The field of the present invention relates to remote tracking and communication systems and devices, and more particularly to alarm and alarm management systems for use with systems for tracking and monitoring persons from a central monitoring center.
The Global Positioning System (GPS) is very well known as a mechanism for providing relatively accurate positioning information using small portable devices. To create a remote tracking device useful for tracking or monitoring persons GPS devices need a mechanism to transmit the location information from the GPS to a central site where a record of the person's location can be maintained. There have been several devices that have used terrestrial wireless or cellular networks coupled to a GPS engine to transmit the location data to a central repository. The GPS/cellular device can either transmit the raw GPS data over the cellular network to a central system which can then process the GPS data to determine the location of the device, or if enough processing power is built into the remote tracking device the GPS calculations can be done on the remote tracking device and the derived location information can be transmitted to the central repository. A time stamp can be associated with the location information to provide temporal context for the location information.
An example of such a device is described in U.S. Pat. No. 6,014,080 to Layson, Jr. The remote tracking device of Layson, Jr. includes a tamper resistant strap and housing which holds a GPS engine and a wireless data modem. The remote tracking device communicates with a central station computer using the wireless data modem and transmits the location data for the remote tracking device. The central station includes a computer which is operable to take the position information from the remote tracking device and to compare that location information against a schedule of rules and location restraints to determine if the remote tracking device has strayed from a permitted inclusion zone or has entered a forbidden exclusion zone.
Another remote tracking device is described in U.S. Pat. No. 6,072,396 to Gaukel. The remote tracking device of Gaukel is a two-piece device with a tamper resistant unit securely attached to the person to be monitored. The secure unit is connected to, or in communication with, a body-worn device that includes a GPS engine and a cellular modem. As with Layson, Jr., the cellular modem is used to communicate the location information from the GPS engine to a control station.
Yet another remote tracking device and system is described by U.S. Pat. No. 5,867,103 to Taylor, Jr. The remote tracking device of Taylor, Jr. includes a tamper detection mechanism, a mechanism for receiving a signal from a positioning device, such as a GPS satellite, and a transmitter for transmitting a signal to a central station. The system for monitoring the remote devices includes a position determining mechanism for computationally determining the location of the remote device based on the signal from the positioning device and a temporal marking mechanism for providing a time stamp associated with the location determination.
While each of these devices shares a similar use of GPS and cellular or wireless data technology to gather information about the position of the remote device and to transmit information about the position to a central computer, each of these devices also suffer from the same deficiencies. Examples of these deficiencies are the lack of an ability to do anything with the information once it is received at the central computer. At most the central computers of these devices can generate messages of rules violations that can be transmitted to a parole officer or other recipient. The systems do not provide for any context for the message about the violation and do not provide for computer access to information about the remote tracking device and any violations or a monitoring center which can be contacted by the remote tracking device and the parole officer or other supervisor who has responsibility for the person being monitored.
These systems pass all location data obtained from the tracking devices directly through to the parole officer or supervisor has responsibility for the person being monitored. This places the task of sorting through the mountain of location data directly on the parole officer or supervisor who may be in charge of a great number of persons being monitored. Placing such a heavy burden on the parole office or supervisor is generally undesirable and a waste of resources.
Further, these systems do not allow for voice communication with the person wearing the remote monitoring device. Some of the devices described above can initiate tones or vibrations in the device in the event of a rules violation, but none have the ability to initiate voice communication between the person being monitored and personnel at a monitoring center or the persons parole officer or supervisor.
Still further, these devices to not have any type of alarm system, alarm management, or alarm hierarchy which can be used to warn the person being monitored, or, as a last resort, warn those in the vicinity of the person being monitored that a violation is occurring.
In one embodiment, the concepts described herein are directed to a remote tracking device for use in a remote tracking system having a central monitoring center. The remote tracking device includes a positioning system receiver, or transceiver, operable to receive signals indicative of the location of the remote tracking device, and a cellular transceiver operable to communicate with the central monitoring center. The remote tracking device also includes a processor connected to the positioning system transceiver and the cellular transceiver, the processor operable to monitor a status for the remote tracking device, and to compare the location of the remote tracking device with a set of rules programmed into the remote tracking device, and an audible alarm connected to the processor and capable of being activated by the processor when the processor detects a change in the status for the remote tracking device or a violation of the rules programmed into the remote tracking device, wherein a sound produced by the audible alarm when activated is audible to persons in the vicinity of the remote tracking device.
In another embodiment a system and method of implementing an alarm hierarchy in a remote tracking device tracked by a monitoring center is described. The remote tracking device is worn by a wearer and includes a location determining mechanism, a wireless communication mechanism and a processor operable to monitor the status of the remote tracking device and to compare the location of the remote tracking device to a set of programmed rules. The system and method include an automated response to an initial indication of an alarm condition invoked by the remote tracking device based on a change to the status of the remote tracking the device or a violation of the programmed rules. The automated response provides an indication of the alarm condition to the wearer. Next, communication can be established with the monitoring center when the alarm condition persists, such that the monitoring center can provide instructions to the wearer based on the alarm condition. If the wearer does not comply with the instructions from the monitoring center, a warning mechanism in the remote tracking device can be activated to warn those in the vicinity of the wearer.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Preferred embodiments of a remote tracking device and monitoring system according to the concepts described herein provides for a remote tracking that includes two-way voice communication between the person being monitored and monitoring center personnel or the persons parole officer, supervisor, or other administrator. It also provides for an alarm system for the remote tracking device and associated alarm management system and alarm hierarchy which is capable of warning the offender and potentially those around the offender of a violation of the terms and conditions surrounding the monitoring. Still further, it provides for a comprehensive monitoring system that includes a staffed monitoring center and access by the parole officer, supervisor or administrator to information and tools to manage the information related to the person being monitored and the status of the person and remote tracking device.
Referring now to
In addition to a GPS engine, the RTD includes a wireless/cellular transceiver. After a location determination has been made by the GPS engine or an internal microprocessor, the location information and information indicating the status of the RTD is sent over a terrestrial network, which is preferably a cellular network, as shown by cellular network 103. In order to be useful, each position location for the RTD needs to include an indication of the time for the location. In a preferred embodiment, the RTD uses the time information contained in the GPS signals themselves to provide the time indication for the position determination, however, instead of using the time information from the GPS signal, the RTD itself may provide the time indication from an internal clock. An internal clock may also be used to provide time indications on when data packets were created and sent using the cellular connection.
The information sent by the RTD over its cellular connection is received by monitoring center 104. Monitoring center 104 is preferably a staffed monitoring center providing representatives who can act as an intermediary between the person being monitored and the parole officer, supervisor or administrator with responsibility for the person being monitored. The monitoring center also includes the computer resources required to process, store and analyze the data received from the RTDs and provide the interface for the officers/supervisors/administrators to review the information in the system and to setup, modify and terminate the operating parameters for each individual RTD.
Access to the information in the monitoring center is available through a web interface which connects to a network 105, such as the Internet, which allows persons with authorization 106 outside the monitoring center to access information in the monitoring centers computers. Additionally, cellular network 103 can also be used to establish two-way voice communication between the RTDs and the monitoring center, or responsible officer/supervisor/administrator. While reference is made to two-way voice communication, the term two-way is meant to encompass any interactive voice communication involving two or more parties, including three or more way voice communication and would include conference type calls and multiparty calls. The two-way voice communications may use the same infrastructure as the data connections between the RTD and monitoring center, or may use completely different infrastructure or paths through the network than the data connections. Other third parties may also be in the voice or data path between the RTD and monitoring center to provide any number of functions, including the recording and archival of the voice communications between the RTD and monitoring center, and still be within the scope of the concepts described herein.
Referring now to
The rear face of device 200 includes an appropriate curvature so that it can be attached to a person's body, preferably to an ankle. Battery 202, which is inserted into the bottom side of device 200, includes a release lever (not shown) which is movable to release the battery from the housing. Each end of a strap 209 (partially shown) is secured within an extension on each side of housing 201, such as extension 210. Strap 209 and the strap connections to housing 201 are tamper resistant and include security measures intended to prevent the disconnection or severing of strap 209, or if strap 209 is severed, device 200 can provide a signal indicating the status of the strap. The strap preferably includes one or more optical fibers and/or conductive materials embedded throughout its length, each of which is exposed at either end of the strap and connected to the electronics in device 200 which can determine the integrity of the connections.
Additional tamper detection may be achieved through monitoring all externally accessible fasteners, e.g., the screws affixing the pressure block to the housing, the external battery, and the like, for electrical continuity by using each fastener to complete, or as part of, an electrical circuit.
Referring now to
Electronics 300 includes microprocessor 301. Microprocessor 301 controls overall operation of the device according to programming stored in memory 302, which can be SRAM memory. Electronics 300 may include inputs 303, which can be inputs such as switches or buttons, are included as inputs to microprocessor 301 and can be used to input data or provide for activation of pre-designated functionality controlled by microprocessor 301. In embodiments of the RTD, there is one button dedicated for activation of voice communications with the monitoring center. LEDs 304 are used as function and status indicators. The programming stored in memory 302 may be placed there at the time of manufacture, and additional, new or modified programming may be uploaded to the device using a wired connection via the included diagnostic interface 305, user interface 306, or wirelessly via the cellular transceiver 307 received by antenna 308.
Cellular transceiver 307 may be of the GSM/GPRS variety, and may include a SIM card 309. Cellular transceiver 307 allows two-way voice and data communication between the remote device and the monitoring center 104 from
Electronics 200 may also include short range wireless transceiver 313 and associated antenna 314, which, if included, allow for short range wireless voice and data communications with peripheral devices. This second wireless transceiver 114 can be chosen to utilize the wireless communications standard published by the ZigBee Alliance, information about which may be found at www.zigbee.org. Wireless transceiver 313, however, may be designed and implemented using any of the alternative wireless communication standards which are well known in the art. Microprocessor 301 can be programmed to pass through voice communications received by cellular transceiver 307 to a voice-capable peripheral when such a peripheral is employed in conjunction with the remote tracking and communication device and is activated. Voice communications received from a voice enabled peripheral can be passed through to cellular transceiver 307 for transmission. Data generated by the device or received from a peripheral, if any, may be stored by microprocessor 301 in memory 315, which can be non-volatile memory such as serial flash memory until required by microprocessor 301 or until it is to be transmitted by the device.
GPS receiver 316 and antenna 317 receive signals transmitted by GPS satellites, the signal used to establish the geographical location of the device and the person being monitored. In one embodiment, data from GPS receiver 316 is passed through to microprocessor 301, which in turn processes the data to determine a location and associated time, and stores it in the serial flash memory 315 pending transmission using cellular transceiver 307. While electronics 300 are shown with a GPS receiver which passes the GPS signal data to the microprocessor for processing, a GPS engine which includes both the GPS receiver and the capability to process the GPS signal to produce a location determination and associated time indication may also be used according to the concepts described herein. Using a stand alone GPS engine would free processing bandwidth in the microprocessor, thereby allowing the microprocessor to perform other additional functions.
Cellular transceiver 307 may also be used to geographically locate the device through well known methods of cell tower triangulation, or may be used to provide location information used in assisted GPS schemes. Geographical location using cellular transceiver 307 may be performed in addition to, in conjunction with, or as a substitute for the GPS receiver 316. Other known methods for geographically locating the device may also be employed.
Either of memories 302 and 315, or memory resident on the microprocessor, may be used individually, or may be used in any combination to store the operating program and parameters for the operation of the device, as will be discussed later, and may further be used to store prerecorded messages which can be played through speaker 311 as part of the monitoring and alarm management system which will be discussed in greater detail below. A siren/speaker 323 may also be included in the device and controlled by microprocessor 301. Siren 323 is also used as part of the alarm system and can be activated to provide a high decibel audible alarm. This alarm can both warn those in the vicinity that the person being monitored has entered an exclusion zone or left an inclusion zone, and can aid the police in the location of the person being monitored. The siren can be activated automatically by the microprocessor as part of the alarm management system or can be activated remotely by sending a signal to the microprocessor using cellular transceiver 307. Siren 323 can be a separate device or could be combined with the functionality of speaker 311. Tamper detection circuit 322 monitors the condition of strap 209 from
In the embodiment shown in
Since RTD 200 is intended to be worn around the ankle of the person being monitored, the microphone and speaker used for two-way voice communication is a significant distance from the ears and mouth of the person being monitored. To compensate for this a peripheral device may be used in conjunction with the RTD to aid in the two-way voice communication. In one embodiment the peripheral device has the form factor of a watch and includes an internal speaker, an internal microphone, and an internal short range wireless transceiver. The microphone and speaker are positioned in the housing of the peripheral to better enable voice communications. The short range wireless transceiver is configured to use the same wireless communications standard as the RTD to enable wireless voice and data communications between the device and the peripheral. A button can be included which, when pressed, causes a command signal to be sent to the RTD. This command signal can be used to instruct the remote tracking and communication device to initiate two-way voice communications with the monitoring center. When the peripheral device is used for such voice communications, the peripheral device communicates wirelessly with the RTD using the respective short range wireless transceiver of each respective unit, and the RTD then uses the cellular transceiver to connect the voice communications with the monitoring center. The microphone and speaker in the RTD can be disabled by the microprocessor when a peripheral device, such as described, is in use.
Using electronics such as those described above, embodiments of a remote tracking devices according to the concepts described herein may be programmed with a variety of useful features. One such feature is the ability to track the geographical location the individual wearing the device. Most frequently, the GPS receiver is used to determine the location of the device (and thus the wearer) at the time indicated in the GPS signals received from GPS network satellites. When the GPS is unable to determine location, the cellular transceiver may be used to determine the location of the device using well-known cellular tower triangulation techniques. Once identified, the location of the device is passed to the microprocessor, which processes the data according to its programming and stores the data in the memory.
As illustrated in method 430 shown in
In other embodiments, the datagrams may be stored and sent in batches. In batch send embodiments, method 430 would repeat processes 431, 432 and 433 until a predetermined number of datagrams were stored, or until a timer expired before continuing on to process 434.
In yet other embodiments, any number of operations, such as (in this example) the batch sending of datagrams, could be determined from environmental factors and not tied to a predetermined or preprogrammed number, such as the number of datagrams or a predetermined timer, as is illustrated in method 450 shown in
In process 452 of method 450 it is determined if the batch send timer needs to be adjusted. If yes, process 453 adjusts the timer accordingly. Process 454 then determines if the timer has expired, if not, the method returns to process 451. If the timer has expired the method passes to process 455, which sends the accumulated datagrams.
As referenced above, embodiments of the remote tracking devices and/or the remote tracking system can be programmed to track the location of an RTD with respect to inclusion and exclusion zones. In these embodiments the microprocessor can be programmed to compare location data against rules which establish predefined geographical areas where the person being monitored is required to be (inclusion zones), or forbidden from being (exclusion zones). These zones can be tied to specific times of the day, such as curfews. A curfew is defined by a geographical area within which the device (and thus the wearer) needs to be physically located during specified times. Examples of curfew rules include requiring the wearer to be at a home area during the evening and overnight hours or at a work area during work hours. An inclusion zone is a geographical area within which the wearer is required to remain during specified times or a boundary outside of which the wearer is not allowed to travel. Inclusion zones and curfews, under these definitions, can also therefore be layered. For example, there may be a permanent inclusion zone, such as the county of residence of the wearer, outside of which the wearer is not allowed to travel without specific permission. Inside of this permanent zone there may be time specific zones, such as the wearers home during overnight hours or workplace between 8 am and 5 pm.
An exclusion zone is a geographical area outside of which the wearer is required at all times. The rules can be established for any particular device at the time of initialization, modified at any time, or even temporarily suspended, at any time through changes to the parameters entered into the monitoring center computers and downloaded to the device, or entered directly into the device through direct connections to the diagnostic or user interface components of the device. In addition to geo-zone type rules, rules dictating a “report-in” type requirement may also be programmed into the device. These “report-in” rules could be used to satisfy report in requirements for some parolees. The device would be programmed with chronological points at which the wearer could be notified, such as by a prerecorded voice message stored on the device, to contact the monitoring center or other person at that time, or within a specified interval. The wearer could activate the voice communication on the device or could report in by other means. Further, rules for monitoring physiological conditions/events can be programmed into the device. Sensors on the remote tracking device, or peripherals to the remote tracking device, could be used to monitor physiological conditions. If measurements associated with those physiological conditions fall outside an expected range, which could be programmed in the form of a rule, or if a physiological event occurs as detected by a sensor, an alarm condition could be generated by the processor and sent to the monitoring center.
As described, the memory can be utilized to store prerecorded voice messages or other audio which provide feedback during operation of the device. Prerecorded voice messages, are preferred to tones or vibrations because they do not require a reference manual or knowledge of the wearer for interpretation. In addition to alarm type messages, voice message feedback may be advantageously utilized during initial setup of the device in that it provides step-by-step instructions for the setup routine, including directing the administrative user to input information about the device and user into the database via the web application described below. Voice message feedback may be similarly utilized during the detachment process to ensure that the device is removed by an authorized individual. During the removal process, if the audible instructions are not followed, i.e., inputting requested information into the database, then the device is preferably programmed to generate an alarm, which is processed as described below.
Following the initial power-up sequence, the device may be programmed to establish a data connection with a monitoring center computer, or central server, to which the device provides device-specific identification data. This eliminates any need for the administrative user to connect the device to a local computer or terminal for the initialization process. The monitoring center computer(s) is/are programmed to maintain a data base of data sent by tracking and communication devices. Upon initial contact, the central server creates a database entry using the device-specific identification data.
The administrative user is provided access to data on the central server via a computer or terminal. In instances where the device is used as a tracking device for offenders, the administrative user may be the supervision officer or other authority figure. For other service applications, the administrative user and the wearer may be the same individual. Access to the database may be advantageously implemented as a web application, or it may be implemented as a stand alone application.
During normal operation, the GPS receiver identifies the geographical location of the device, and the microprocessor processes and stores that location data according to its programming. The device may be programmed such that geographical location is continuously monitored or monitored at specified intervals. In certain embodiments, with an appropriate peripheral, the device may also be programmed to monitor physiological conditions of the wearer. The microprocessor actively monitors other components of the device for indications of tampering, battery exchanges/replacements, and equipment failure.
Referring now to
When an alarm condition is raised or action is otherwise required, as shown by process 403, whether because the action is preprogrammed based on the status of the device, or the action is the result of a command received from the monitoring center, the monitoring center server or the administrative user, the microprocessor proceeds through a series of queries to determine the appropriate action. It should be noted that both the condition resulting in an action, and the action taken the microprocessor, are preferably programmable through the monitoring center, the web application or through a direct interface connection to the device. The first query 404 is whether to send data to the monitoring center by immediately initiating a data connection with the central server to transmit data relating to an alarm or data that is stored in memory, as shown in process 405. Next query 406 determines if siren 323 from
The next query 408 determines whether the RTD should play one of the pre-recorded messages stored in memory, as shown by process 409. Query 410 determines whether to call the monitoring center by initiating a two-way voice communication using the cellular transceiver, as shown by process 411. Finally query 412 determines if the RTD should take some other programmed action as shown by process 413. Other actions may include, but are not limited to, storing data related to an alarm in memory for transmission at a later time, storing updated rules data to memory, or suspending rule violations notification for a period of time. While queries 404, 406, 408, 410 and 412 are shown in
As an example of method 400, in instances where the location data indicates the device is located outside of a geographical location permitted by the rules, the RTD may provides audio feedback to the wearer indicating the rule violation, in the form of a siren or a prerecorded message, and immediately sends notice to the central server for additional processing. The notice would includes the geographical location of the device, the time of the location, and an indicator of the rule violated. If the wearer did not respond to the prerecorded message, the RTD might then escalate the alarm condition by establishing a two-way call with the monitoring center. The monitoring center personnel would then attempt to direct the wearer to leave the exclusion zone and verify that the wearer was complying with the request. If the wearer still did not comply with the request, the alarm condition could be escalated still further by activating the siren on the RTD and the monitoring center could then contact the local authorities and direct them to the wearer.
Referring now to
If the data does not include a tracer record, the central server determines if the data is an indicator of an alarm condition in process 506. If the data is indicative of an alarm condition, the central server determines if the alarm is a repeat of an alarm which was previously received and reported, as shown by process 507. For alarms that were not previously received, the central server takes the appropriate notification action as programmed by the administrative user, as described by process 508.
If the data is not indicative of an alarm condition, the central server determines whether the individual wearing the device is subject to geographical location rules in process 509. In such instances, the central server determines whether a rule has, in fact, been violated, process 510, and determines if an alarm condition exists, process 511. When an alarm condition is raised, the central server first determines if the alarm is a repeat of a previous alarm, as shown in process 512, and if so, takes the appropriate notification action as programmed by the administrative user in process 513.
When immediate administrative user notification is not required, or no alarm condition is raised, the data is stored in the database, as shown by process 514, and reported to the administrative user in periodic reports which at least lists all alarm conditions received since provision of the last report. All recorded data may optionally be included in the report.
In embodiments of the remote tracking system according to the concepts described herein, the notification actions are fully configurable by the administrative user through the web application. The administrative user may designate specific types of alarms for immediate notification, and notification may be arranged through one or more methods including fax, email, text messaging to a pager, text messaging to a cellular phone, or through a direct call from the call center, or the like. In addition, the administrative user may also designate that some specific types of alarms result in direct notification to local authorities for immediate action.
The web application may also provide the administrative user with the ability to temporarily suspend reactions to specific types of alarms. During suspension, the device will suspend localized reactions only (i.e., pre-recorded voice messages, siren, initiating voice communications with the call center). The device will still transmit all alarms identified during suspension to the central server, which will in turn include all identified alarms in the periodic reports (e.g., weekly) to the administrative user. The web application may also provide the administrative user and call center operators with the ability to enter and store notes. Notes may be in the form of personal daily monitoring logs, calendared appointments or action items, case management directives, or contextual notations related to particular alarms saved within the database.
In embodiments of the remote tracking system, the central server may enable the call center or the administrative user, through the web application, to send commands or other data to the device. Such commands may include playing a pre-recorded message to the wearer, instructing the microprocessor to transmit data to provide a current status of the location and status of the device, and the like. The administrative user may also use the web application to instruct to the call center to initiate voice communications with the wearer. The call center then contacts the wearer by placing a cellular call to the cellular transceiver. Once the wearer is contacted, the call center then initiates a call to the administrative user and conferences the two calls.
Preferably, all voice communications with the device are made through the call center so that all calls may be recorded and saved within the database. This enables the call center and the administrative user to access the recorded calls at a later time as needed. To ensure that all calls are recorded, the cellular transceiver may be configured to block all incoming calls that do not originate from the call center. Alternatively, the cellular transceiver may be configured to selectively block incoming calls by utilizing the area code and telephone prefix to identify the origin of the call, allowing calls only from selected area codes and prefixes. Alternatively, the cellular transceiver may selectively block all calls except those from list of phone numbers that is stored in memory.
In embodiments of the remote tracking system, the wearer may also initiate voice communications with the call center. In these embodiments, at least one of the buttons on the exterior of the device housing may be configured to activate voice communications using the cellular transceiver. When pressed, the device is programmed such that cellular transceiver may only contacts the monitoring center. The device preferably has stored in memory a primary number for the call center and a secondary number in case a connection cannot be achieved on the primary number. Further, the device is programmed to attempt make a predetermined number of attempts to contact the call center, first at the primary number, then at the secondary number. Should all attempts fail, the device is preferably programmed to sound an alert condition to the wearer as an indication that the device is out of a cellular service area or requires service for an internal fault.
As has been referenced above, the monitoring center, or call center, is the focal point of the preferred embodiments of the remote tracking system according to the concepts described herein. The monitoring center is able to communicate with the remote tracking devices, the wearers of the remote tracking devices, and the officers, supervisors or administrators in charge of the persons wearing the RTDs. The monitoring center is also the repository for all the data collected from the RTDs and allows direct access to the data by the monitoring center employees and remote access by the administrators through the web application. The monitoring center also provides the mechanisms for establishing and modifying the operating parameters of the RTDs, including the rules for each wearer.
Referring now to
Administrator flow, accessible by an authorized administrator, includes access to the administrator home 606 and to agency overview functions 607 and manage agency functions 608, as well as employee management functions 609. Supervisor privileges provides access to supervisor home 610, manage user functions 611, as well as to employee management functions 610. Supervisor privileges also provide access to operator flow 628 as does operator privileges. Operator flow 628 includes access to operator home 612 which includes access to reports functions 613, messaging functions 614, client and offender detail 615 and 616, respectively, and to search function 617. Client detail 615 and offender detail 616 provide further access to demographics functions 620 which contains access to contacts 621 and medical history 622.
Script manager privileges provide access to script manager home 618 and to script management functions 619. Fulfillment privileges provides access to fulfillment home 623 and device management functions 624 and device assignment functions 625.
A preferred embodiment of a call monitoring center in accordance with the concepts described herein includes a monitoring center which is staffed 24 hours, seven days a week. The monitoring center is responsible for monitoring all of the remote tracking devices in the field and is staffed based on historical patterns of requirements for intervention by monitoring center staff. The computers of the monitoring center automatically receive and process the location and status information continuously or periodically sent by each of the remote tracking devices. Based on programmable rules in the monitoring center software, the occurrence of certain conditions in the remote tracking devices results in the monitoring center software sending an alert to one of the monitoring center personnel. These conditions are usually related to alarm conditions in a remote tracking device, but can be programmed to be any condition which might be of interest to the monitoring center personnel or the supervisors or administrators of the person being monitored.
When a condition is determined to require the attention of monitoring center personnel, the monitoring center software determines the appropriate monitoring center agent and sends the alert to the agent's terminal. The agent can then respond to the alert or access data in the monitoring center computers related to the history of the remote tracking device, the current parameters programmed into the remote tracking device, information on the wearer of the device or the agency or administrator in charge of the wearer and the device. If intervention, such as the initiation of a two-way voice call, is required by the agent, the monitoring center software provides a predetermined script for the agent to follow to ensure that the intervention by the agent conforms to the policies of the monitoring center and the agency or supervisor responsible for the tracking device and wearer.
In addition to the monitoring center software generating an alert which requires the attention of a monitoring center agent, agents may be required to respond to incoming calls from various interested persons including the wearer of the remote tracking device or the supervisor or administrator of a wearer or device. Referring now to
Once the agent has been selected the application passes the call details to the agent's terminal as shown by process 706. In process 707, the application uses the dialed number to select an application context, and then in process 708 determines a call handling flow for each specific type of call. Call routing system 700 also includes a contingent process flow 709 for situations in which no call detail information is available to determine context and call flow for the agent. In the contingent process 709, the agent manually enters the caller's phone number into the agent application which then looks up the customer records and uses those records to determine the appropriate context and flow for the call.
As has been described, embodiments of the remote tracking device maintain status on themselves in the form of states for various aspects of the devices. This status is sent to the monitoring center and maintained by the monitoring center application. Monitoring center personnel, or supervisors or administrators can access the status of the any particular device under their control. An example of the types of status which can be maintained by the RTD and monitoring center is shown in
Referring now to
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
3210747 | Clynes | Oct 1965 | A |
3440633 | Vinding | Apr 1969 | A |
3462692 | Barlett | Aug 1969 | A |
3478344 | Schwitzgebel | Nov 1969 | A |
3568161 | Knickel | Mar 1971 | A |
3572316 | Vogelman | Mar 1971 | A |
3609741 | Miller | Sep 1971 | A |
3639907 | Greatbatch | Feb 1972 | A |
3656456 | Stigmark | Apr 1972 | A |
3665448 | McGlinchey | May 1972 | A |
3743865 | Reichmann | Jul 1973 | A |
3758855 | Meyer | Sep 1973 | A |
3764819 | Muller | Oct 1973 | A |
3876890 | Brown | Apr 1975 | A |
3882277 | DePedro | May 1975 | A |
3898472 | Long | Aug 1975 | A |
3898984 | Mandel | Aug 1975 | A |
3914692 | Seaborn | Oct 1975 | A |
3925763 | Wadhwani | Dec 1975 | A |
3930249 | Steck | Dec 1975 | A |
3972320 | Kalman | Aug 1976 | A |
3973208 | Diamond | Aug 1976 | A |
3983483 | Pando | Sep 1976 | A |
4095214 | Minasy | Jun 1978 | A |
4110741 | Hubert | Aug 1978 | A |
4157540 | Oros | Jun 1979 | A |
4234840 | Konrad | Nov 1980 | A |
4237344 | Moore | Dec 1980 | A |
4258709 | Flack | Mar 1981 | A |
4259665 | Manning | Mar 1981 | A |
4275385 | White | Jun 1981 | A |
4285146 | Charles | Aug 1981 | A |
4293852 | Rogers | Oct 1981 | A |
4295132 | Burney | Oct 1981 | A |
4309697 | Weaver | Jan 1982 | A |
4316134 | Balan | Feb 1982 | A |
4319241 | Mount | Mar 1982 | A |
4331161 | Patel | May 1982 | A |
4342986 | Buskirk | Aug 1982 | A |
4359733 | O'Neill | Nov 1982 | A |
4445118 | Taylor | Apr 1984 | A |
4446454 | Pyle | May 1984 | A |
4523184 | Abel | Jun 1985 | A |
4536755 | Holzgang | Aug 1985 | A |
4549196 | Moura | Oct 1985 | A |
4558309 | Antonevich | Dec 1985 | A |
4559526 | Tani | Dec 1985 | A |
4578539 | Townsing | Mar 1986 | A |
4591661 | Benedetto | May 1986 | A |
4596988 | Wanka | Jun 1986 | A |
4598272 | Cox | Jul 1986 | A |
4598275 | Ross et al. | Jul 1986 | A |
4622544 | Bially | Nov 1986 | A |
4630035 | Stahl | Dec 1986 | A |
4651157 | Gray | Mar 1987 | A |
4665370 | Holland | May 1987 | A |
4665385 | Henderson | May 1987 | A |
4665387 | Cooper | May 1987 | A |
4667203 | Counselman | May 1987 | A |
4673936 | Kotoh | Jun 1987 | A |
4675656 | Narcisse | Jun 1987 | A |
4682155 | Shirley | Jul 1987 | A |
4701760 | Raoux | Oct 1987 | A |
4728959 | Maloney | Mar 1988 | A |
4731613 | Endo | Mar 1988 | A |
4736196 | McMahon et al. | Apr 1988 | A |
4737976 | Borth | Apr 1988 | A |
4740792 | Sagey | Apr 1988 | A |
4741245 | Malone | May 1988 | A |
4742336 | Hall | May 1988 | A |
4742357 | Rackley | May 1988 | A |
4747120 | Foley | May 1988 | A |
4750197 | Denekamp | Jun 1988 | A |
4751512 | Longaker | Jun 1988 | A |
4754283 | Fowler | Jun 1988 | A |
4754465 | Trimble | Jun 1988 | A |
4764757 | DeMarco | Aug 1988 | A |
4777477 | Watson | Oct 1988 | A |
4791572 | Green | Dec 1988 | A |
4809005 | Counselman | Feb 1989 | A |
4812823 | Dickerson | Mar 1989 | A |
4812991 | Hatch | Mar 1989 | A |
4819053 | Halavais | Apr 1989 | A |
4819162 | Webb | Apr 1989 | A |
4819860 | Hargrove | Apr 1989 | A |
4820966 | Fridman | Apr 1989 | A |
4825457 | Lebowitz | Apr 1989 | A |
4833477 | Tendler | May 1989 | A |
4837568 | Snaper | Jun 1989 | A |
4843377 | Fuller | Jun 1989 | A |
4864277 | Goodman | Sep 1989 | A |
4885571 | Pauley | Dec 1989 | A |
4888716 | Ueno | Dec 1989 | A |
4890671 | McCurdy | Jan 1990 | A |
4891650 | Sheffer | Jan 1990 | A |
4891761 | Gray | Jan 1990 | A |
4894662 | Counselman | Jan 1990 | A |
4897642 | Dilullo | Jan 1990 | A |
4903212 | Yokouchi | Feb 1990 | A |
4907290 | Crompton | Mar 1990 | A |
4908269 | Apsell | Mar 1990 | A |
4912756 | Hop | Mar 1990 | A |
4916435 | Fuller | Apr 1990 | A |
4918425 | Greenberg | Apr 1990 | A |
4918432 | Pauley et al. | Apr 1990 | A |
4924699 | Kuroda | May 1990 | A |
4928107 | Kuroda | May 1990 | A |
4952913 | Pauley | Aug 1990 | A |
4952928 | Carroll | Aug 1990 | A |
4953198 | Daly | Aug 1990 | A |
4956861 | Kondo | Sep 1990 | A |
4961212 | Marui | Oct 1990 | A |
4965548 | Fayfield | Oct 1990 | A |
4980671 | McCurdy | Dec 1990 | A |
4983980 | Ando | Jan 1991 | A |
4993061 | Hsieh | Feb 1991 | A |
4996161 | Conners | Feb 1991 | A |
4999613 | Williamson | Mar 1991 | A |
5003317 | Gray | Mar 1991 | A |
5003595 | Collins | Mar 1991 | A |
5008930 | Gawrys | Apr 1991 | A |
5014040 | Weaver | May 1991 | A |
5014066 | Counselman | May 1991 | A |
5014206 | Scribner | May 1991 | A |
5019802 | Brittain | May 1991 | A |
5019828 | Schoolman | May 1991 | A |
5021794 | Lawrence | Jun 1991 | A |
5023904 | Kaplan | Jun 1991 | A |
5025253 | Dilullo | Jun 1991 | A |
5025261 | Ohta | Jun 1991 | A |
5029111 | Croyle | Jul 1991 | A |
5032823 | Bower | Jul 1991 | A |
5032845 | Velasco | Jul 1991 | A |
5043736 | Darnell | Aug 1991 | A |
5055851 | Sheffer | Oct 1991 | A |
5075670 | Bower | Dec 1991 | A |
5077788 | Cook | Dec 1991 | A |
5081667 | Drori | Jan 1992 | A |
5115223 | Moody | May 1992 | A |
5117222 | McCurdy | May 1992 | A |
5119102 | Barnard | Jun 1992 | A |
5131020 | Liebesny | Jul 1992 | A |
5146207 | Henry | Sep 1992 | A |
5146231 | Ghaem | Sep 1992 | A |
5148471 | Metroka | Sep 1992 | A |
5148473 | Freeland | Sep 1992 | A |
5155689 | Wortham | Oct 1992 | A |
5170426 | D'Alessio | Dec 1992 | A |
5179519 | Adachi | Jan 1993 | A |
5182543 | Siegel | Jan 1993 | A |
5193215 | Olmer | Mar 1993 | A |
5198831 | Burrell | Mar 1993 | A |
5203009 | Bogusz | Apr 1993 | A |
5204670 | Stinton | Apr 1993 | A |
5206897 | Goudreau | Apr 1993 | A |
5218344 | Ricketts | Jun 1993 | A |
5218367 | Sheffer | Jun 1993 | A |
5220509 | Takemura | Jun 1993 | A |
5223844 | Mansell | Jun 1993 | A |
5225842 | Brown | Jul 1993 | A |
5235320 | Romano | Aug 1993 | A |
5235633 | Dennison | Aug 1993 | A |
5243652 | Teare | Sep 1993 | A |
5247564 | Zicker | Sep 1993 | A |
5255183 | Katz | Oct 1993 | A |
5255306 | Melton et al. | Oct 1993 | A |
5257195 | Hirata | Oct 1993 | A |
5266944 | Carroll et al. | Nov 1993 | A |
5266958 | Durboraw | Nov 1993 | A |
5268845 | Startup | Dec 1993 | A |
5274695 | Green | Dec 1993 | A |
5278239 | Lauterbach | Jan 1994 | A |
5278539 | Lauterbach | Jan 1994 | A |
5297186 | Dong | Mar 1994 | A |
5298884 | Gilmore | Mar 1994 | A |
5299132 | Wortham | Mar 1994 | A |
5305370 | Kearns | Apr 1994 | A |
5307277 | Hirano | Apr 1994 | A |
5311197 | Sorden | May 1994 | A |
5311374 | Oh | May 1994 | A |
5317309 | Vercellotti | May 1994 | A |
5317620 | Smith | May 1994 | A |
5319374 | Desai | Jun 1994 | A |
5319698 | Glidewell | Jun 1994 | A |
5334974 | Simms | Aug 1994 | A |
5334986 | Fernhout | Aug 1994 | A |
5349530 | Odagawa | Sep 1994 | A |
5353376 | Oh | Oct 1994 | A |
5355140 | Slavin | Oct 1994 | A |
5357560 | Nykerk | Oct 1994 | A |
5365451 | Wang | Nov 1994 | A |
5365570 | Boubelik | Nov 1994 | A |
5367524 | Rideout | Nov 1994 | A |
5369699 | Page | Nov 1994 | A |
5374933 | Kao | Dec 1994 | A |
5377256 | Franklin | Dec 1994 | A |
5379224 | Brown | Jan 1995 | A |
5388147 | Grimes | Feb 1995 | A |
5389934 | Kass | Feb 1995 | A |
5392052 | Eberwine | Feb 1995 | A |
5394333 | Kao | Feb 1995 | A |
5396227 | Carroll | Mar 1995 | A |
5396516 | Padovani | Mar 1995 | A |
5396540 | Gooch | Mar 1995 | A |
5398190 | Wortham | Mar 1995 | A |
5402466 | Delahanty | Mar 1995 | A |
5416468 | Baumann | May 1995 | A |
5416695 | Stutman | May 1995 | A |
5416808 | Witsaman | May 1995 | A |
5418537 | Bird | May 1995 | A |
5422816 | Sprague | Jun 1995 | A |
5426425 | Conrad | Jun 1995 | A |
5428546 | Shah | Jun 1995 | A |
5430656 | Dekel | Jul 1995 | A |
5437278 | Wilk | Aug 1995 | A |
5438315 | Nix | Aug 1995 | A |
5444430 | Mcshane | Aug 1995 | A |
5448221 | Weller | Sep 1995 | A |
5451948 | Jekel | Sep 1995 | A |
5461365 | Schlager | Oct 1995 | A |
5461390 | Hoshen | Oct 1995 | A |
5465388 | Zicker | Nov 1995 | A |
5475751 | McMonagle | Dec 1995 | A |
5479149 | Pike | Dec 1995 | A |
5479479 | Braitberg | Dec 1995 | A |
5479482 | Grimes | Dec 1995 | A |
5485385 | Mitsugi | Jan 1996 | A |
5490200 | Snyder | Feb 1996 | A |
5493692 | Theimer | Feb 1996 | A |
5493694 | Vicek | Feb 1996 | A |
5497148 | Oliva | Mar 1996 | A |
5497149 | Fast | Mar 1996 | A |
5504482 | Schreder | Apr 1996 | A |
5510797 | Abraham | Apr 1996 | A |
5512879 | Stokes | Apr 1996 | A |
5513111 | Wortham | Apr 1996 | A |
5515043 | Berard | May 1996 | A |
5515062 | Maine et al. | May 1996 | A |
5515285 | Garrett | May 1996 | A |
5517419 | Lanckton | May 1996 | A |
5518402 | Tommarello et al. | May 1996 | A |
5519380 | Edwards | May 1996 | A |
5519403 | Bickley | May 1996 | A |
5519621 | Wortham | May 1996 | A |
5523740 | Burgmann et al. | Jun 1996 | A |
5525967 | Azizi | Jun 1996 | A |
5525969 | LaDue | Jun 1996 | A |
5528248 | Steiner | Jun 1996 | A |
5532690 | Hertel | Jul 1996 | A |
5537102 | Pinnow | Jul 1996 | A |
5541845 | Klein | Jul 1996 | A |
5542100 | Hatakeyama | Jul 1996 | A |
5543780 | Mcauley | Aug 1996 | A |
5544661 | Davis | Aug 1996 | A |
5546445 | Dennison | Aug 1996 | A |
5550551 | Alesio | Aug 1996 | A |
5552772 | Janky | Sep 1996 | A |
5555286 | Tendler | Sep 1996 | A |
5557254 | Johnson | Sep 1996 | A |
5559491 | Stadler | Sep 1996 | A |
5559497 | Hong | Sep 1996 | A |
5563931 | Bishop | Oct 1996 | A |
5568119 | Schipper et al. | Oct 1996 | A |
5572204 | Timm | Nov 1996 | A |
5572217 | Flawn | Nov 1996 | A |
5574649 | Levy | Nov 1996 | A |
5576716 | Sadler | Nov 1996 | A |
5587715 | Lewis | Dec 1996 | A |
5588038 | Snyder | Dec 1996 | A |
5589834 | Weinberg | Dec 1996 | A |
5594425 | Ladner | Jan 1997 | A |
5594650 | Shah | Jan 1997 | A |
5596262 | Boll | Jan 1997 | A |
5596313 | Berglund | Jan 1997 | A |
5598151 | Torii | Jan 1997 | A |
5600230 | Dunstan | Feb 1997 | A |
5602739 | Haagenstad | Feb 1997 | A |
5612675 | Jennings | Mar 1997 | A |
5617317 | Ignagni | Apr 1997 | A |
5621388 | Sherburne | Apr 1997 | A |
5625668 | Loomis | Apr 1997 | A |
5627520 | Grubbs | May 1997 | A |
5627548 | Woo | May 1997 | A |
5629693 | Janky | May 1997 | A |
5630206 | Urban | May 1997 | A |
5644317 | Weston | Jul 1997 | A |
5646593 | Hughes | Jul 1997 | A |
5650770 | Schlager | Jul 1997 | A |
5652570 | Lepkofker | Jul 1997 | A |
5673035 | Huang | Sep 1997 | A |
5673305 | Ross | Sep 1997 | A |
5677521 | Garrou | Oct 1997 | A |
5682133 | Johnson | Oct 1997 | A |
5682142 | Loosmore | Oct 1997 | A |
5684828 | Bolan et al. | Nov 1997 | A |
5686910 | Timm | Nov 1997 | A |
5686924 | Trimble | Nov 1997 | A |
5687215 | Timm | Nov 1997 | A |
5694452 | Bertolet | Dec 1997 | A |
5699256 | Shibuya | Dec 1997 | A |
5703598 | Emmons | Dec 1997 | A |
5705980 | Shapiro | Jan 1998 | A |
5712619 | Simkin | Jan 1998 | A |
5712678 | Widl | Jan 1998 | A |
5715277 | Goodson | Feb 1998 | A |
5721678 | Widl | Feb 1998 | A |
5722081 | Tamura | Feb 1998 | A |
5722418 | Bro | Mar 1998 | A |
5724316 | Brunts | Mar 1998 | A |
5726893 | Schuchman | Mar 1998 | A |
5727057 | Emery | Mar 1998 | A |
5731757 | Layson | Mar 1998 | A |
5732076 | Ketseoglou | Mar 1998 | A |
5736962 | Tendler | Apr 1998 | A |
5740049 | Kaise | Apr 1998 | A |
5740532 | Fernandez | Apr 1998 | A |
5740547 | Kull | Apr 1998 | A |
5742233 | Hoffman | Apr 1998 | A |
5742509 | Goldberg | Apr 1998 | A |
5742666 | Alpert | Apr 1998 | A |
5742686 | Finley | Apr 1998 | A |
5742904 | Pinder | Apr 1998 | A |
5745037 | Guthrie | Apr 1998 | A |
5745849 | Britton | Apr 1998 | A |
5745868 | Geier | Apr 1998 | A |
5748089 | Sizemore | May 1998 | A |
5748148 | Heiser | May 1998 | A |
5751246 | Hertel | May 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5757367 | Kapoor | May 1998 | A |
5760692 | Block | Jun 1998 | A |
5767788 | Ness | Jun 1998 | A |
5771002 | Creek | Jun 1998 | A |
5774825 | Reynolds | Jun 1998 | A |
5777580 | Janky | Jul 1998 | A |
5781101 | Stephen | Jul 1998 | A |
5784029 | Geier | Jul 1998 | A |
5786789 | Janky | Jul 1998 | A |
5790022 | Delvecchio | Aug 1998 | A |
5790974 | Tognazzini | Aug 1998 | A |
5793283 | Davis | Aug 1998 | A |
5793630 | Theimer | Aug 1998 | A |
5794174 | Janky | Aug 1998 | A |
5796613 | Kato | Aug 1998 | A |
5796777 | Terlep | Aug 1998 | A |
5797091 | Clise | Aug 1998 | A |
5805055 | Colizza | Sep 1998 | A |
5809426 | Radojevic | Sep 1998 | A |
5809520 | Edwards | Sep 1998 | A |
5811886 | Majmudar | Sep 1998 | A |
5815118 | Schipper | Sep 1998 | A |
5818333 | Yaffe | Oct 1998 | A |
5819864 | Koike | Oct 1998 | A |
5825283 | Camhi | Oct 1998 | A |
5825327 | Krasner | Oct 1998 | A |
5825871 | Mark | Oct 1998 | A |
5828292 | Kokhan | Oct 1998 | A |
5831535 | Reisman et al. | Nov 1998 | A |
5835017 | Ohkura | Nov 1998 | A |
5835907 | Newman | Nov 1998 | A |
5842146 | Shishido | Nov 1998 | A |
5844894 | Bent | Dec 1998 | A |
5847679 | Yee | Dec 1998 | A |
5852401 | Kita | Dec 1998 | A |
5857433 | Files | Jan 1999 | A |
5867103 | Taylor, Jr. | Feb 1999 | A |
5868100 | Marsh | Feb 1999 | A |
5873040 | Dunn | Feb 1999 | A |
5874801 | Kobayashi | Feb 1999 | A |
5874889 | Higdon | Feb 1999 | A |
5875402 | Yamawaki | Feb 1999 | A |
5877724 | Davis | Mar 1999 | A |
5889474 | LaDue | Mar 1999 | A |
5890061 | Timm | Mar 1999 | A |
5890092 | Kato | Mar 1999 | A |
5892447 | Wilkinson | Apr 1999 | A |
5892454 | Schipper | Apr 1999 | A |
5892825 | Mages | Apr 1999 | A |
5894498 | Kotzin | Apr 1999 | A |
5898391 | Jefferies | Apr 1999 | A |
5900734 | Munson | May 1999 | A |
5905461 | Neher | May 1999 | A |
5906655 | Fan | May 1999 | A |
5907555 | Raith | May 1999 | A |
5912623 | Pierson | Jun 1999 | A |
5912886 | Takahashi | Jun 1999 | A |
5912921 | Warren | Jun 1999 | A |
5914675 | Tognazzini | Jun 1999 | A |
5917405 | Joao | Jun 1999 | A |
5918180 | Dimino | Jun 1999 | A |
5918183 | Janky | Jun 1999 | A |
5919239 | Fraker | Jul 1999 | A |
5920278 | Tyler | Jul 1999 | A |
5926086 | Escareno | Jul 1999 | A |
5928306 | France | Jul 1999 | A |
5929752 | Janky | Jul 1999 | A |
5929753 | Montague | Jul 1999 | A |
5933080 | Nojima | Aug 1999 | A |
5936529 | Reisman | Aug 1999 | A |
5937164 | Mages | Aug 1999 | A |
5940004 | Fulton | Aug 1999 | A |
5940439 | Kleider | Aug 1999 | A |
5945906 | Onuma | Aug 1999 | A |
5945944 | Krasner | Aug 1999 | A |
5948043 | Mathis | Sep 1999 | A |
5949350 | Girard | Sep 1999 | A |
5959533 | Layson | Sep 1999 | A |
5963130 | Schlager | Oct 1999 | A |
5966079 | Tanguay | Oct 1999 | A |
5969600 | Tanguay | Oct 1999 | A |
5969673 | Bickley | Oct 1999 | A |
5982281 | Layson | Nov 1999 | A |
5982813 | Dutta | Nov 1999 | A |
5983115 | Mizikovsky | Nov 1999 | A |
5986543 | Daniel | Nov 1999 | A |
5990785 | Suda | Nov 1999 | A |
5990793 | Bieback | Nov 1999 | A |
5991637 | Mack | Nov 1999 | A |
5995847 | Gergen | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999124 | Sheynblat | Dec 1999 | A |
6009363 | Beckert | Dec 1999 | A |
6011510 | Yee | Jan 2000 | A |
6014080 | Layson | Jan 2000 | A |
6014555 | Tendler | Jan 2000 | A |
6018667 | Ghosh | Jan 2000 | A |
6025774 | Forbes | Feb 2000 | A |
6025779 | Huang | Feb 2000 | A |
6026125 | Larrick | Feb 2000 | A |
6026300 | Hicks | Feb 2000 | A |
6026345 | Shah | Feb 2000 | A |
6028551 | Schoen | Feb 2000 | A |
6029111 | Croyle | Feb 2000 | A |
6031454 | Lovejoy | Feb 2000 | A |
6034622 | Levine | Mar 2000 | A |
6035201 | Whitehead | Mar 2000 | A |
6035217 | Kravitz | Mar 2000 | A |
6044257 | Boling | Mar 2000 | A |
6046687 | Janky | Apr 2000 | A |
6047196 | Makela | Apr 2000 | A |
6054928 | Lemelson | Apr 2000 | A |
6055426 | Beasley | Apr 2000 | A |
6060982 | Holtrop | May 2000 | A |
6061018 | Sheynblat | May 2000 | A |
6061392 | Bremer | May 2000 | A |
6061561 | Alanara | May 2000 | A |
6069570 | Herring | May 2000 | A |
6072396 | Gaukel | Jun 2000 | A |
6075797 | Thomas | Jun 2000 | A |
6075821 | Kao | Jun 2000 | A |
6084510 | Lemelson | Jul 2000 | A |
6084906 | Kao | Jul 2000 | A |
6084917 | Kao | Jul 2000 | A |
6088387 | Gelblum | Jul 2000 | A |
6088586 | Haverty | Jul 2000 | A |
6091325 | Zur | Jul 2000 | A |
6091786 | Chen | Jul 2000 | A |
6091957 | Larkins | Jul 2000 | A |
6094140 | Parente | Jul 2000 | A |
6097337 | Bisio | Aug 2000 | A |
6100806 | Gaukel | Aug 2000 | A |
6115597 | Kroll | Sep 2000 | A |
6130620 | Pinnow | Oct 2000 | A |
6160481 | Taylor, Jr. | Dec 2000 | A |
6181253 | Eschenbach | Jan 2001 | B1 |
6198394 | Jacobsen | Mar 2001 | B1 |
6198914 | Saegusa | Mar 2001 | B1 |
6218945 | Taylor | Apr 2001 | B1 |
6226510 | Boling | May 2001 | B1 |
6232916 | Grillo | May 2001 | B1 |
6236319 | Pitzer | May 2001 | B1 |
6239700 | Hoffman | May 2001 | B1 |
6262666 | Lodichand | Jul 2001 | B1 |
6285867 | Boling | Sep 2001 | B1 |
6313733 | Kyte | Nov 2001 | B1 |
6356841 | Hamrick | Mar 2002 | B1 |
6362778 | Neher | Mar 2002 | B2 |
6405213 | Layson | Jun 2002 | B1 |
6437696 | Lemelson et al. | Aug 2002 | B1 |
6518889 | Schlager et al. | Feb 2003 | B2 |
6580908 | Kroll | Jun 2003 | B1 |
6636732 | Boling | Oct 2003 | B1 |
6639516 | Copley | Oct 2003 | B1 |
6639519 | Drummond | Oct 2003 | B2 |
6646617 | Gaukel | Nov 2003 | B1 |
6671351 | Menard | Dec 2003 | B2 |
6674368 | Hawkins | Jan 2004 | B2 |
6675006 | Diaz | Jan 2004 | B1 |
6687497 | Parvulescu | Feb 2004 | B1 |
6703936 | Hill et al. | Mar 2004 | B2 |
6762684 | Camhi | Jul 2004 | B1 |
6765991 | Hanuschak | Jul 2004 | B1 |
6766159 | Lindholm | Jul 2004 | B2 |
6774797 | Freathy | Aug 2004 | B2 |
6782208 | Lundholm | Aug 2004 | B1 |
6847892 | Zhou et al. | Jan 2005 | B2 |
6859650 | Ritter | Feb 2005 | B1 |
6912399 | Zirul | Jun 2005 | B2 |
RE38838 | Taylor | Oct 2005 | E |
6972684 | Copley | Dec 2005 | B2 |
7002477 | Camhi | Feb 2006 | B1 |
7026929 | Wallace | Apr 2006 | B1 |
7038590 | Hoffman et al. | May 2006 | B2 |
7042338 | Weber | May 2006 | B1 |
7092695 | Boling | Aug 2006 | B1 |
7106191 | Liberati | Sep 2006 | B1 |
7251471 | Boling et al. | Jul 2007 | B2 |
7289031 | Hock | Oct 2007 | B1 |
RE39909 | Taylor | Nov 2007 | E |
7330122 | Derrick | Feb 2008 | B2 |
7545318 | Derrick | Jun 2009 | B2 |
20020115436 | Howell et al. | Aug 2002 | A1 |
20030027547 | Wade | Feb 2003 | A1 |
20030107487 | Korman | Jun 2003 | A1 |
20030197612 | Tanaka | Oct 2003 | A1 |
20040192353 | Mason et al. | Sep 2004 | A1 |
20050068169 | Copley et al. | Mar 2005 | A1 |
20060047543 | Moses | Mar 2006 | A1 |
20070041427 | Small | Feb 2007 | A1 |
20070082677 | Donald Hart et al. | Apr 2007 | A1 |
20070258417 | Harvey et al. | Nov 2007 | A1 |
20080012760 | Derrick | Jan 2008 | A1 |
20080018458 | Derrick | Jan 2008 | A1 |
20080096521 | Boling | Apr 2008 | A1 |
20080174422 | Freathy | Jul 2008 | A1 |
20080218358 | Derrick | Sep 2008 | A1 |
20090224909 | Derrick et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
4413974 | Nov 1995 | DE |
19625581 | Dec 1997 | DE |
0017448 | Oct 1980 | EP |
0242099 | Oct 1987 | EP |
0489915 | Jun 1992 | EP |
496538 | Jul 1992 | EP |
745867 | Dec 1996 | EP |
0780993 | Jun 1997 | EP |
0809117 | Nov 1997 | EP |
0889631 | Jan 1999 | EP |
0946037 | Sep 1999 | EP |
2141006 | Dec 1984 | GB |
2007200 | Jan 1990 | JP |
6020191 | Jan 1994 | JP |
6036185 | Feb 1994 | JP |
87-04851 | Sep 1987 | WO |
87-06713 | Nov 1987 | WO |
97-03511 | Jan 1997 | WO |
00-77688 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20080018459 A1 | Jan 2008 | US |