The present invention relates to aluminum alloys and, more particularly, it pertains to aluminum casting alloys comprising silicon (Si), magnesium (Mg), zinc (Zn), and copper (Cu).
Cast aluminum parts are widely used in the aerospace and automotive industries to reduce weight. The most common cast alloy used, Al—Si7—Mg has well established strength limits. At present, cast materials in E357, the most commonly used Al—Si7-Mg alloy, can reliably guarantee Ultimate Tensile Strength of 310 MPa, (45,000 psi), Tensile Yield Strength of 260 MPa (37,709 psi) with elongations of 5% or greater at room temperature. In order to obtain lighter weight parts, material with higher strength and higher ductility is needed with established material properties for design.
A variety of alternative alloys exist and are registered that exhibit higher strength. However these also exhibit potential problems in castability, corrosion potential or fluidity that are not readily overcome and are therefore less suitable for use. Therefore, a need exists to have an alloy with higher mechanical properties than the Al—Si7-Mg alloys, such as E357, which also has good castability, corrosion resistance, and other desirable properties.
The present invention provides an inventive AlSiMg alloy having increased mechanical properties, a shaped casting produced from the inventive alloy, and a method of forming a shaped casting produced from the inventive alloy. The inventive AlSiMg alloy composition includes Zn, Cu, and Mg in proportions suitable to produce increased mechanical properties, including but not limited to Ultimate Tensile Strength (UTS) and Tensile Yield Strength (TYS), in comparison to prior AlSi7Mg alloys, such as E357.
In one aspect, the present invention is an aluminum casting alloy consisting essentially of:
It is noted that the above percentages are in weight % (wt %). In some embodiments of the present invention, the proportions of Zn, Cu, and Mg are selected to provide an AlSiMg alloy with increased strength properties, as compared to prior AlSi7Mg alloys, such as E357. In one embodiment of the present invention, the term “increased strength properties” denotes an increase of approximately 20%-30% in the Tensile Yield Strength (TYS) and approximately 20%-30% in the Ultimate Tensile Strength (UTS) of T6 temper investment castings in room temperature or high temperature applications, in comparison to similarly prepared castings of E357, while maintaining similar elongations to E357.
In some embodiments of the present invention, the Cu content of the alloy is increased to increase the alloy's Ultimate Tensile Strength (UTS) and Tensile Yield Strength (TYS) at room temperature (22° C.) and at high temperatures, wherein high temperature ranges from 100° C. to 250° C., preferably being at 150° C. Although, it is understood that with increasing temperature the Ultimate Tensile Strength (UTS) and Tensile Yield Strength (TYS) generally decreases, it is noted that the incorporation of Cu generally increases high temperature strength properties when compared to similar AlSiMg alloys without the incorporation of Cu. In one embodiment of the present invention, the Cu content is minimized to increase high temperature elongation. It is further noted that Elongation (E) typically increases with higher temperatures.
In some embodiments of the present invention, the Cu content and the Mg content of the alloy is selected to increase the alloy's Ultimate Tensile Strength (UTS) and Yield Tensile Strength (YTS) at room temperature (22° C.) and at high temperatures. In some embodiments of the present invention, the Zn content may increase an alloy's elongation in compositions having Cu and a higher Mg concentration. In some embodiments of the present invention, the Zn content can decrease the alloy's elongation in compositions having Cu and lower Mg concentrations. In addition to the incorporation of Zn effecting elongation at room temperature, similar trends are observed at high temperature.
In some embodiments of the present invention, the Cu composition may be less than or equal to 2% and the Zn composition may range from approximately 3% to approximately 5%, wherein increased Zn concentration within the disclosed range generally increases the alloy's Ultimate Tensile Strength (UTS) and Yield Tensile Strength (TYS). It has also be realized that the incorporation of Zn into alloy compositions of the present invention with a Cu concentration greater than 2% generally slightly decreases the Ultimate Tensile Strength (UTS) of the alloy. In one embodiment, the Zn content is reduced to less than 3% when the Cu content is greater than 2%. In one embodiment, the Zn content may be 0% when the Cu content is greater than 2%. In another embodiment of the present invention, the Cu, Zn and Mg content is selected to provide increased elongation, wherein the incorporation of Mg has a positive impact (increases elongation) on the inventive alloy when the Zn content is less than about 2.5 wt % and a negative impact (decreases elongation) when the Zn content is greater than 2.5 wt %. In one embodiment of the present invention the Ultimate Tensile Strength (UTS) of the alloy may be increased with the addition of Ag at less than 0.5 wt %.
In some embodiments of the present invention, the Mg, Cu and Zn concentrations are selected to have a positive impact on the Quality Index of the alloy at room and high temperatures. The Quality Index is an expression of strength and elongation. Although the incorporation of Cu increases the alloy's strength there can be a trade off in decreasing the alloys elongation, which in turn reduces the alloys Quality Index. In one embodiment, Mg is incorporated into the inventive alloy comprising Cu and greater than 1 wt % Zn in order to increase the Quality Index of the alloy. Further, Zn can increase the Quality Index when both the Mg content is high, such as on the order of 0.6 wt %, and the Cu content is low, such as less than 2.5 wt %.
The inventive alloy is for use in F, T5 or T6 heat treatment. The fluidity of the alloy is also improved when compared with the E357
In another aspect, the present invention is a shaped casting consisting essentially of:
In an additional aspect, the present invention is a method of making a shaped aluminum alloy casting, the method comprising: preparing a molten metal mass consisting essentially of:
In one embodiment of the inventive method, forming the aluminum alloy product comprises casting the molten metal mass into an aluminum alloy casting by investment casting, low pressure or gravity casting, permanent or semi-permanent mold, squeeze casting, die casting, directional casting or sand mold casting. The forming method may further comprise preparing a mold with chills and risers. In one embodiment of the present invention, the molten metal mass is a thixotropic metal mass and forming the aluminum alloy product comprises semi-solid casting or forming.
a presents tensile strength data for samples of aluminum alloys at room temperature containing about 7% Si, about 0.5% Mg, and further containing various amounts of Zn and Cu, directionally solidified at 1° C. per second.
b presents tensile strength data for samples of aluminum alloys at room temperature containing about 7% Si, about 0.5% Mg, and further containing various amounts of Zn and Cu, directionally solidified at 0.4° C. per second.
a presents yield strength data for samples of aluminum alloys at room temperature containing about 7% Si, about 0.5% Mg, and also containing various amounts of Zn and Cu, directionally solidified at 1° C. per second.
b presents yield strength data for samples of aluminum alloys at room temperature containing about 7% Si, about 0.5% Mg, and also containing various amounts of Zn and Cu, directionally solidified at 0.4° C. per second.
a presents elongation data for samples of aluminum alloys at room temperature containing about 7% Si, about 0.5% Mg, and also containing various amounts of Zn and Cu, directionally solidified at 1° C. per second.
b presents elongation data for samples of aluminum alloys at room temperature containing about 7% Si, about 0.5% Mg, and also containing various amounts of Zn and Cu, directionally solidified at 0.4° per second.
Table 1 presents compositions of various alloys, according to the present invention, and the prior art alloy, E357, which is included for comparison. Various tests, including tests of mechanical properties, were performed on the alloys in Table 1, and the results of the tests are presented in
The values in columns 2-8 of Table 1 are actual weight percentages of the various elements in the samples that were tested. All the entries in column 1 except the entry in the last row are target values for copper and zinc in the alloy. The entry in the last row specifies the prior art alloy, E357.
The columns following the first column in Table 1 present actual weight percentages of Cu, Zn, Si, Mg, Fe, Ti, B, and Sr, respectively.
Samples having the compositions cited in Table 1 were cast in directional solidification test molds for mechanical properties evaluation. The resulting castings were then heat treated to a T6 condition. Samples were taken from the castings in different regions having different solidification rates. Tensile properties of the samples were then evaluated at room temperature.
Attention is now directed to
b presents data similar to
b presents yield strength data for the same aluminum alloys as shown in
a presents elongation data for the prior art alloy, E357, and various alloys having added Cu and Zn. The solidification rate was about 1° C. per second, and the dendrite arm spacing was about 30 microns. The best elongation is obtained for the alloys having 0% Cu. However, increasing the Zn concentration from 2% to about 4% caused increased elongation. The alloys having Zn between 2% and 4% had elongations greater than that of the prior art alloy, E357.
b presents elongation data for the alloys shown in
Table 2 presents compositions of various alloys, according to the present invention, wherein the concentrations of Cu, Mg and Zn were selected to provide improved mechanical properties at room temperature and high temperature. The values in columns 2-7 of Table 2 are actual weight percentages of the various elements in the samples that were tested. The balance of each alloy consists essentially of aluminum. It is noted that Sr is included as a grain refiner.
Test specimens where produced from the above compositions for mechanical testing. The test specimens where formed by investment casting in the form of ¼″ thick test plates. The cooling rate via investment casting is less than about 0.5° C. per second and provides a dendritic arm spacing (DAS) on the order of approximately 60 microns or greater. Following casting the test plates were then heat treated to T6 temper. Typically, T6 temper comprises solution heat treat, quench and artificial aging. The test plates where sectioned and their mechanical properties tested. Specifically, the test specimens comprising the alloy compositions listed in Table 2 where tested for Ultimate Tensile Strength (UTS) at room temperature (22° C.), Ultimate Tensile Strength (UTS) at high temperature (150° C.), Tensile Yield Strength (TYS) at room temperature (22° C.), Tensile Yield Strength (TYS) at high temperature (150° C.), Elongation (E) at high temperature (150° C.), Elongation (E) at room temperature (22° C.), Quality Index (Q) at high temperature (150° C.), and Quality Index (Q) at room temperature (22° C.). The results of the tests are presented in the following Table 3.
From the above data in Table 3, regression models for Tensile Yield Strength (TYS) at room temperature (22° C.), Ultimate Tensile Strength (UTS) at room temperature (22° C.), and Elongation (E) at room temperature (22° C.), where derived, as follows:
From the data in Table 3, regression models for Tensile Yield Strength (TYS) at high temperature (150° C.), Ultimate Tensile Strength (UTS) at high temperature (150° C.), Elongation (E) at high temperature (150° C.), and Quality Index (Q) at high temperature (150° C.) where derived, as follows:
The above regression models for Ultimate Tensile Strength (UTS) at high temperature (150° C.), Elongation (E) at high temperature (150° C.), and Quality Index (Q) at high temperature (150° C.) where then plotted in
Referring to the graph depicted in
According to the graph depicted in
Still referring to
Referring now to the graph depicted in
According to the graph depicted in
Still referring to Table 3 and
Referring now to the Graph depicted in
Referring to
Although the alloy compositions listed in Table 3 are illustrative of the inventive composition, the invention should not be deemed limited thereto as any composition having the constituents and ranges recited in the claims of this disclosure are within the scope of this invention. Further examples of alloy compositions that are within the scope of the present invention are listed within the Table depicted in
The final row of the Table in
In one embodiment of the present invention, the inventive aluminum alloy comprising 4%-9% Si, 0.1%-0.7% Mg, less than 5% Zn, less than 0.15% Fe, less than 4% Cu, less then 0.3% Mn, less than 0.05% B and less than 0.15% Ti, has an Ultimate Tensile Strength (UTS) for investment castings with a T6 heat treatment at applications on the order of 150° C. that is 20% to 30% greater than similiarly prepared castings of E357.
In one preferred embodiment of the inventive alloy, in which the Cu content is less than or equal to 2 wt % and the Zn content ranges from 3 wt % to 5 wt %, the Ultimate Tensile Strength (UTS) for investment castings with a T6 heat treatment at applications on the order of 150° C. that is 10% to 20% greater than similiarly prepared and tested castings of E357.
In another embodiment of the inventive alloy, in which the Cu content is greater than 2 wt % and Zn is not present, or present in an amount less than 3%, the Ultimate Tensile Strength (UTS) for investment castings with a T6 heat treatment at applications on the order of 150° C. that is 20% to 30% greater than similiarly prepared and tested castings of E357.
For alloys having a high Tensile Yield Strength (TYS) and high Ultimate Tensile Strength (UTS), an alloy containing about 7% Si, about 0.45% to about 0.55% Mg, about 2-3% Cu and about 0% Zn is recommended.
For alloys having a high Tensile Yield Strength (TYS) and high Ultimate Tensile Strength (UTS), an alloy containing about 7% Si, about 0.55% to about 0.65% Mg, less than 2% Cu and between 3%-5% Zn is recommended.
For alloys having both good strength and good elongation, an alloy containing about 7% Si, about 0.5% Mg, very little Cu, and about 4% Zn is recommended.
For an alloy with good fluidity, an alloy containing about 7% Si, about 0.5% Mg, about 3% Cu and 4% Zn is recommended.
The above data is suggestive of a family of casting alloys having various desirable properties. The different desirable properties are appropriate for different applications.
Alloys according to the present invention may be cast into useful products by investment casting, low pressure or gravity casting, permanent or semi-permanent mold, squeeze casting, high pressure die casting, or sand mold casting.
While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/592,051, filed on Jul. 28, 2004; the disclosure of which is fully incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5846347 | Tanaka et al. | Dec 1998 | A |
7087125 | Lin et al. | Aug 2006 | B2 |
20050161128 | DasGupta | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
56163234 | Dec 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20060021683 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
60592051 | Jul 2004 | US |