The present invention relates to Al-RE (rare earth element) alloy-based metal matrix composites (MMC)′s containing reinforcement particulates in a manner to impart improved mechanical and/or physical properties to the material over a wide temperature range with or without optional post heat treatment processes.
Certain aluminum alloys that include rare earth metals, such as Ce, La, and/or mischmetal (a mixture of different rare earth elements described in US Pat. 9,963,770) are known and can be cast and optionally heat treated to exhibit excellent mechanical properties such as tensile strength and ductility at elevated temperatures as also described in US Pat. 9,963,770. These cast or cast/heat treated aluminum -rare earth alloys (hereafter Al-RE alloys) have a multi-phase microstructure that includes one or more intermetallic secondary phase (e.g. Al11X3 where X is the rare earth metal) in an aluminum-rich matrix. The intermetallic secondary phase(s) are present in a well-dispersed volume fraction in the form of a complex network of morphological phase features, such as lath features and/or rod features, in the aluminum-rich matrix in a manner that imparts excellent mechanical properties to the cast alloy. Since the intermetallic secondary phase(s) features are thermally stable at elevated temperatures, the cast alloy exhibits excellent mechanical properties over an extended temperature range.
This invention provides MMCs having an Al—RE alloy matrix and reinforcement particulates in the alloy matrix providing excellent mechanical properties, such as strength and ductility, desired physical properties (e.g., low coefficient of thermal expansion), and corrosion resistance over a wide temperature range without the need for post heat treatment processes commonly required for other classes of Al alloys.
In accordance with one aspect of the present invention, the foregoing and other objects are achieved by a metal matrix composite (MMC) comprising a relatively soft Al—RE alloy matrix containing relatively hard reinforcement particulates in the alloy matrix wherein the MMC exhibits excellent mechanical properties over a wide temperature range, being improved as compared to the same Al—RE alloy that is devoid of the relatively hard reinforcement particulates.
These MMC’s are advantageous in that they can be cast, extruded, thermally sprayed, or additively manufactured with the reinforcement phase to achieve tailorable mechanical and physical properties that are stable over a wide-temperature range by adjusting the second-phase volume fraction, size, morphology, etc. Composites pursuant to certain aspects of the present invention can be made by methods that include, but are not limited to, melt processing, powder metallurgy, thermo-mechanical deformation (e.g. extrusion), thermal spray, cold spray, additive manufacturing such as 3D printing, and electrodeposition.
Moreover, the alloy matrix of the MMC’s does not require any post synthesis heat reatment to obtain optimal strength or ductility or coefficient of thermal expansion (CTE) that can be tailored by adjusting the second-phase volume fraction, size, morphology, etc.
These and other objects and advantage associated with practice of aspects of the present invention will become readily apparent from the following drawings taken with the detailed description.
A metal matrix composite (MMC) is provided comprising an Al—RE alloy matrix and reinforcement particulates dispersed in the alloy matrix wherein the reinforcement particulates have a higher melting temperature than the matrix alloy. Such MMC’s exhibit excellent mechanical properties over a wide temperature range such as room temperature up to and above 230° C.
An illustrative MMC includes an aluminum-rare earth (Al—RE) alloy matrix that generally comprises about 1 to about 30 weight percent (hereafter: wt. %), preferably about 1 to about 20 wt. %, even more preferably about 1 to about 18 wt. %; and even further preferably about 1 to about 17 wt. % RE material where RE is selected from Ce, La, mischmetal, or any combination thereof, and balance aluminum (Al). The Al—RE alloy matrix can optionally include one or more additional alloying elements X that include at least one of Mg, Cu, Mn, Ca, Fe, Ni, Zr, Zn, Si and Ti in an amount of about 1 to about 14 wt. %. U.S. Pat. 9,963,770 describes such Al—RE alloys for use as the alloy matrix as well as natural mischmetal material as an optional source of RE for practice of certain aspects of the present invention, the entire disclosure of which patent is incorporated herein by reference to that end.
The Al—RE alloy matrix is formulated to include a relatively high weight percentage of a strengthening intermetallic Al11RE3 phase (or other intermetallic phases depending on alloy composition) in amounts from about 5 to about 30 wt. % of individual particles where RE is defined above. The alloy matrix is characterized as typically having a microstructure including the strengthening intermetallic Al11RE3 phase distributed in an aluminum-rich alloy matrix. The strengthening intermetallic Al11RE3 phase is characterized by being present in a relatively high phase fraction and by having closely spaced, fine lath microstructural features and/or rod microstructural features as well as fine lath spacing and is thermally stable as described in aforementioned U.S. Pat. 9,963,770.
A particular aspect of the present invention embodies a preferred composition wherein the Al content of the alloy matrix is controlled as represented by:
Al content = Al-(18 - α wt %) LRE - α wt% X where α = total weight (wt)) % of additional alloying elements X between 1 to 12 weight % and where LRE =Ce, La, or Ce+La (i.e. LRE is Ce or La or both Ce and La).
Illustrative of such alloy matrix compositions include but are not limited to:
Certain aspects of the present invention include relatively hard reinforcement particulates in an amount of about 1 to about 40 volume % (or about 1 to about 50 weight %) of the MMC and can comprise ceramic, metal, and/or intermetallic reinforcement particulates of suitable shapes. As mentioned above, the reinforcement particulates have a higher melting temperature than the matrix alloy. Illustrative reinforcement particulates that can be used in practice of aspects of the present invention include, but are not limited to, Al2O3, Ni3Al, ZrO2, SiC, B4C, REO such as CeO2 and La2O3, YSZ, and others having a melting temperature higher than the matrix alloy.
In certain aspects of the present invention the reinforcement particulates have a minimum average dimension (such as minimum average diameter, length, sieve size, etc.) that is in the range of 0.01 microns to 250 microns. Although the Examples set forth below describe adding the reinforcement particulates ex situ (i.e. as an initial separate powder constituent together with a matrix alloy powder), the reinforcement particulates can be formed ex situ by adding the reinforcement particles to an alloy matrix melt or in situ in the alloy matrix by metallurgical reaction during composite processing methods described next.
Composites pursuant to certain aspects of the present invention can be made by methods that include, but are not limited to, melt processing, powder metallurgy, thermal-mechanical deformation (e.g. extrusion), thermal spray, cold spray, additive manufacturing such as 3D printing, and electrodeposition.
The following Examples are offered to further illustrate aspects of the present invention but not to limit the scope thereof.
In Example 1, Al-8%Ce-10%Mg (all in wt%) powder that was commercially gas atomized was used to synthesize a series of MMC’s via uniaxial extrusion. Two composites were prepared comprised of Al-8%Ce-10%Mg/Al2O3 and the Al-8%Ce-10%Mg/Ni3Al. The Al2O3 and the Ni3Al reinforcement powders were obtained from commercial vendors.
The Al-8%Ce-10%Mg powder (< 53 microns particle size after sieving) was mixed with 15 wt% of Ni3Al (< 45 microns particle size after sieving) and 20 wt% Al2O3 (<45 microns particle size after sieving), respectively. Each of the two mixtures of powders 10 was sealed under vacuum in respective Cu cans 12 with an outside diameter of 1.1 inches. Each can 12 placed in a support body 15 was uniaxially extruded through a 0.375 inch die opening 14 (extrusion ratio = 9) at a temperature of 450° C. in extrusion furnace 16,
The uniaxial tensile properties for the Al-8%Ce-10%Mg alloys reinforced with 20 wt% of Al2O3 particles is shown in
The microstructure of the second phase reinforcement particles for the Al-8%Ce-10%Mg with 15 vol % Ni3Al is shown in
In Example 2, Al-8%Ce-10%Mg powder that was commercially gas atomized as used to synthesize a MMC containing about 15 volume % SiC reinforcement particles via uniaxial extrusion using similar extrusion parameters as set forth in Example 1 other than use of a lower extrusion temperature of 350° C. The SiC reinforcement particles (10 micron size after sieving) were purchased from US Research Nanomaterials, Inc.
In Example 3, Al-8%Ce-10%Mg powder that was commercially gas atomized was used to synthesize a MMC containing about20 weight % of Al2O3 particles using similar extrusion parameters as set forth in Example 1.
The measured Vicker’s hardness of the MMC so produced was 159.4 as compared to the hardness values shown in
In this Example, Al—Ce—Mg powders (45-125 microns size distribution) were blended with yttria-stabilized zirconia (YSZ) particles (45-125 microns) and the powder mixture printed using directed energy deposition (DED) additive manufacturing (AM) to provide printed Al—Ce—Mg + YSZ (yttria stabilized zirconia) composites. Referring to
Moreover, the Al—Ce—Mg + YSZ composites can be made using both powder bed methods (e-beam or laser) as well as DED methods. The reinforcing phase can be a ceramic (YZS, SiC, Al2O3 and others) that has much higher melting temperature than Al—Ce matrix alloy.
Although aspects of the present invention have been described and shown with respect to certain illustrative embodiments, those skilled in the art will appreciate that the invention is not limited to these aspects and that changes and modifications can be made therein within the scope of the invention as set forth in the appended claims.
This invention was made with government support under contract nos. DE-AC02-07CH11358; DE-AC05-00OR22725; and DE-AC52-07NA27344 awarded by the Department of Energy. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
63361907 | Jan 2022 | US |