular surface rotation turning rates in order for each of the individual radial (axial aspect ratio) channels to be smoothly transitioned to axial (circumferential aspect ratio) channels within the turn cap. The angular surface rotation turning rate is also dictated by the axial location of the radial (axial aspect ratio) channel relative to the turn cap axial, circumferential, and/or radial position(s). Additionally, the desire to successively radially stack axial (circumferential aspect ratio) channels within the turn cap also dictates the angular turning rate of rotation as a function of streamwise transition of radial (axial aspect ratio) channels to axial (circumferential aspect ratio) channels. In this instance each of the axial (circumferential aspect ratio) channels are separated by circumferential ribs which keep the cooling flow segregated until the internal cavity flows in the turn cap are axially aligned in a streamwise direction prior to being combined in the merging chamber. The numerical aspect ratio of the cooling passage remains similar throughout the turn (although the direction changes). The cooling flow is merged once the two or more passages are aligned in the same direction. The turning cavities or passages may be integrally cast or created by space-eater baffles in the radial passages. In order to allow the space-eater baffles to be inserted, the turning cavities or passages may be created in a separate cap and installed after the baffles are installed or additive manufacturing techniques may be employed.
Turning now to
The turn cap 442 is configured to keep cooling flow streams in each passage (up-pass cavities 404a′, 404a″, 404a′″) segregated until all of the flow streams have turned axial (to the right on the page of
To separate the flow, the turn cap 442 is configured with multiple turning cavities therein, with the turning cavities separating or dividing up a turning cavity 446 within the turn cap 442. For example, as shown in
As shown in
As noted, the turn passages in various embodiments of the present disclosure can merge into merging passages and/or the flow from airfoil passages can be merged within a merging passage, as shown and described herein. The turn passages are arranged to turn and merge flows that feed into the merging passages with the incoming flow being substantially parallel and thus losses can be minimized.
Turning now to
As illustratively shown, air will flow radially outward through the first up-pass cavity 504a′ into the first pressure-side turn passage 550′ and the first suction-side turn passage 552′. The air will then be turned within the turn passages 550′, 552′ and flow parallel within the turn passages 550′, 552′ to then be merged within the first merging passage 554′. Similarly, air will flow radially outward through the second up-pass cavity 504a″ into the second pressure-side turn passage 550″ and the second suction-side turn passage 552″. The air will then be turned within the turn passages 550″, 552″ and flow parallel within the turn passages 550″, 552″ to then be merged within the second merging passage 554″. Further, air will flow within the third up-pass cavity 504a′″ to enter and turn within a third merging passage 554′″.
The air within the merging passages 554′, 554″, 554′″ will all be flowing in parallel streamwise directions when entering a merging chamber 562. The air within the merging chamber 562 will then flow into down-pass cavities 504b′, 504b″, as illustratively shown.
The shape of the turn passages 550, 552 are designed to have an angular surface rotation that smoothly transitions the cooling flow from a radial flow (axial aspect ratio) direction (e.g., radially outward within the up-pass cavities) to an axial flow direction (e.g., within the turn cap). Such a smooth transition enables minimal pressure losses due to disparate direction airflows that are merged within the turn cap. That is, the airflow is directed outward through radial (axial aspect ratio) channels and is then turned through segregated axial (circumferential aspect ratio) channels aligned in a predominantly axial direction and then merged while flowing in the same streamwise direction.
Turning now to
With reference to
The inlet 658 has a numerical aspect ratio (although orientation can be different) that is the same as or substantially similar to an aspect ratio of the up-pass cavity that feeds air into the turn passage 650. The inlet 658 has a height H′ and a width W′, as shown in
As shown in
As shown in
Turning now to
Turning now to
As shown in
The ribs that divide or separate the turn passages of each turning feature (e.g., rib 456″ shown in
Turning now to
As shown in
The ribs that divide or separate the turn passages of each turning feature (e.g., rib 456″ shown in
Turning now to
As noted, the configuration shown in
Turning now to
As schematically shown, the airfoil 1002 and the turn cap 1042 include airflow passages as described herein. For example, as shown in the embodiment of
As noted, the configuration shown in
Turning now to
In view of the above, as provided herein, turn caps (or portions thereof) are formed as separate piece(s) and joined to the airfoil platform casting or may be integrally formed therewith. In some configurations, optional “space-eater” baffles can be inserted into airfoil cavities before attaching the turn cap or may be integrally formed with the airfoil or the turn cap. The turn caps, as provided herein, may be cast, additively manufactured, formed from sheet metal, or manufactured by other means.
Although various embodiments have been shown and described herein regarding turn caps for airfoils, those of skill in the art will appreciate that various combinations of the above embodiments, and/or variations thereon, may be made without departing from the scope of the invention. For example, a single airfoil may be configured with more than one turn cap with each turn cap connecting two or more adjacent airfoil cavities.
Advantageously, embodiments described herein provide turn caps that may be fixedly attached to (or integrally formed with) non-gas path surfaces of airfoil platforms to fluidly connect airfoil cavities of the airfoil and aid in turning airflow passing therethrough. Such turn caps can be used with serpentine flow paths within airfoils such that at least one up pass and at least one down pass of the serpentine cavity can be fluidly connected in external cavities outside of the core flow path of the gas turbine engine. The turn caps are designed to include an angular surface rotation turning rate that form twisted or curved turning passages that smoothly transition the internal coolant flow that each turn passage receives from each of the respective predominantly radial flow airfoil cavities. The air is turned within the turn passages and aligned such that efficient flow merging can be achieved.
Further, advantageously, such turn caps allow for installation of “space-eater” baffles into curved airfoils, such as bowed vanes, without interference with manufacturing requirements. Furthermore, advantageously, turn caps as provided herein can operate as stop structures to constrain and/or prevent radial, axial, and/or circumferential movement of the “space eater” baffles relative to the cooling channels and adjacent airfoil external sidewalls and ribs in which they are inserted to ensure optimal convective cooling, pressure loss, and thermal performance is maintained.
Moreover, advantageously, embodiments provided herein keep cooling flow streams in each passage separated until all of the flow streams have turned axial and are aligned in the same direction, eliminating pressure losses associated with turbulence caused by the merging of flow streams in different directions. In addition, advantageously, a means of transitioning the cooling passages from an axial aspect ratio to a circumferential aspect ratio in order to fit all of the passages within the limited radial height available is provided.
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions, combinations, sub-combinations, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments.
For example, although shown with bowed vanes, those of skill in the art will appreciate that airfoils manufactured in accordance with the present disclosure are not so limited. That is, any airfoil where it is desired to have a turn path formed exterior to an airfoil body can employ embodiments described herein.
Furthermore, although shown and described with a single merging chamber, in some embodiment multiple merging chambers can be provided within a turn cap, and each merge chamber can be fluidly isolated from other merging chambers. For example, with reference to
Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4257737 | Andress | Mar 1981 | A |
5393198 | Noda | Feb 1995 | A |
5511309 | Beabout | Apr 1996 | A |
5525038 | Sharma | Jun 1996 | A |
6126394 | Matsuda | Oct 2000 | A |
6299412 | Wood | Oct 2001 | B1 |
7785072 | Liang et al. | Aug 2010 | B1 |
8192153 | Harvey | Jun 2012 | B2 |
8202054 | Liang | Jun 2012 | B2 |
8292582 | Liang | Oct 2012 | B1 |
8602741 | Ahmad | Dec 2013 | B2 |
8821111 | Gear et al. | Sep 2014 | B2 |
8870524 | Liang | Oct 2014 | B1 |
9550267 | Beckman | Jan 2017 | B2 |
9631499 | Liang | Apr 2017 | B2 |
20050276698 | Kvasnak et al. | Dec 2005 | A1 |
20090068023 | Liang | Mar 2009 | A1 |
20090148287 | Suciu et al. | Jun 2009 | A1 |
20090324423 | Liang | Dec 2009 | A1 |
20140050893 | Paige et al. | Feb 2014 | A1 |
20160312632 | Hagan et al. | Oct 2016 | A1 |
20160376897 | Spangler | Dec 2016 | A1 |
20180195397 | Spangler | Jul 2018 | A1 |
20180223676 | Spangler et al. | Aug 2018 | A1 |
20180306036 | Spangler et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
0735240 | Oct 1996 | EP |
3106621 | Dec 2016 | EP |
3109405 | Dec 2016 | EP |
3128130 | Feb 2017 | EP |
3184738 | Jun 2017 | EP |
3184745 | Jun 2017 | EP |
3284908 | Feb 2018 | EP |
Entry |
---|
European Search Report, European Application No. 18170456.0, dated Aug. 6, 2018, European Patent Office; EP Search Report 9 pages. |
Number | Date | Country | |
---|---|---|---|
20180320531 A1 | Nov 2018 | US |