The present disclosure generally relates to medical equipment generally, and more particularly, to a ventilator.
This section intends to provide a background discussion for a clear understanding of the disclosure herein but makes no claim nor any implication as to what is the relevant art for this disclosure.
Various medical equipment are currently employed in supporting impaired human breathing, most commonly referred to a ventilators. A ventilator may be defined as a device machine that provides mechanical ventilation by moving breathable air into and out of the lungs, thereby delivering breaths to a patient who is impaired or physically unable to breathe or breath sufficiently. While numerous ventilator designs exist, the most advanced systems rely on computer controlled systems though a simple, hand-operated bag valve mask design are still in use.
With the recent rise of The Coronavirus or Covid 19, the shortage of ventilators has become more glaringly more apparent to public health and safety experts as well as the general public. The most severely impaired Covid 19 patients require ventilators once admitted into intensive care units in hospitals. Naturally, ventilators may also be found in-home care, mobile emergency medicine and as part of anesthesia machines.
Ventilators are currently implemented using an electro-mechanical system to push air through the trachea and into a patient's lungs. These systems rely on motors or pumps to effectively allow a patient to breath mechanically. Electro-mechanical systems like motors and pumps have a predictable fail rate time, require maintenance, consume high amounts of energy, generate heat waste and add bulk to a ventilator design. Consequently, many ventilation machines use electric motors and brushless driven turbine to control the pressurized air flow during both inhalation and exhalation of the lungs, without depending on pressurized gas supply.
The present disclosure includes a system and method for ventilating that eliminates the need for a motorized system to push air into a patient's lungs.
In one embodiment of the disclosure, a system for ventilating includes one or more holding tanks, such as a medical sealed apparatus, for storing of gases. The holding tank stores at least pressured oxygen, for example O2, though the holding tank may store a pressurized blend of oxygen and air. This blend can be in concentration of 100% air to 100% oxygen. This blend may include a 21%-100% oxygen concentration. The pressure applied to the gases in the holding tank may include a range from 5 pounds force per square inch to 20 pounds force per square inch. The blend of oxygen and air, for example, under pressure in the holding tank, the system and method for ventilating of the present disclosure no longer requires a motorized mechanical system, such as, for example, a pump or turbine on the inhalation control and the exhalation control to the ventilating system and method.
In another embodiment of the disclosure, the system for ventilating a patient includes a gas holding reservoir tank, such as, for example, a medical sealed apparatus, for storing of pressurized gases, including, for example, oxygen (O2) and air. Coupled with the medical sealed apparatus is a breathing tube that is to be fit with the patient. The system for ventilating also includes a controller, also coupled with the breathing tube, for blending gasses such as oxygen and air into a mix that may be set, for example, by a medical professional. This controller may be integrated as part of the gas holding reservoir tank. The controller also managing one or more inhalation cycles of the mixed pressurized gasses into the breathing tube. The controller also manages one or more exhalation cycles from the breathing tube each of which generates an output.
In another embodiment, the system's control mechanism may be altered for the mix of the pressurized gases in response to the output from the one or more exhalation cycles.
In yet another embodiment, the mix of the pressurized gases comprises 50 parts oxygen and 50 parts air.
In still another embodiment, the mix of pressurized gases comprises 5 pounds force per square inch to 20 pounds force per square inch.
In yet still another embodiment, the control mechanism includes a computer for managing an onset of the inhalation cycle in response to a volume of the output from the exhalation cycle, and a timer for measuring one or more purge time between one or more pairs of inhalation and exhalation cycles.
In yet another embodiment, the control mechanism further includes a device for controlling a pressure of the one or more exhalation cycles and for allowing for carbon dioxide release.
In yet another embodiment, the control mechanism further comprises one or more closed-loop sensors for sensing pressure and flow of the mix. Here, the closed-loop sensor(s) may control one or more inhalation cycles and the one or more one exhalation cycles.
In yet another embodiment, the system further includes a monitor for monitoring the output to provide a constant and uniform purge of oxygen and air and for minimizing supply pressure fluctuation.
In yet another embodiment, the system further includes a force gas flow device for generating a gas flow of one or more pressure gradients.
In another embodiment of the present disclosure, a system for medical ventilating patients includes one or more medical sealed apparatus for storing pressurized gases, where the pressurized gases include at least of oxygen and air. The system further includes one or more breathing tube, as well as a control mechanism coupling the one or more breathing tubes with the one or more medical sealed apparatus for storing pressurized gases. The control mechanism blends the pressured oxygen and the pressurized air into a mix, while managing one or more inhalation cycles of the mixed pressurized gases into the breathing tube and to the patient(s). The control mechanism also manages one or more exhalation cycles through the breathing tube such that each exhalation cycle may generate an output. The control mechanism also includes a force gas flow device for generating a gas flow of one or more pressure gradients as well as a monitor for monitoring the pressure gradient before each inhalation and each exhalation cycle.
In another embodiment, the control mechanism may be altered so the mix of the pressurized gases in response to the output from the at least one exhalation cycle.
In yet another embodiment, the mix of at least one pressurized gases includes a controlled mix of air and oxygen from 0% oxygen to 100% oxygen.
In still yet another embodiment, the mix of pressurized gases comprises 5 pounds force per square inch to 20 pounds force per square inch.
In still yet another embodiment, the control mechanism includes a computer for managing an onset of each inhalation cycle in response to a volume of the output from the exhalation cycle, as well as a timer for measuring one or more purge times between each pair of inhalation and exhalation cycles.
In yet another embodiment, the control mechanism further controls a pressure of the at least one exhalation cycle to allow for carbon dioxide release.
In yet another embodiment, the monitor further includes a monitoring controller for providing a constant uniform purge of oxygen and air, and for minimizing supply pressure fluctuation.
In yet another embodiment, the system also includes one or more closed-loop sensors for sensing pressure and flow of the mix of pressured gasses such that the sensor(s) controls the one or more inhalation and exhalation cycles.
In yet another embodiment of the disclosure, a method for ventilating medical patients includes storing pressurized gases, such as, for example, oxygen and pressurized air, in one or more medical sealed apparatus. The method includes coupling the medical sealed apparatus with one or more breathing tubes, and blending the pressurized gases to a mix. Thereafter, the method includes managing at least one inhalation cycle of the mix of pressurized gases into the breathing tube, as well as managing at least one exhalation cycle of through the one breathing tube. The method then generates an output from the exhalation cycle, and generates a gas flow of at least one pressure gradient during the exhalation cycle. The method also includes the step of monitoring the pressure gradient before the output is generated.
In another embodiment, the method further includes the step of altering the mix of the pressurized oxygen and the pressurized air in response to the output during the at least one exhalation cycle.
In yet another embodiment, the mix of pressurized gases includes 50 parts oxygen and 50 parts air.
In still yet another embodiment, the mix of pressurized gases comprises 5 pounds force per square inch to 20 pounds force per square inch.
In still yet another embodiment, the method also includes managing an onset of the inhalation cycle in response to a volume of the output from the exhalation cycle, as well as measuring at least one purge time between at least one pair inhalation and exhalation cycles.
In still yet another embodiment, the method also includes controlling exhalation cycle pressure to allow for carbon dioxide release.
In another embodiment, the method further includes providing a constant and uniform purge of oxygen and air while minimizing supply pressure fluctuation.
In another embodiment, the method also includes the step of closed-loop sensing of pressure and flow of the mix to control one or more inhalation and exhalation cycles.
The present disclosure and its various features and advantages can be understood by referring to the accompanying drawings by those skilled in the art relevant to this disclosure. Reference numerals and/or symbols are used in the drawings. The use of the same reference in different drawings indicates similar or identical components, devices or systems. Various other aspects of this disclosure, its benefits and advantages may be better understood from the present disclosure herein and the accompanying drawings described as follows:
The present disclosure includes a system and method for ventilating that does eliminates the need for a motorized system to push air into a patient's lungs.
In one aspect of the disclosure, a system for ventilating is detailed including one or more holding tanks, such as a medical sealed apparatus, for storing of gases. The holding tank stores at least pressured oxygen, for example O2, though the holding tank may store a pressurized blend of oxygen and air. This blend may include a controlled mix of air and oxygen from 0% oxygen to 100% oxygen and air. The pressure applied to the gases in the holding tank may include a range from 5 pounds force per square inch to 20 pounds force per square inch. The blend of oxygen and air, for example, under pressure in the holding tank, the system and method for ventilating of the present disclosure no longer requires a motorized system, such as, for example, a pump or turbine on the inhalation control and the exhalation control to the ventilating system and method.
In another aspect of the disclosure, a method for ventilating medical patients includes storing pressurized gases, such as, for example, oxygen and pressurized air, in one or more medical sealed apparatus. The method includes coupling the medical sealed apparatus with one or more breathing tubes, and blending the pressurized gases to a mix. Thereafter, the method includes managing at least one inhalation cycle of the mix of pressurized gases into the breathing tube, as well as managing at least one exhalation cycle of through the one breathing tube. The method then generates an output from the exhalation cycle, and generates a gas flow of at least one pressure gradient during the exhalation cycle. The method also includes the step of monitoring the pressure gradient before the output is generated.
Referring to
Ventilating system 10 further includes breathing tube 30. Breathing tube 30 is mechanically coupled to gas holding reservoir tank 20. Breathing tube 30 ultimately delivers the pressurized gas to the patient in need of supplemental respiration support. It should be noted that several breathing tubes (not shown) may be mechanically coupled to gas holding reservoir tank 20 to support various applications including servicing several patients in simultaneous need of supplemental respiration support.
Moreover, ventilating system 10 also includes a control mechanism 40. Control mechanism 40 performs a number of functions. To realize this aim, control mechanism 40 is mechanically coupled with gas holding reservoir tank 20 and breathing tube 30. One function performed by control mechanism 40 is for managing the blending percentages of the pressurized gases in holding reservoir tank 20. A medical professional, after examining a patient in need of supplemental respiration support may conclude that a particular mix of oxygen (O2) and air is required given the state of the patient's lungs. Typically, the mix of the blended pressurized gasses is a controlled mix of air and oxygen from 0% oxygen to 100% oxygen though other recipes will be apparent to skilled artisans upon reviewing the disclosure herein. In one embodiment, the mix of pressurized gases delivered to the medical patient involved a range of 5 pounds force per square inch to 20 pounds force per square inch. Once the blended recipe is selected using control mechanism 40, gas holding reservoir tank 20 may enable the pressurized gas mix to be delivered down through the breathing tube 30 to the medical patient.
Another function performed by control mechanism 40 is in the overall management of ventilator system 10. More particularly, control mechanism 40 manages the inhalation cycles in terms of delivery of the mixed pressurized gasses through the breathing tube 30 to the medical patient. The inhalation cycles are set by a medical professional and inputs to this include the damage to the medical patient's pulmonary system, the level of consciousness, as well as the volume of gas exhaled back from the medical patient into breathing tube 30. Similarly, control mechanism 40 also manages the exhalation cycle of the medical patient by tracking the volume of gas flow back from the patient. This gas flow back is, for the purposes of the present disclosure, referred to as output.
It should be noted that control mechanism 40 may be realized by a computing system (not shown). By such an implementation, control mechanism 40 may also alter the mix of the pressurized gases from gas holding reservoir tank 20 through the breathing tube 30 to the medical patient in response to the patient's exhalation cycles. For example, if the patient's output increasingly contains carbon dioxide, reflective of an improving condition, control mechanism 40 may sense the output and automatically reduce the mix of oxygen (O2) and air back through the breathing tube 30 or, in the alternative, alert the medical professional that a different mix is warranted.
Another feature of control mechanism 40 is that it may include a timer (not shown). The timer's function of control mechanism 40 is for measuring at least one purge time between each cycle of inhalation and the exhalation. This information may provide the medical professional insights on the patient's pulmonary status and whether a different mix of pressurized gases are needed.
Still another feature of control mechanism 40 is in the management of the exhalation function. In one embodiment, control mechanism 40 may include a device for monitoring and controlling the pressure of the patient's exhalation cycle, while allowing for the release of carbon dioxide. Given the design of system 10, control mechanism 40 can apply pressurized force of the gas mix delivered through breathing tube 30 to increase the intake of the mix into the patient's pulmonary system.
Control mechanism 40 may further include one or more closed-loop sensor(s) 50. Sensor 50, coupled to breathing tube 30 through sensing tube 45, serves the purpose of sensing the pressure and flow of the mix of gasses delivered to the medical patient. As a consequence, closed-loop sensor 50 may control the inhalation and exhalation cycles of system 10 as desired.
Moreover, control mechanism 40 may also include a force gas flow device (not shown). The purpose of the force gas flow device is for generating a gas flow of at least one pressure gradient from gas holding reservoir tank 20 to breathing tube 30 by means on control mechanism 40.
Control mechanism 40 may further include a monitor 60. Monitor 60 acts as device for monitoring the output from the patient during an exhalation cycle. Monitor 60 also may provide a constant and uniform purge of oxygen and air to minimize supply pressure fluctuation.
It should be noted that gas holding reservoir tank 20 and control mechanism 40 may be realized in single, integrated unit 70. In this arrangement, integrated unit 70 simple couples with breathing tube 30 in a direct fashion.
Referring to
Once the pressurized gases are stored in a medically sealed apparatus of step 110, the apparatus is then coupled 120 with one or more breathing tubes. This coupling, ultimately, is allow a specific mix of pressurized gas to flow through the breathing tube and enable the patient to ventilate their pulmonary system.
After the medically sealed apparatus is coupled with the breathing tube, method 100 then calls for blending 130 the pressurized gases into a desires mix to properly treat the patient. This mix is selected by the medical professional based on observation of the patient. In one embodiment, the mix is a controlled mix of air and oxygen from 0% oxygen to 100% oxygen. The resultant mix of gasses in the tank may include a pressurized range from 5 pounds force per square inch to 20 pounds force per square inch.
Once the pressurized blended, method 100 then calls for the step of managing 140 of one or more inhalation cycles of the mixed of pressurized gases into the breathing tube. Step 140 is followed by the step of managing 150 one or more exhalation cycle of through the at least one breathing tube,
As a consequence of steps 140 and 150, method 100 then generates 160 an output, as defined herein, through one or more of the exhalation cycles. This allows for the subsequent step 170 of generating a gas flow of one or more pressure gradients during the exhalation cycle. Finally, method 100 calls for the step 180 of monitoring the pressure gradient before the output is generated.
It should be noted that method 100 may also include additional steps in alternative embodiments. For example, method 100 may include the step (not shown) of managing an onset of the inhalation cycle in response to a volume of the output from the exhalation cycle. In so doing, method 100 may also include the step (not shown) of measuring at least one purge time between at least one cycle of inhalation and exhalation. Further, method 100 may also include the step (not shown) of controlling the pressure of at least one exhalation cycle to allow for carbon dioxide release from the medical patient.
Other embodiments to method 100 include the step (not shown) of providing a constant and uniform purge of oxygen and air. This step may be realized while minimizing supply pressure fluctuation. Additionally, method 100 may also include closed-loop sensing (not shown) of pressure and flow of the mix of the pressurized gasses. This is intended to control one or more cycles of inhalation and exhalation.
Referring to
From a process flow, in another embodiment of the present disclosure, the enters with a ½″ port solenoid valve. In contrast, the oxygen (O2), for safety purposes, enters via a pilot valve without an electric signal for operating the valve, but an air pilot signal from the ½″ port solenoid valve. The air and gas are pressure regulated to ensure the mixer receives constant flow regardless of potential supply fluctuations. Both inlet air and oxygen (O2), are also pressured controlled using a pressure transducer;
Operationally, in an embodiment of the present disclosure, the medical professional adjusts the air to oxygen (O2) ratio of the mixture with a flow control dial button provided on, for example, the Secrist Model 3500 mixer. The ratio can be from 21% oxygen (O2), ambient air, to enriched oxygen (O2) air mixture, up to 100% oxygen (O2). The mixture then enters a stainless-steel holding reservoir tank. The volume of air and oxygen (O2) in the tank is pressure controlled with a regulator and a pressure transducer. Once it reaches its desired pressure, it stops the supply of both air and oxygen (O2).
The present disclosure may provide mechanical invasive, anesthesia free, lung ventilation for acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) by releasing controlled pressure of air and oxygen mixed gas for inhalation and supporting controlled pressure exhalation, through an endotracheal tube (ETT) or other suitable patient interface.
It should be noted that the tank, according to an embodiment of the present disclosure, may have at least two ports for output. The first port is for venting the tank when the cycles are all done or if/when the system is stopped, while the second port is a controlled valve for the breathing apparatus.
According to another embodiment of the present disclosure the control valve may have three ports. The first port is for inflow, connecting the holding reservoir tank to the valve, while the second port is for outflow, connecting supply line of air/oxygen mix to the patient lungs connected to the breathing tube or Endotracheal Tube Medical (“ETT”). The third control valve port is for exhaust, connecting the patient's exhaled gasses (exhaust). This exhaust may be fed to various sources including, for example, a hospital supplied exhaust respiratory filter. It is contemplated that if patient's airways are infected, the exhaust respiratory filter will be heavily recommended. The outflow and exhaust ports hereinabove are controlled separately with pressure regulators and flow control meters.
According to another embodiment of the present disclosure, the ventilator system may be electrically coupled with a conventional wall plug socket, such as 110V or 220V, for example. The ventilator system may include an on/off switch to power on and off the system. The ventilator system valves, transducers, pressure regulators and flow meters may be wired, in one embodiment, to a programmable logic controller (PLC) with a touch screen human-machine-interface (HMI) display, for example. The control parameters may have a display representation to set operational parameters on the HMI screen. Here, operational parameters may be entered manually by the ventilator operator to conform to technical standards agreed upon in the medical and regulatory community. The touch screen HMI may also have a start/stop display button to initiate and terminate the ventilator system's operation. The touch screen display may have a graphic display of the closed-loop readouts from the controllers. In one embodiment, the programmable logic controller may be connected with a cellular SIM card/system, a wireless WiFi card, an ethernet port, or the like to enable remote control via an internet connection. As a consequence, the programmable logic controller may also have a USB port to enable coupling with USB devices though other standardized connectors and systems are contemplated by the disclosure herein.
In another embodiment, the ventilator system includes a gas supply to gas mixer. The gas supply to gas mixer includes various components cooperating together including oxygen pressure regulator, an oxygen pilot valve, a pressure transducer, an air pressure regulator, an air ½″ solenoid valve and a pressure transducer. Further, the ventilator system also includes fittings piping, as well as a gas mixer, such as, for example, Sechrist Model 3500hl Air Oxygen Mixer. Additionally, the ventilator system may include a mixed o2/air holding reservoir tank. This tank may be designed from stainless steel material and include a tank mixture transducer, a vent valve, various fitting and piping. The ventilator system here may further include a patient outflow port from tank, which may include a mixture pressure regulator, a mixture transducer, a flow meter, a three-way valve, an exhalation pressure regulator, as well as fittings and piping. Further, the ventilator system may also include various additional components including electrical switches, a programmable logic controller, a display, a wireless (WiFi or cellular for example) card, a USB port, and an Ethernet port.
In another embodiment of the present disclosure, a mechanical process flow narrative can be detailed as follows:
In another embodiment of the present disclosure, the programming logic controller and HMI display may be configured as follows:
It should be understood that the figures in the attachments, which highlight the structure, methodology, functionality and advantages of this disclosure, are presented for example purposes only. This disclosure is sufficiently flexible and configurable, such that it may be implemented in ways other than that shown in the accompanying figures.
Number | Date | Country | |
---|---|---|---|
63012192 | Apr 2020 | US |