Aisle Containment System

Information

  • Patent Application
  • 20110278999
  • Publication Number
    20110278999
  • Date Filed
    May 11, 2011
    13 years ago
  • Date Published
    November 17, 2011
    13 years ago
Abstract
The aisle containment system is mounted to two rows of equal width cabinets or cabinets varying in width between 600 mm, 700 mm and 800 mm. The aisle containment system includes door assemblies on both ends of the cabinet rows, vertical panels that mount to the cabinets and door frames to support the ceiling, cross tees that span the aisle, and ceiling panels. Additional cabinets of equal or varying width may be added to an aisle containment installation.
Description
BACKGROUND OF THE INVENTION

The present invention relates to an aisle containment system. More particularly, the present invention relates to an aisle containment system that mounts to two rows of equal width cabinets or cabinets varying in width between 600 mm, 700 mm and 800 mm.


SUMMARY OF THE INVENTION

The present invention is directed to an aisle containment system. The aisle containment system includes a plurality of cabinets, a plurality of vertical panels and a door assembly. The cabinets are arranged in a first row and a second row opposite the first row defining an aisle therebetween. The vertical panels include a fixed lower panel and a telescoping upper panel. The lower panels are secured to the top of the cabinets and the telescoping upper panels extend from the lower panels to the room ceiling. The door assembly is secured to an end of the cabinets and extends across the aisle.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an aisle containment system according to an embodiment of the present invention.



FIG. 2 is a partially exploded perspective view of the aisle containment system of FIG. 1.



FIG. 3 is a perspective view of a cabinet vertical panel for the aisle containment system of FIG. 1.



FIG. 4 is a perspective view of an alternate cabinet vertical panel for the aisle containment system of FIG. 1.



FIG. 5 is a perspective view of the cabinet vertical panel of FIG. 3, before a right angle spacer bar is mounted to the cabinet vertical panel.



FIG. 6 is a cross-sectional view of the cabinet vertical panel of FIG. 3, after the right angle spacer bar is mounted to the cabinet vertical panel.



FIG. 7 is a perspective view of a cross tee for the aisle containment system of FIG. 1.



FIG. 8 is a side view of a portion of the cross tee of FIG. 7.



FIG. 9 is an enlarged perspective view of an end portion of the cross tee of FIG. 7.



FIG. 10 is an end view of the cross tee of FIG. 9.



FIG. 11 is a perspective view of an end portion of an alternate cross tee for the aisle containment system of FIG. 1.



FIG. 12 is an end view of the cross tee of FIG. 11.



FIG. 13 is a perspective view of an end portion of an alternate cross beam for the aisle containment system of FIG. 1.



FIG. 14 is an end view of the cross beam of FIG. 13



FIG. 15 is an end view of the cross tee of FIG. 10 supporting a ceiling light fixture box frame.



FIG. 16 is a perspective view of portions of the cross tees of FIG. 7 positioned on the cabinet vertical panels of FIG. 3.



FIG. 17 is an enlarged perspective view of detail 17 in FIG. 16.



FIG. 18 is a bottom perspective view of the clamp and screw of FIG. 17.



FIG. 19 is a top view of a portion of the right angle spacer bar of FIG. 6, showing a mounting hole location for a minimum aisle width.



FIG. 20 is a top view of a portion of the right angle spacer bar of FIG. 6, showing a mounting hole location for a maximum aisle width.



FIG. 21 is an end view of the cross tee of FIG. 10 supporting a ceiling panel with a clamp in the unlocked position.



FIG. 22 is an end view of the cross tee of FIG. 10 supporting a ceiling panel with a clamp in the locked position.



FIG. 23 is an enlarged perspective view of a portion of the door assembly of FIG. 1.



FIG. 24 is an enlarged perspective view of a portion of the aisle containment system of FIG. 1, showing a secondary cross tee mounted between two cross tees of FIG. 7.



FIG. 25 is an exploded perspective view of detail 25 in FIG. 24, showing the secondary cross tee before mounting between two cross tees of FIG. 7.



FIG. 26 is an enlarged perspective view of a portion of the aisle containment system of FIG. 1, showing a fire suppression cross tee mounted between two cross tees of FIG. 7.



FIG. 27 is an exploded perspective view of detail 27 in FIG. 26, showing the fire suppression cross tee before mounting between two cross tees of FIG. 7.



FIG. 28 is an enlarged bottom perspective view of a portion of the aisle containment system of FIG. 1, showing a light fixture cross tee mounted between two cross tees of FIG. 7.



FIG. 29 is a top perspective view of the light fixture cross tee of FIG. 28.



FIG. 30 is a perspective view of a portion of the aisle containment system of FIG. 1, showing two fire suppression cross tees with integral light fixtures mounted between two cross tees of FIG. 7 and before an air duct is installed between the secondary cross tees.



FIG. 31 is a top view of the aisle containment system of FIG. 30, showing three air ducts installed between secondary cross tees.



FIG. 32 is an end view of the aisle containment system of FIG. 31, showing one ceiling panel in the open position.



FIG. 33 is a perspective view of the aisle containment system of FIG. 1, after the cabinet vertical panels have been secured to the additional cabinets and prior to vertical blank panels being secured to the cabinet vertical panels and cabinets.



FIG. 34 is a perspective view of an alternate door assembly for the aisle containment system of FIG. 1.



FIG. 35 is a perspective view of a door frame for the door assembly of FIG. 34.



FIG. 36 is an exploded front perspective view of a portion of the door frame of FIG. 35.



FIG. 37 is an exploded rear perspective view of a portion of the door frame of FIG. 35.



FIG. 38 is an enlarged perspective view of a transom for the door assembly of FIG. 34.



FIG. 39 is a perspective view of a portion of the transom of FIG. 38.



FIG. 40 is an exploded perspective view of a portion of the transom of FIG. 38, before the transom is attached to the top cap of the network cabinet.



FIG. 41 is an exploded perspective view of a side skirt for the door assembly of FIG. 34, before the side skirt is attached to the bottom of the network cabinet.



FIG. 42 is a perspective view of the side skirt of FIG. 41, after the side skirt is attached to the bottom of the network cabinet.



FIG. 43 is an exploded perspective view of a portion of the door assembly of FIG. 34, before the door frame is attached to the lower post support and the side skirt.



FIG. 44 is a front perspective view of a portion of the door assembly of FIG. 34, after the door frame is attached to the transom.



FIG. 45 is a rear perspective view of the transom of FIG. 44, after the door frame is attached to the transom.



FIG. 46 is a partially exploded perspective view of the door assembly of FIG. 34, before covers are placed over the transom and the header.



FIG. 47 is a perspective view of the aisle containment system of FIG. 1 with telescoping vertical panels.



FIG. 48 is a perspective view of the back side of the telescoping vertical panel of FIG. 47 mounted to a cabinet.



FIG. 49 is a perspective view of the upper panel side gasket and the lower panel of the telescoping vertical panel of FIG. 48.



FIG. 49
a is a cross sectional view of the tube gasket of FIG. 49 uncompressed.



FIG. 49
b is a cross sectional view of the tube gasket of FIG. 49 compressed.



FIG. 50 is a perspective view of the lower panel of the telescoping vertical panel of FIG. 48 with flared edges.



FIG. 51 is a perspective view of the front side of the telescoping vertical panel of FIG. 47 mounted to a cabinet.



FIG. 52 is a perspective view of a pawl assembly attached to the lower panel of FIG. 51.



FIG. 53 is a perspective view of the pawl and rod assembly of the telescoping vertical panel of FIG. 51.



FIG. 54 is a cross sectional view of the pawl and rod assembly of FIG. 53.



FIG. 55 is a front perspective view of the telescoping vertical panels of FIG. 47.



FIG. 56 is a perspective view of the mounting tabs of the telescoping vertical panel of FIG. 47.



FIG. 57 is a front view of the telescoping vertical panels of FIG. 47 secured to the door assembly.



FIG. 58 is a cross sectional view of the telescoping vertical panel of FIG. 57 secured to the door assembly.



FIG. 59 is a side perspective view of the telescoping vertical panel of FIG. 57 secured above the door assembly.



FIG. 60 is a perspective view of an alternative telescoping vertical panel mounted along the edge of the cabinet.



FIG. 61 is a front view of the slots in the flanges of the telescoping vertical panel of FIG. 60.



FIG. 62 is a front view of the slots in the flanges of the telescoping vertical panel of FIG. 61.



FIG. 63 is a perspective view of one side of the lower panel and the upper panel of the telescoping vertical panel of FIG. 60 secured together via a bolt and a nut.



FIG. 64 is a top view of the sides of the telescoping vertical panel of FIG. 63.





DETAILED DESCRIPTION


FIGS. 1-33 illustrate an aisle containment system 40 according to an embodiment of the present invention. As shown in FIG. 1, aisle containment system 40 is mounted to two rows 42, 44 of three equal width cabinets 46 (800 mm shown). However, the cabinet widths may be any combination of 600 mm, 700 mm and 800 mm. Preferably, the aisle width is 6 feet. Aisle containment system 40 includes a door assembly 48 on each end of each row 42, 44, cabinet vertical panels, door frame vertical panels, cross tees and ceiling panels.



FIG. 3 shows vertical panel 50 that attaches to the top of a cabinet, such as Panduit Corp.'s Net-Access™ cabinet. Vertical panel 50 includes three mounting studs 52 on the bottom surface that match the standard mounting holes on top of the cabinet. Pairs of extruded tapped holes 54 are spaced at 100 mm increments on top flange 56 of vertical panel 50 for securing cross tees to top flange 56, because 100 mm is the largest common multiple of the cabinet widths of 600 mm, 700 mm and 800 mm. In one configuration, the spacing between each tapped hole 54 is 50 mm. Vertical panel 50 may also include extruded tapped holes 58 on its side flanges 60 for securing adjacent vertical panels 50.



FIG. 4 shows vertical panel 62 that attaches to the top of a cabinet, such as Panduit Corp.'s Net-Serv™ cabinet. Vertical panel 62 includes two mounting holes 64 on bottom flange 66 that are used to bolt vertical panel 62 to the top of the cabinet of corresponding width. Bottom flange 66 also includes three clearance holes 68 that allow for clearance around the head of fasteners that attach the top of the cabinet to the frame. Specifically, Panduit Corp.'s Net-Serv™ cabinet has bolts with washers that stand about 3/16 inches above the top of the cabinet. Pairs of extruded tapped holes 70 are spaced at 100 mm increments on top flange 72 of vertical panel 62 for securing cross tees to top flange 72, because 100 mm is the largest common multiple of the cabinet widths of 600 mm, 700 mm and 800 mm. In one configuration, the spacing between each tapped hole 70 is 50 mm. Vertical panel 62 may also include extruded tapped holes 74 on its side flanges 76 for securing adjacent vertical panels 62.


As shown in FIGS. 5 and 6, vertical panels 50 have a right angle spacer bar 78 mounted to top flange 56 with screws 80. Right angle spacer bar 78 may vary in size to accommodate 600 mm, 700 mm and 800 mm vertical panels. The thickness of flange 82 is the same thickness as flange 84 of cross tee 86, which creates a flat plane for sealing the perimeter of ceiling panel 88. Right angle spacer bar 78 also provides stop 90 that contains ceiling panel 88 in the proper position.



FIGS. 7-14 show two cross tees and a cross beam. FIGS. 7-10 show cross tee 86; FIGS. 11 and 12 show cross tee 92; and FIGS. 13 and 14 show cross beam 94.



FIGS. 9 and 10 show cross tee 86 having a flange 84 on each side of center vertical web 96. Center vertical web 96 provides strength and stiffness to minimize deflection of cross tee 86 under load, and flanges 84 support ceiling panels 88. As shown in FIGS. 7 and 8, center vertical web 96 may include mounting holes 98 for securing secondary cross tees to cross tee 86. Preferably, cross tee 86 is 1.5 inches wide, with each flange 84 being 0.625 inches wide and center vertical web 96 being 0.25 inches wide. Also, cross tee 86 is preferably 1.55 inches in height. As best seen in FIG. 10, seam 100 is located at the apex of center vertical web 96.



FIGS. 11 and 12 show cross tee 92. Cross tee 92 is identical to cross tee 86, except seam 102 is located on the flange side of cross tee 92.



FIGS. 13 and 14 show cross beam 94. Cross beam 94 is wider than cross tees 86 and 92. Preferably, cross beam 94 is 2.39 inches wide, with each flange 104 being 0.625 inches wide and center vertical web 106 being 1.14 inches wide.


In a raised floor environment, no ceiling ducts or grates are required for an aisle containment installation. However, in a slab floor environment, ducts are required and light fixtures in the ceiling may be required. FIG. 15 shows that the profile of cross tee 86 is compatible with a standard suspended ceiling light fixture frame 108, which accommodates standard fluorescent fixtures.


Aisle containment system 40 shown in FIG. 1 includes two rows 42 and 44 of three equal width cabinets 46 (800 mm). Vertical panels 50 or 62 allow the use of any cabinet width which is a multiple of 100 mm in combination with any ceiling tile width which is a multiple of 100 mm. As best seen in FIG. 16, an 800 mm right angle spacer bar is utilized with an 800 mm ceiling panel 88, and a 600 mm right angle spacer bar is utilized with a 600 mm ceiling panel 89.


There are some large tolerances involved when installing cabinets in an aisle containment system. Examples include levelness of floor, perpendicularity of cabinet to floor, allowable manufacturing tolerances, and material variances. In order to account for these tolerances, clamp 110 and screw 112 may be used to secure cross tee 86 to vertical panels 50 as shown in FIG. 17. When clamps 110 are loose, cross tee 86 may be properly positioned relative to other cross tees. When cross tee 86 is positioned properly, screws 112 may be tightened to secure cross tee 86 to vertical panels 50. As best seen in FIG. 18, contact surface 114 may be grooved or textured to provide additional clamping strength and ground connection. Also, flange 84 may include uncoated areas 116 to improve grounding between clamp 110 and cross tee 86.



FIGS. 19 and 20 show the minimum and maximum positions of aisle width, respectively. The tolerance of the aisle width is 0.625 inches, approximately 0.313 inches on each side. Thus, in the minimum position, the aisle width is approximately 71.687 inches. In the maximum position, the aisle width is approximately 72.313 inches.



FIGS. 21 and 22 show ceiling panels 88 being secured to cross tee 86. Ceiling panel 88 has holes at each corner, and ceiling panel 88 is positioned on either flange 84 of cross tee 86. A quarter turn hold-down clamp 118 is mounted in the corners of ceiling panel 88, and clamp 118 is rotated 90 degrees from the unlocked to the locked position.



FIG. 23 shows door assembly 48. Two support posts 120 extend from the floor to the top of vertical panels 121. Beam 122 is positioned on top of doors 124 and between support posts 120. Vertical panels 121 are bolted to the top of beam 122, and vertical panels 121 are bolted to support posts 120. Cross tee 86 is clamped to the top of vertical panels 121.



FIGS. 24 and 25 show secondary cross tee 126 mounted between two cross tees 86 to divide ceiling panel 88 into two smaller panels for easier handling. Cross tee 126 has end flanges 128 including holes 130 to secure cross tee 86. Cross tee 86 has a plurality of holes 98 for mounting cross tee 126 in multiple locations, and cross tee 126 has a lower flange 134 cut back to drop down between two cross tees 86 so that all the flanges are in the same plane. Ceiling panels 88 can be cut to various sizes depending on the location of cross tee 126.



FIGS. 26 and 27 show fire suppression cross tee 136 mounted between two cross tees 86. Cross tee 136 has an access hole 138 that allows fire suppression components to penetrate from overhead into the aisle containment area. Preferably, access hole 138 has a three inch diameter. Cross tee 136 can be bolted into cross tees 86 in the same holes 98 as secondary cross tee 126 described in FIGS. 24 and 25. Cross tee 136 has a lower flange 140 cut back to drop down between two cross tees 86 so that all the flanges are in the same plane. Ceiling panels 88 can be cut to various sizes depending on the location of cross tee 136.



FIGS. 28 and 29 show light fixture cross tee 142 mounted between two cross tees 86. Cross tee 142 has an integral light fixture 144 that spans the entire distance between cross tees 86 to maximize the light in the aisle. Lens 146 is flush with the aisle containment ceiling, as shown in FIG. 28.



FIG. 30 shows air duct 148 mounted between cross tees 86. Two fire suppression cross tees 150 with integral light fixtures are bolted to cross tees 86 on the sides of air duct 148 for sealing and additional support. Ceiling panels 152 can be installed to seal the remainder of the section and provide access above the ceiling area. Cross tee 150 is a combination of cross tee 136 and cross tee 142, except cross tee 150 has two access holes 154 that allow fire suppression components to penetrate from overhead into the aisle containment area. Light fixtures are positioned between the fire suppression components to illuminate the aisle.



FIG. 31 shows multiple air ducts 148 installed in aisle containment system 40. Air ducts 148 can be various dimensions depending on the air handling requirements. Unused access holes 154 will be sealed, and light fixtures 155 provide additional lighting within the aisle. As best seen in FIG. 32, ceiling panels 152 can be lifted to provide access to the area above the aisle containment, which may include power bus 156.


If multiple width cabinets exist in the aisle containment system, there may be a need for vertical blank panels 158. Preferably, vertical blank panel 158 is 100 mm wide. FIG. 33 shows a 600 mm wide cabinet 160 being added to row 42, and a 700 mm wide cabinet 162 being added to row 44. Thus, vertical blank panel 158 is secured to cabinet 160 to equalize the lengths of the two rows at 700 mm. However, each row 42, 44 consists of three 800 mm wide cabinets 46. In order to maintain the same ceiling panel width (800 mm) throughout the aisle containment system, one vertical blank panel 158 is secured to cabinet 162, and one vertical blank panel 158 is secured to vertical blank panel 158.



FIGS. 34-46 show door assembly 200. Preferably, each door 202 is a standard 36″ steel door with half windows 204. Doors 202 have closers 206 with hold-open features and do not latch or lock. However, latching and locking features can be added to doors 202. Although only one pair of network cabinets is shown in FIG. 34, more cabinets are typically used and another door assembly 200 is positioned at the other end of the containment aisle. Door assembly 200 is mounted to two rows of cabinets spaced 6 feet apart. However, the two rows of cabinets may be spaced only 4 feet apart, using the same door posts, but shorter header, transom and covers along with narrower doors.



FIG. 35-37 shows door frame 208. Door frame 208 includes two door posts 210 and header 212. Each post 210 is attached to header 212 using screws 214, as shown in FIG. 36. Post 210 has horizontal slot 216 to provide a location for header 212. As shown in FIG. 37, bottom 218 of header 212 slides into slot 216 to ensure that header 212 is at the correct height. Foam seals may be attached to flanges on the back side of door posts 210, and the foam seals would press against the cabinet side panels.



FIGS. 38-40 show transom 220. Transom 220 is a panel that fills the area above door frame 208 up to the containment ceiling. Transom 220 attaches to the vertical containment walls and the cabinet top cap. Because transom 220 is attached to the cabinet and walls, it moves up and down with the cabinet as the leveling legs are adjusted. As shown in FIG. 39, cross-aisle tee beam 222 attaches to the top of transom 220 and an open hem 224 across the top of transom 220 hooks over one leg of tee beam 222. Open hem 224 provides an assembly aid when attaching transom 220 to holes in the cabinet top cap (see FIG. 40). Horizontal slots 226 in transom 220 provide adjustability, so that transom 220 can be adjusted left or right to ensure that door posts 210 are vertical.



FIGS. 41-46 show the steps for attaching door assembly 200 to one end of two rows of network cabinets. First, brackets 228 attach to door shoe 230, and slots 232 in brackets 228 allow for in and out adjustment of door posts 210 to ensure that they are vertical. The cabinet side panel may be removed to ease installation of brackets 228, but the side panel must be installed before attaching side skirt 234. Next, side skirt 234 attaches to brackets 228. Side skirt 234 rests on the floor and is held against the cabinet side panel to prevent air leakage, as shown in FIG. 42. Vertical slots 236 in side skirt 234 allow for the cabinet to be raised off the floor by casters or leveling legs, while side skirt 234 remains in contact with the floor. Flange 238 on the bottom of side skirt 234 tucks under the cabinet.


As shown in FIG. 42, lower post support 240 attaches to side skirt 234. Support 240 has slots 242 which allows it to adjust horizontally. This adjustment allows door posts 210 to be mounted 6 feet apart, even if the cabinets are spaced slightly more or less than 6 feet apart. Next, door post 210 is placed over lower post support 240 and attached with screws 244 as shown in FIG. 14. Then, door frame 208 is aligned with transom 220 and attached to transom 220 from inside the containment aisle as shown in FIG. 45. Because transom 220 has vertical adjustment slots 227, the height of transom 220 is adjustable as the leveling legs are adjusted on the cabinets. However, door frame 208 remains on the floor.


As shown in FIG. 46, covers 246, 248 are attached over header 212 and transom 220 to provide a clean, aesthetic look to door assembly 200. Finally, doors 202, closers 206 and perimeter seals for doors 202 are attached to door frame 208 to complete door assembly 200. Door assembly 200 can be attached to the other end of the containment aisle in a similar manner.



FIGS. 47-59 show telescoping vertical panels 300 attached to the aisle containment system. The telescoping vertical panels 300 are used with an aisle containment system that uses an existing ceiling as a roof instead of cross tees and panels as shown in FIGS. 1-46. The telescoping vertical panels 300 extend to the room ceiling to reduce the mixing of hot air and cold air in the aisle containment system. The telescoping vertical panels 300 may be used with any combination of 600, 700 and 800 mm width cabinets. The aisle width can be 4 feet or 6 feet.



FIG. 48 shows a telescoping vertical panel 300 secured to a cabinet 46. The telescoping vertical panel 300 includes a lower fixed panel 302 and an upper panel 304. The lower panel 302 is mounted to the top of the cabinet 46 with two bolts 306. The lower panel 302 also includes mounting tabs 308 for joining adjacent lower panels 302 together.


The sides 310 of the lower panel 302 include flanges 312 that wrap around the upper panel 304 to support and guide the upper panel 304.


The sides 310 of the lower panel 302 and the sides 320 of the upper panel 304 include a gasket 316, 322, respectively, to provide a seal between adjacent vertical panels 300. A gasket 324 is also attached to the top of the upper panel 304 to seal the upper panels 304 to the room ceiling. The top gasket 324 will compress when in contact with the room ceiling (not illustrated).



FIGS. 49-50 show the interface of the upper panel side gasket 322 and the lower panel 302. The side gasket 316 of the lower panel 302 is stationary. The upper panel side gasket 322 slides into a cavity 314 formed by the flanges 312 of the lower panel 302. As illustrated in FIG. 49, the side gasket 322 of the upper panel 304 may be rounded to help the side gasket slide into the cavity 314. FIG. 49a shows the side gasket 322 of the upper panel 304 uncompressed and FIG. 49b shows the side gasket 322 of the upper panel 304 compressed in the cavity 314. The side gasket 322 of the upper panel 304 is undersized in width so the compressed side gasket 322 will not interfere with the flanges 312 of the lower panel 302. For example, the width of the upper panel side gasket can be 0.5″ and the cavity width without flared edges is 0.75″ leaving 0.125″ clearance on each side for the compressed gasket.



FIG. 50 shows the lower panel 302 having edges 318 that are flared to help guide a rectangular side gasket 322 of the upper panel 304 into the cavity 314.



FIGS. 51-54 show the pawl assembly 330 that secures the upper panel 304 of the telescoping vertical panel 300 in an extended position. The pawl assembly 330 is similar to the pawl assembly disclosed in commonly owned U.S. patent application Ser. No. 12/731,877. The pawl assembly 330 is attached to the lower panel 302 of the telescoping vertical panel 300. The pawl assembly 330 includes a channel 332, a pawl lever 334 with pawl teeth 336 and a lockout lever 338. The lockout lever 338 prevents the pawl lever 334 from being accidentally actuated to release the upper panel 304.


A flat bar 340 is attached to the upper panel 304. As shown in FIGS. 53-54, the flat bar 340 is positioned in the channel 332 of the pawl assembly 330. The pawl teeth 336 on the pawl lever 334 grip the flat bar 340 to prevent the upper panel 304 from moving vertically. To lower the upper panel 304, the pawl lever 334 is pushed toward the vertical panel 300. As the pawl lever 334 rotates, the pawl teeth 336 are disengaged from the flat bar 340 and the upper panel 304 can be moved downward. When the pawl assembly 330 rests on the bottom 342 of the flat bar 340, there is a 4 inch overlap between the upper panel 304 and the lower panel 302.



FIG. 55 is a front view of adjacent telescoping vertical panels 300 secured to cabinets 46 in the aisle containment system. The adjacent lower panels 302 are secured together by mounting tabs 308. Once the upper panels 304 are extended to the room ceiling, a ganging bracket 326 is bolted to adjacent upper panels 304 to keep the vertical panels 300 in line and to minimize gaps between the vertical panels 300.



FIG. 56 shows the panel mounting tab 308. The mounting tab 308 is used to secure adjacent lower panels 302 together.



FIGS. 57-58 show the telescoping vertical panels 300 mounted above the door assembly 200. The telescoping vertical panel 300 is attached to an angle bracket 350 that is attached to the header 212 of the door assembly 200.



FIG. 59 shows the side gasket of the door panels forming a seal with the vertical panels 300 above the cabinets 46. A panel to panel bracket 352 allows the use of two panel mounting tabs 308 to secure the door panels to the lower panel 302.



FIGS. 60-64 show an alternative telescoping vertical panel 400 mounted to the cabinet 46. The vertical panel 400 includes a fixed lower panel 402 and an adjustable upper panel 412. The lower panel 402 is mounted along an edge of the cabinet 46 via a mounting flange 404. The lower panel 402 and the upper panel 412 each include sides 406, 414 with a flange 408, 416, respectively. The thickness of flanges 408, 416 can be increased to provide stability to vertical panel 400. The sides 406 of the lower panel 402 receive the sides 414 of the upper panel 412 (see FIG. 64). The upper panel 412 also includes a foam seal 420 positioned along the top of the upper panel 412. The foam seal 420 enables the upper panel 412 to form a seal with the room ceiling.


The flange 408 of the lower panel 402 and the flange 416 of the upper panel 412 each include a plurality of slots 410, 418, respectively. The slots 410, 418 have a width “W” designed to receive bolts 430, or other fasteners, having a diameter less than W. The slots 410, 418 are located a length “S” apart from each other such that the distance from the bottom of slot 410, 418 to the top of slot 410, 418 is “S+2W.”


As illustrated in FIGS. 62 and 63, when the upper panel 412 is raised, the slots align to create an opening for receiving the bolt 430 to secure the upper panel 412 to the lower panel 402.

Claims
  • 1. An aisle containment system comprising: a plurality of cabinets arranged in a first row and a second row opposite the first row defining an aisle therebetween;a plurality of vertical panels secured to the top of the cabinets; wherein the vertical panels include a fixed lower panel and a telescoping upper panel; and a door assembly secured to an end of the cabinets and extending across the aisle.
  • 2. The aisle containment system of claim 1, wherein the upper panel includes a top gasket for sealing the aisle containment system at a room ceiling.
  • 3. The aisle containment system of claim 1, wherein the lower panel includes at least one mounting tab for joining adjacent lower panels together.
  • 4. The aisle containment system of claim 1, wherein the upper panel includes a ganging bracket for joining adjacent upper panels together.
  • 5. The aisle containment system of claim 1, wherein the lower panel includes sides with flanges that form a cavity for receiving the upper panel.
  • 6. The aisle containment system of claim 5, wherein the upper panel includes sides with a gasket.
  • 7. The aisle containment system of claim 6, wherein the gasket on the sides of the upper panel is compressed in the cavity of the lower panel.
  • 8. The aisle containment system of claim 5, wherein sides of the lower panel include a gasket.
  • 9. The aisle containment system of claim 5, wherein the flanges of the lower panel include flared edges for guiding the upper panel into the cavity.
  • 10. The aisle containment system of claim 1, wherein the lower panel includes a lock assembly for securing the upper panel in an extended position.
  • 11. The aisle containment system of claim 10, wherein the lock assembly includes a channel, a pawl lever with teeth and a lockout lever.
  • 12. The aisle containment system of claim 11, wherein the upper panel further comprising a flat bar slidingly received in the channel, whereby the teeth on the pawl lever engage the flat bar to secure the flat bar in the channel and the upper panel in an extended position.
  • 13. The aisle containment system of claim 10, wherein the lower panel includes sides having a flange with slots and the upper panels includes sides having a flange with slots, the sides of the lower panel receive the sides of the upper panel; and wherein the lock assembly includes a bolt that extends through the slots in the flange of the lower panel and slots in the flange of the upper panel to secure the upper panel in an extended position.
  • 14. The aisle containment system of claim 1, wherein the vertical panels are mounted above the door assembly.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/334,220, filed May 13, 2010; U.S. Provisional Application No. 61/366,797, filed Jul. 22, 2010; U.S. Provisional Application No. 61/374,663, filed Aug. 18, 2010; and U.S. Provisional Application No. 61/379,794, filed Sep. 3, 2010, the subject matter of which is hereby incorporated by reference in its entirety.

Provisional Applications (4)
Number Date Country
61334220 May 2010 US
61366797 Jul 2010 US
61374663 Aug 2010 US
61379794 Sep 2010 US