The present application is a 35 U.S.C. ยงยง371 national phase conversion of PCT/IT2008/000684, filed Oct. 31, 2008, the disclosure of which has been incorporated herein by reference. The PCT International Application was published in the English language.
The present invention relates to an airless vehicle tyre, in particular for road vehicles.
In vehicle tyre manufacturing, an airless tyre is known, from Patent Application WO 2005/082643 filed by the Applicant, comprising an annular body of elastomeric material, in turn comprising a tread which rolls on the road surface, and a tread reinforcing strip made of elastomeric material and placed inwards of the tread. The reinforcing strip comprises a number of blocks which project inwards of the tyre, are arranged contacting one another to withstand circumferential compression on the tyre, taper inwards of the tyre, and are each connected to the adjacent block by a respective virtual hinge. When the tyre tread encounters an obstacle, i.e. a concentrated external load is applied, the virtual hinges oppose minimum resistance to flexing of the reinforcing strip inwards of the tyre, so the blocks around the obstacle rotate in opposite directions to form a number of V-shaped slits, the flare of which varies, depending on the distance from the obstacle, and is maximum at the obstacle itself.
Though widely used, known airless tyres of the above type perform poorly in the presence of obstacles. This is mainly due to the way the reinforcing strip is made, the circumferential action of which varies considerably and locally as the wheel is about to roll over the obstacle. As a result, the contact pressure between the various parts of the tread and the road surface is far from even and homogeneous, as required to achieve optimum grip and long life of the tyre.
Tests show that the contact pressure between the blocks falls at the obstacle, and increases sharply up- and downstream from the obstacle, in two substantially rectangular regions.
It is an object of the present invention to provide an airless vehicle tyre designed to provide a straightforward, low-cost solution to the above problem.
According to the present invention, there is provided an airless vehicle tyre, in particular for road vehicles; the tyre comprising a tread which rolls on a road surface, and a reinforcing strip made of elastomeric material and placed inwards of the tread to reinforce said tread; the reinforcing strip comprising a number of blocks movable with respect to one another; and the tyre being characterized in that said reinforcing strip also comprises forcing means for forcing said blocks against one another to exert a circumferential preload on the blocks.
The forcing means of the tyre as defined above are preferably adjustable forcing means to adjust said circumferential preload.
In the tyre as defined above, at least two consecutive blocks preferably define a gap in between, and said forcing means are housed in said gap.
A non-limiting embodiment of the invention will be described by way of example with reference to the accompanying drawings, in which:
Number 1 in
Tyre 1, which is designed to support the vehicle without being inflated with compressed air or other fluid, has an axis 3 of rotation, and comprises an annular body 4 made of elastomeric material and which, when not stressed, extends coaxially with axis 3, at a radial distance from a wheel rim 5 (shown schematically). Annular body 4 in turn comprises a tread 7 (
Tubular reinforcing portion 10 is located inwards of tread 7, contacting an inner surface of tread 7, is substantially the same size as tread 7 measured parallel to axis 3, and is of predetermined differential stress resistance, i.e. depending on the stress to which it is subjected. Tubular reinforcing portion 10 conveniently comprises (
In the example described, tubular reinforcing portion 10 also comprises a ring of solid blocks 13 (
Blocks 13 extend parallel to axis 3, from one side to the other of annular belt 12 and tread 7, are trapezoidal in cross section, taper inwards of tyre 1 and towards wheel rim 5, and are bounded circumferentially by respective pairs of radial lateral surfaces 15.
With particular reference to
Blocks 13 are pushed circumferentially against one another and deformed elastically by a forcing device 18 designed to circumferentially compress and preload blocks 13 when no load or when a predetermined minimum load is exerted on tyre 1.
In the example described and illustrated in
In the
Regardless of how the ring of blocks 13 is precompressed, forcing in the absence of any load on tyre 1 precompresses and elastically deforms blocks 13 circumferentially, so that, when tyre 1 encounters an obstacle or step, as shown in
Tests show that, even in the presence of an obstacle, the residual circumferential preload on blocks 13 evens out the contact pressure between the road surface and the part of tread 7 contacting the road surface on either side of the obstacle, thus greatly improving grip and, hence, tyre performance and endurance as compared with known solutions.
Clearly, changes may be made to tyre 1 as described herein without, however, departing from the scope defined in the accompanying Claims. In particular, different ways may be provided of forcing wedge-shaped elongated bodies 19 inside respective gaps 16 and/or of circumferentially expanding hollow blocks 13. In the case of solid blocks, a wedge-shaped elongated circumferential forcing body may be provided between only some of the blocks or even only between two adjacent blocks 13. And likewise, in the case of hollow blocks, only some or even only one of the blocks may house an elastic circumferential forcing device 26 of or different from the type shown by way of example, while the other blocks 13 are known types.
Tubular reinforcing portion 10 may even comprise a number of side by side rings of aligned or angularly offset blocks.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT2008/000684 | 10/31/2008 | WO | 00 | 9/13/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/049963 | 5/6/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1433338 | Bommarius et al. | Oct 1922 | A |
20060144488 | Vannan | Jul 2006 | A1 |
20060249236 | Moon et al. | Nov 2006 | A1 |
Entry |
---|
International Search Report and Written Opinion mailed Jun. 26, 2009 in corresponding PCT International Application No. PCT/IT2008/000684. |
Number | Date | Country | |
---|---|---|---|
20120031536 A1 | Feb 2012 | US |