Alarm and alarm management system for remote tracking devices

Information

  • Patent Grant
  • 8013736
  • Patent Number
    8,013,736
  • Date Filed
    Wednesday, June 2, 2010
    14 years ago
  • Date Issued
    Tuesday, September 6, 2011
    13 years ago
Abstract
A system and method of implementing an alarm hierarchy in a remote tracking device tracked by a monitoring center is described. The remote tracking device is worn by a wearer and includes a location determining mechanism, a wireless communication mechanism and a processor operable to monitor the status of the remote tracking device and to compare the location of the remote tracking device to a set of programmed rules. Detected alarm conditions and corresponding automated responses are escalated, respectively, in response to detecting the alarm conditions remain unresolved.
Description
BACKGROUND OF THE INVENTION

1. The Field of the Invention


The field of the present invention relates to remote tracking and communication systems and devices, and more particularly to alarm and alarm management systems for use with systems for tracking and monitoring persons from a central monitoring center.


2. The Relevant Technology


The Global Positioning System (GPS) is very well known as a mechanism for providing relatively accurate positioning information using small portable devices. To create a remote tracking device useful for tracking or monitoring persons GPS devices need a mechanism to transmit the location information from the GPS to a central site where a record of the person's location can be maintained. There have been several devices that have used terrestrial wireless or cellular networks coupled to a GPS engine to transmit the location data to a central repository. The GPS/cellular device can either transmit the raw GPS data over the cellular network to a central system which can then process the GPS data to determine the location of the device, or if enough processing power is built into the remote tracking device the GPS calculations can be done on the remote tracking device and the derived location information can be transmitted to the central repository. A time stamp can be associated with the location information to provide temporal context for the location information.


An example of such a device is described in U.S. Pat. No. 6,014,080 to Layson, Jr. The remote tracking device of Layson, Jr. includes a tamper resistant strap and housing which holds a GPS engine and a wireless data modem. The remote tracking device communicates with a central station computer using the wireless data modem and transmits the location data for the remote, tracking device. The central station includes a computer which is operable to take the position information from the remote tracking device and to compare that location information against a schedule of rules and location restraints to determine if the remote tracking device has strayed from a permitted inclusion zone or has entered a forbidden exclusion zone.


Another remote tracking device is described in U.S. Pat. No. 6,072,396 to Gaukel. The remote tracking device of Gaukel is a two-piece device with a tamper resistant unit securely attached to the person to be monitored. The secure unit is connected to, or in communication with, a body-worn device that includes a GPS engine and a cellular modem. As with Layson, Jr., the cellular modem is used to communicate the location information from the GPS engine to a control station.


Yet another remote tracking device and system is described by U.S. Pat. No. 5,867,103 to Taylor, Jr. The remote tracking device of Taylor, Jr. includes a tamper detection mechanism, a mechanism for receiving a signal from a positioning device, such as a GPS satellite, and a transmitter for transmitting a signal to a central station. The system for monitoring the remote devices includes a position determining mechanism for computationally determining the location of the remote device based on the signal from the positioning device and a temporal marking mechanism for providing a time stamp associated with the location determination.


While each of these devices shares a similar use of GPS and cellular or wireless data technology to gather information about the position of the remote device and to transmit information about the position to a central computer, each of these devices also suffer from the same deficiencies. Examples of these deficiencies are the lack of an ability to do anything with the information once it is received at the central computer. At most the central computers of these devices can generate messages of rules violations that can be transmitted to a parole officer or other recipient. The systems do not provide for any context for the message about the violation and do not provide for computer access to information about the remote tracking device and any violations or a monitoring center which can be contacted by the remote tracking device and the parole officer or other supervisor who has responsibility for the person being monitored.


These systems pass all location data obtained from the tracking devices directly through to the parole officer or supervisor who has responsibility for the person being monitored. This places the task of sorting through the mountain of location data directly on the parole officer or supervisor who may be in charge of a great number of persons being monitored. Placing such a heavy burden on the parole office or supervisor is generally undesirable and a waste of resources.


Further, these systems do not allow for voice communication with the person wearing the remote monitoring device. Some of the devices described above can initiate tones or vibrations in the device in the event of a rules violation, but none have the ability to initiate voice communication between the person being monitored and personnel at a monitoring center or the person's parole officer or supervisor.


Still further, these devices to not have any type of alarm system, alarm management, or alarm hierarchy which can be used to warn the person being monitored, or, as a last resort, warn those in the vicinity of the person being monitored that a violation is occurring.


BRIEF SUMMARY OF THE INVENTION

In one embodiment, the concepts described herein are directed to a remote tracking device for use in a remote tracking system having a central monitoring center. The remote tracking device includes a positioning system receiver, or transceiver, operable to receive signals indicative of the location of the remote tracking device, and a cellular transceiver operable to communicate with the central monitoring center. The remote tracking device also includes a processor connected to the positioning system transceiver and the cellular transceiver, the processor operable to monitor a status for the remote tracking device, and to compare the location of the remote tracking device with a set of rules programmed into the remote tracking device, and an audible alarm connected to the processor and capable of being activated by the processor when the processor detects a change in the status for the remote tracking device or a violation of the rules programmed into the remote tracking device, wherein a sound produced by the audible alarm when activated is audible to persons in the vicinity of the remote tracking device.


In another embodiment a system and method of implementing an alarm hierarchy in a remote tracking device tracked by a monitoring center is described. The remote tracking device is worn by a wearer and includes a location determining mechanism, a wireless communication mechanism and a processor operable to monitor the status of the remote tracking device and to compare the location of the remote tracking device to a set of programmed rules. The system and method include an automated response to an initial indication of an alarm condition invoked by the remote tracking device based on a change to the status of the remote tracking the device or a violation of the programmed rules. The automated response provides an indication of the alarm condition to the wearer. Next, communication can be established with the monitoring center when the alarm condition persists, such that the monitoring center can provide instructions to the wearer based on the alarm condition. If the wearer does not comply with the instructions from the monitoring center, a warning mechanism in the remote tracking device can be activated to warn those in the vicinity of the wearer.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.


These and other objects and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a diagram illustrating the major elements of a remote tracking system according to the concepts described herein;



FIG. 2 is a perspective view of a remote tracking and communication device according to the concepts described herein;



FIG. 3 is a schematic view of the electrical components in a remote tracking and communication device;



FIGS. 4A-C are flow charts illustrating embodiments of a data processing methods and data reporting methods using the remote tracking system;



FIG. 5 is a flow chart illustrating an embodiment of a data processing method using the remote tracking system;



FIG. 6 is a chart illustrating an embodiment of a monitoring center administration flow according to the concepts described herein



FIG. 7 is a flow chart illustrating an embodiment of a monitoring center call flow according to the concepts described herein;



FIG. 8 is a illustration of a screen shot showing an embodiment of a status monitor for a remote tracking device according to the concepts described herein; and



FIGS. 9A-9J are flow charts illustrating embodiments of monitoring center application flows for the setup, assignment and modification of various aspects associated with a remote tracking system according to the concepts described herein.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of a remote tracking device and monitoring system according to the concepts described herein provides for a remote tracking that includes two-way voice communication between the person being monitored and monitoring center personnel or the persons parole officer, supervisor, or other administrator. It also provides for an alarm system for the remote tracking device and associated alarm management system and alarm hierarchy which is capable of warning the offender and potentially those around the offender of a violation of the terms and conditions surrounding the monitoring. Still further, it provides for a comprehensive monitoring system that includes a staffed monitoring center and access by the parole officer, supervisor or administrator to information and tools to manage the information related to the person being monitored and the status of the person and remote tracking device.


Referring now to FIG. 1, a simplified diagram showing the major elements of a preferred embodiment of a remote tracking system according to the concepts described herein is shown. System 100 is used to track multiple remote tracing devices (RTDs). Each RTD 101 includes a positioning system engine, such as a global positioning system (GPS) engine, which is able to receive signals from one or more sources, either terrestrial networks or satellite network such as multiple GPS satellites 102, and to perform a location calculation based on the signals from the sources. While preferred embodiments described herein will use references to GPS, any position system engine or transceiver, terrestrial, airborne or satellite based, may be used in place of GPS according to the scope of the concepts described herein, including the Galeleo satellite tracking system. Applicant intends the use of GPS herein to be generic to any positioning system and to include all positioning systems. Location determination using terrestrial networks, satellite, or assisted satellite (using satellite signals in association with terrestrial signals such as cellular signals to provide a more precise location determination), is well known and will not be discussed further herein.


In addition to a GPS engine, the RTD includes a wireless/cellular transceiver. After a location determination has been made by the GPS engine or an internal microprocessor, the location information and information indicating the status of the RTD is sent over a terrestrial network, which is preferably a cellular network, as shown by cellular network 103. In order to be useful, each position location for the RTD needs to include an indication of the time for the location. In a preferred embodiment, the RTD uses the time information contained in the GPS signals themselves to provide the time indication for the position determination, however, instead of using the time information from the GPS signal, the RTD itself may provide the time indication from an internal clock. An internal clock may also be used to provide time indications on when data packets were created and sent using the cellular connection.


The information sent by the RTD over its cellular connection is received by monitoring center 104. Monitoring center 104 is preferably a staffed monitoring center providing representatives who can act as an intermediary between the person being monitored and the parole officer, supervisor or administrator with responsibility for the person being monitored. The monitoring center also includes the computer resources required to process, store and analyze the data received from the RTDs and provide the interface for the officers/supervisors/administrators to review the information in the system and to setup, modify and terminate the operating parameters for each individual RTD.


Access to the information in the monitoring center is available through a web interface which connects to a network 105, such as the Internet, which allows persons with authorization 106 outside the monitoring center to access information in the monitoring centers computers. Additionally, cellular network 103 can also be used to establish two-way voice communication between the RTDs and the monitoring center, or responsible officer/supervisor/administrator. While reference is made to two-way voice communication, the term two-way is meant to encompass any interactive voice communication involving two or more parties, including three or more-way voice communication and would include conference type calls and multiparty calls. The two-way voice communications may use the same infrastructure as the data connections between the RTD and monitoring center, or may use completely different infrastructure or paths through the network than the data connections. Other third parties may also be in the voice or data path between the RTD and monitoring center to provide any number of functions, including the recording and archival of the voice communications between the RTD and monitoring center, and still be within the scope of the concepts described herein.


Referring now to FIG. 2, an embodiment of the physical characteristics a remote tracking device 200 according to the concepts described herein is shown in greater detail. Device 200 includes housing 201 with battery 202 removably affixed thereto. The single housing is configured to contain all electrical components necessary for tracking and communicating with the individual wearing device 200. Battery 202 provides power to the electronic circuitry within housing 201, as described below, and is preferably rechargeable. Top side 203 of housing 201 includes a first set of through ports 204. Another side 205 of housing 201 includes a second set of through ports 206. The first set of through ports 204 are configured to allow sound to pass through to a microphone (not shown) disposed within housing 201, while the second set of through ports 206 are configured to allow sound to pass outward from a speaker (not shown) which is also disposed within the housing 201. Top side 203 of housing 201 also includes two panels 207 and 208, at least one of which is configured as a rocker button to activate one or more of the electronic components described below.


The rear face of device 200-includes an appropriate curvature so that it can be attached to a person's body, preferably to an ankle Battery 202, which is inserted into the bottom side of device 200, includes a release lever (not shown) which is movable to release the battery from the housing. Each end of a strap 209 (partially shown) is secured within an extension on each side of housing 201, such as extension 210. Strap 209 and the strap connections to housing 201 are tamper resistant and include security measures intended to prevent the disconnection or severing of strap 209, or if strap 209 is severed, device 200 can provide a signal indicating the status of the strap. The strap preferably includes one or more optical fibers and/or conductive materials embedded throughout its length, each of which is exposed at either end of the strap and connected to the electronics in device 200 which can determine the integrity of the connections.


Additional tamper detection may be achieved through monitoring all externally accessible fasteners, e.g., the screws affixing the pressure block 10 the housing, the external battery, and the like, for electrical continuity by using each fastener to complete, or as part of, an electrical circuit.


Referring now to FIG. 3, an embodiment of the electronic aspects of the remote tracking device is shown. The type of connection between the various components is a matter of design choice, and may vary depending upon the specific component chosen to perform for a particular function. Further, where a specific component is indicated, those skilled in the art will appreciate that the indicated component may be substituted with other, functionally equivalent components that are readily available in the marketplace.


Electronics 300 includes microprocessor 301. Microprocessor 301 controls overall operation of the device according to programming stored in memory 302, which can be SRAM memory. Electronics 300 may include inputs 303, which can be inputs such as switches or buttons, are included as inputs to microprocessor 301 and can be used to input data or provide for activation of pre-designated functionality controlled by microprocessor 301. In embodiments of the RTD, there is one button dedicated for activation of voice communications with the monitoring center. LEDs 304 are used as function and status indicators. The programming stored in memory 302 may be placed there at the time of manufacture, and additional, new or modified programming may be uploaded to the device using a wired connection via the included diagnostic interface 305, user interface 306, or wirelessly via the cellular transceiver 307 received by antenna 308.


Cellular transceiver 307 may be of the GSM/GPRS variety, and may include a SIM card 309. Cellular transceiver 307 allows two-way voice and data communication between the remote device and the monitoring center 104 from FIG. 1. Voice communications are further enabled by a direct connection between cellular transceiver 307 and an audio codec 310, which encodes and decodes the digital audio signal portion of the wireless transmission, and an associated speaker 311 and microphone 312. Data communications preferably use the cellular data channel and/or the cellular control channel, which can make use of short message service (SMS) capabilities in the network. This has additional benefits in that it provides redundancy for cellular systems in which service for both types of data communication is supported. Also, for those cellular systems in which the voice channel cannot be used simultaneously with the data channel, or in which the data channel is simply unavailable, the control channel can provide a data link between the call center and the device.


Electronics 200 may also include short range wireless transceiver 313 and associated antenna 314, which, if included, allow for short range wireless voice and data communications with peripheral devices. This second wireless transceiver 114 can be chosen to utilize the wireless communications standard published by the ZigBee Alliance, information about which may be found at www.zigbee.org. Wireless transceiver 313, however, may be designed and implemented using any of the alternative wireless communication standards which are well known in the art. Microprocessor 301 can be programmed to pass through voice communications received by cellular transceiver 307 to a voice-capable peripheral when such a peripheral is employed in conjunction with the remote tracking and communication device and is activated. Voice communications received from a voice enabled peripheral can be passed through to cellular transceiver 307 for transmission. Data generated by the device or received from a peripheral, if any, may be stored by microprocessor 301 in memory 315, which can be non-volatile memory such as serial flash memory until required by microprocessor 301 or until it is to be transmitted by the device.


GPS receiver 316 and antenna 317 receive signals transmitted by GPS satellites, the signal used to establish the geographical location of the device and the person being monitored. In one embodiment, data from GPS receiver 316 is passed through to microprocessor 301, which in turn processes the data to determine a location and associated time, and stores it in the serial flash memory 315 pending transmission using cellular transceiver 307. While electronics 300 are shown with a GPS receiver which passes the GPS signal data to the microprocessor for processing, a GPS engine which includes both the GPS receiver and the capability to process the GPS signal to produce a location determination and associated time indication may also be used according to the concepts described herein. Using a standalone GPS engine would free processing bandwidth in the microprocessor, thereby allowing the microprocessor to perform other additional functions.


Cellular transceiver 307 may also be used to geographically locate the device through well known methods of cell tower triangulation, or may be used to provide location information used in assisted GPS schemes. Geographical location using cellular transceiver 307 may be performed in addition to, in conjunction with, or as a substitute for the GPS receiver 316. Other known methods for geographically locating the device may also be employed.


Either of memories 302 and 315, or memory resident on the microprocessor, may be used individually, or may be used in any combination to store the operating program and parameters for the operation of the device, as will be discussed later, and may further be used to store prerecorded messages which can be played through speaker 311 as part of the monitoring and alarm management system which will be discussed in greater detail below. A siren/speaker 323 may also be included in the device and controlled by microprocessor 301. Siren 323 is also used as part of the alarm system and can be activated to provide a high decibel audible alarm. This alarm can both warn those in the vicinity that the person being monitored has entered an exclusion zone or left an inclusion zone, and can aid the police in the location of the person being monitored. The siren can be activated automatically by the microprocessor as part of the alarm management system or can be activated remotely by sending a signal to the microprocessor using cellular transceiver 307. Siren 323 can be a separate device or could be combined with the functionality of speaker 311. Tamper detection circuit 322 monitors the condition of strap 209 from FIG. 2 and any other tamper detection sensors that may be part of housing 201.


In the embodiment shown in FIG. 3, power to the processor and other electronic components is provided though power controller 318 by external battery 319, or internal battery 320 when the external batter is disconnected or the voltage of the external battery falls below a threshold. External battery 319 is removable and is preferably rechargeable by a separate recharging unit. Also, the person being monitored will preferably have multiple external batteries so that a charged external battery can be immediately inserted when a discharged battery is removed. Internal battery 320 is preferably internal to the housing and not accessible by the person being monitored. The internal battery allows the device to continue to operate normally while the external battery is being replaced. As the internal battery is intended to supply power to the device only during the transitioning from a depleted external battery to a charged external battery, or to provide a short amount of time to acquire a charged battery, the internal battery does not need to have a large capacity. Internal battery 320 is charged using power from external battery 319 using voltage converter 321 and/or a battery charger which may be connected to the device through voltage converter 321.


Since RTD 200 is intended to be worn around the ankle of the person being monitored, the microphone and speaker used for two-way voice communication is a significant distance from the ears and mouth of the person being monitored. To compensate for this a peripheral device may be used in conjunction with the RTD to aid in the two-way voice communication. In one embodiment the peripheral device has the form factor of a watch and includes an internal speaker, an internal microphone, and an internal short range wireless transceiver. The microphone and speaker are positioned in the housing of the peripheral to better enable voice communications. The short range wireless transceiver is configured to use the same wireless communications standard as the RTD to enable wireless voice and data communications between the device and the peripheral. A button can be included which, when pressed, causes a command signal to be sent to the RTD. This command signal can be used to instruct the remote tracking and communication device to initiate two-way voice communications with the monitoring center. When the peripheral device is used for such voice communications, the peripheral device communicates wirelessly with the RTD using the respective short range wireless transceiver of each respective unit, and the RTD then uses the cellular transceiver to connect the voice communications with the monitoring center. The microphone and speaker in the RTD can be disabled by the microprocessor when a peripheral device, such as described, is in use.


Using electronics such as those described above, embodiments of a remote tracking devices according to the concepts described herein may be programmed with a variety of useful features. One such feature is the ability to track the geographical location the individual wearing the device. Most frequently, the GPS receiver is used to determine the location of the device (and thus the wearer) at the time indicated in the GPS signals received from GPS network satellites. When the GPS is unable to determine location, the cellular transceiver may be used to determine the location of the device using well-known cellular tower triangulation techniques. Once identified, the location of the device is passed to the microprocessor, which processes the data according to its programming and stores the data in the memory.


As illustrated in method 430 shown in FIG. 4B, in some embodiments each element of location data, including the time is collected, as shown by process 431, and along with the current status of the RTD, process 432, is placed into a datagram, process 433, and send through the cellular transceiver immediately, process 436, as long as the RTD has a good cellular signal, process 434. If there is not a good cellular signal, the RTD stores the datagram and all subsequent datagrams, process 435 until a good cellular signal is detected by the RTD. When the good cellular signal is established all of the unsent datagrams are then sent to the monitoring center computers over the cellular network, process 436.


In other embodiments, the datagrams may be stored and sent in batches. In batch send embodiments, method 430 would repeat processes 431, 432 and 433 until a predetermined number of datagrams were stored, or until a timer expired before continuing on to process 434.


In yet other embodiments, any number of operations, such as (in this example) the batch sending of datagrams, could be determined from environmental factors and not tied to a predetermined or preprogrammed number, such as the number of datagrams or a predetermined timer, as is illustrated in method 450 shown in FIG. 4C. In method 450, the environmental conditions are monitored to determine if the period, or frequency of the operation, should be adjusted. These environmental conditions could be any condition that might require a different reporting frequency, such as the current speed of the RTD, the location of the RTD, conditions/events detected by the RTD, such as physiological conditions/events, sensor inputs to the RTD, notices of conditions or events from the monitoring center, or any other environmental condition, event or factor. Operations could include, but are not limited to, sending of data by the RTD, performing location determinations, issuing alerts to the wearer, generating alarm conditions, or any other operation that may be tied to environmental conditions, events or factors. For movement speed, for example, the RTD can determine, from comparing previous location and time measurements, the rate of movement of the RTD, and by association its wearer. As a result, the RTD may determine that location information needs to be sent more frequently and may further determine that more frequent location determinations need to be made. Similarly, if the RTD is approaching an exclusion zone or the edge of an inclusion zone, the RTD may determine that more frequent location determinations should be made and/or transmitted to that the system is more quickly aware of a violation that would occur at normal rates. Though speed and proximity are used as examples of environmental factors that could be used to determine batch send frequency or even location determination frequency and factor that can be monitored and used in the frequency determination is included in the concepts described herein.


In process 452 of method 450 it is determined if the batch send timer needs to be adjusted. If yes, process 453 adjusts the timer accordingly. Process 454 then determines if the timer has expired, if not, the method returns to process 451. If the timer has expired the method passes to process 455, which sends the accumulated datagrams.


As referenced above, embodiments of the remote tracking devices and/or the remote tracking system can be programmed to track the location of an RTD with respect to inclusion and exclusion zones. In these embodiments the microprocessor can be programmed to compare location data against rules which establish predefined geographical areas where the person being monitored is required to be (inclusion zones), or forbidden from being (exclusion zones). These zones can be tied to specific times of the day, such as curfews. A curfew is defined by a geographical area within which the device (and thus the wearer) needs to be physically located during specified times. Examples of curfew rules include requiring the wearer to be at a home area during the evening and overnight hours or at a work area during work hours. An inclusion zone is a geographical area within which the wearer is required to remain during specified times or a boundary outside of which the wearer is not allowed to travel. Inclusion zones and curfews, under these definitions, can also therefore be layered. For example, there may be a permanent inclusion zone, such as the county of residence of the wearer, outside of which the wearer is not allowed to travel without specific permission. Inside of this permanent zone there may be time specific zones, such as the wearer's home during overnight hours or workplace between 8 am and 5 pm.


An exclusion zone is a geographical area outside of which the wearer is required at all times. The rules can be established for any particular device at the time of initialization, modified at any time, or even temporarily suspended, at any time through changes to the parameters entered into the monitoring center computers and downloaded to the device, or entered directly into the device through direct connections to the diagnostic or user interface components of the device. In addition to geo-zone type rules, rules dictating a “report-in” type requirement may also be programmed into the device. These “report-in” rules could be used to satisfy report in requirements for some parolees. The device would be programmed with chronological points at which the wearer could be notified, such as by a prerecorded voice message stored on the device, to contact the monitoring center or other person at that time, or within a specified interval. The wearer could activate the voice communication on the device or could report in by other means. Further, rules for monitoring physiological conditions/events can be programmed into the device. Sensors on the remote tracking device, or peripherals to the remote tracking device, could be used to monitor physiological conditions. If measurements associated with those physiological conditions fall outside an expected range, which could be programmed in the form of a rule, or if a physiological event occurs as detected by a sensor, an alarm condition could be generated by the processor and sent to the monitoring center.


As described, the memory can be utilized to store prerecorded voice messages or other audio which provide feedback during operation of the device. Prerecorded voice messages, are preferred to tones or vibrations because they do not require a reference manual or knowledge of the wearer for interpretation. In addition to alarm type messages, voice message feedback may be advantageously utilized during initial setup of the device in that it provides step-by-step instructions for the setup routine, including directing the administrative user to input information about the device and user into the database via the web application described below. Voice message feedback may be similarly utilized during the detachment process to ensure that the device is removed by an authorized individual. During the removal process, if the audible instructions are not followed, i.e., inputting requested information into the database, then the device is preferably programmed to generate an alarm, which is processed as described below.


Following the initial power-up sequence, the device may be programmed to establish a data connection with a monitoring center computer, or central server, to which the device provides device-specific identification data. This eliminates any need for the administrative user to connect the device to a local computer or terminal for the initialization process. The monitoring center computer(s) is/are programmed to maintain a data base of data sent by tracking and communication devices. Upon initial contact, the central server creates a database entry using the device-specific identification data.


The administrative user is provided access to data on the central server via a computer or terminal. In instances where the device is used as a tracking device for offenders, the administrative user may be the supervision officer or other authority figure. For other service applications, the administrative user and the wearer may be the same individual. Access to the database may be advantageously implemented as a web application, or it may be implemented as a standalone application.


During normal operation, the GPS receiver identifies the geographical location of the device, and the microprocessor processes and stores that location data according to its programming. The device may be programmed such that geographical location is continuously monitored or monitored at specified intervals. In certain embodiments, with an appropriate peripheral, the device may also be programmed to monitor physiological conditions of the wearer. The microprocessor actively monitors other components of the device for indications of tampering, battery exchanges/replacements, and equipment failure.


Referring now to FIG. 4A, a flow chart is shown illustrating an embodiment of a method 400 by which microprocessor 301 from FIG. 3 can monitor and processes certain conditions. The microprocessor is preferably programmed to collect and store location data and data related to the status of the device and other monitored conditions in the flash memory, as shown by process 401. The microprocessor is further programmed to perform additional functions based upon application of the rules to the data collected, shown by process 402, upon predetermined intervals, or upon occurrence of a particular condition, such as, e.g., when tampering is detected, when the wearer has entered an exclusion zone, when the external battery need to be replaced, or when the wearer's heartbeat is irregular or no longer detectable, the latter requiring a separate peripheral.


When an alarm condition is raised or action is otherwise required, as shown by process 403, whether because the action is preprogrammed based on the status of the device, or the action is the result of a command received from the monitoring center, the monitoring center server or the administrative user, the microprocessor proceeds through a series of queries to determine the appropriate action. It should be noted that both the condition resulting in an action, and the action taken the microprocessor, are preferably programmable through the monitoring center, the web application or through a direct interface connection to the device. The first query 404 is whether to send data to the monitoring center by immediately initiating a data connection with the central server to transmit data relating to an alarm or data that is stored in memory, as shown in process 405. Next query 406 determines if siren 323 from FIG. 3 is activated, producing an audible alert, as shown by process 407.


The next query 408 determines whether the RTD should play one of the pre-recorded messages stored in memory, as shown by process 409. Query 410 determines whether to call the monitoring center by initiating a two-way voice communication using the cellular transceiver, as shown by process 411. Finally query 412 determines if the RTD should take some other programmed action as shown by process 413. Other actions may include, but are not limited to, storing data related to an alarm in memory for transmission at a later time, storing updated rules data to memory, or suspending rule violations notification for a period of time. While queries 404, 406, 408, 410 and 412 are shown in FIG. 4A in a particular order, the order is arbitrary and may be modified by programming the device.


As an example of method 400, in instances where the location data indicates the device is located outside of a geographical location permitted by the rules, the RTD may provides audio feedback to the wearer indicating the rule violation, in the form of a siren or a prerecorded message, and immediately sends notice to the central server for additional processing. The notice would include the geographical location of the device, the time of the location, and an indicator of the rule violated. If the wearer did not respond to the prerecorded message, the RTD might then escalate the alarm condition by establishing a two-way call with the monitoring center. The monitoring center personnel would then attempt to direct the wearer to leave the exclusion zone and verify that the wearer was complying with the request. If the wearer still did not comply with the request, the alarm condition could be escalated still further by activating the siren on the RTD and the monitoring center could then contact the local authorities and direct them to the wearer.



FIG. 4A and the above example illustrate an alarm management system in accordance with the concepts described herein. Although the example above recited specific steps, the concepts described herein relate to any alarm management system where the remote tracking device and the remote tracking system step through a series of alarm conditions and upon failure by the wearer to resolve the alarm condition, escalate the alarm to a higher level of response or intervention. Such alarm conditions could include, but are not limited to, battery alarms, rules violation alarms, tampering alarms and any other condition that can be programmed into the device and recognized by the device.


Referring now to FIG. 5, an embodiment of a method 500 illustrates processing data from the device when it is received at the central server. Initially, the central server determines if the data Includes information that was expressly requested by an operator at the call center or by the administrative user, as shown by process 501, and if so, the data is relayed to the operator or administrative user for display at a computer or terminal, process 502. Next, the central server determines if the data includes a standard tracer record in process 503, which may include self-identification of the device, self-diagnostic reports, upload audit logs, component version identification, confirmation of parameter changes such as volume control, suspending audible alarms at the device, activating or deactivating the speaker, and the like. Standard tracer records are processed as necessary and noted in the database, as shown in process 504.


If the data does not include a tracer record, the central server determines if the data is an indicator of an alarm condition in process 506. If the data is indicative of an alarm condition, the central server determines if the alarm is a repeat of an alarm which was previously received and reported, as shown by process 507. For alarms that were not previously received, the central server takes the appropriate notification action as programmed by the administrative user, as described by process 508.


If the data is not indicative of an alarm condition, the central server determines whether the individual wearing the device is subject to geographical location rules in process 509. In such instances, the central server determines whether a rule has, in fact, been violated, process 510, and determines if an alarm condition exists, process 511. When an alarm condition is raised, the central server first determines if the alarm is a repeat of a previous alarm, as shown in process 512, and if so, takes the appropriate notification action as programmed by the administrative user in process 513.


When immediate administrative user notification is not required, or no alarm condition is raised, the data is stored in the database, as shown by process 514, and reported to the administrative user in periodic reports which at least lists all alarm conditions received since provision of the last report. All recorded data may optionally be included in the report.


In embodiments of the remote tracking system according to the concepts described herein, the notification actions are fully configurable by the administrative user through the web application. The administrative user may designate specific types of alarms for immediate notification, and notification may be arranged through one or more methods including fax, email, text messaging to a pager, text messaging to a cellular phone, or through a direct call from the call center, or the like. In addition, the administrative user may also designate that some specific types of alarms result in direct notification to local authorities for immediate action.


The web application may also provide the administrative user with the ability to temporarily suspend reactions to specific types of alarms. During suspension, the device will suspend localized reactions only (i.e., pre-recorded voice messages, siren, initiating voice communications with the call center). The device will still transmit all alarms identified during suspension to the central server, which will in turn include all identified alarms in the periodic reports (e.g., weekly) to the administrative user. The web application may also provide the administrative user and call center operators with the ability to enter and store notes. Notes may be in the form of personal daily monitoring logs, calendared appointments or action items, case management directives, or contextual notations related to particular alarms saved within the database.


In embodiments of the remote tracking system, the central server may enable the call center or the administrative user, through the web application, to send commands or other data to the device. Such commands may include playing a pre-recorded message to the wearer, instructing the microprocessor to transmit data to provide a current status of the location and status of the device, and the like. The administrative user may also use the web application to instruct to the call center to initiate voice communications with the wearer. The call center then contacts the wearer by placing a cellular call to the cellular transceiver. Once the wearer is contacted, the call center then initiates a call to the administrative user and conferences the two calls.


Preferably, all voice communications with the device are made through the call center so that all calls may be recorded and saved within the database. This enables the call center and the administrative user to access the recorded calls at a later time as needed. To ensure that all calls are recorded, the cellular transceiver may be configured to block all incoming calls that do not originate from the call center. Alternatively, the cellular transceiver may be configured to selectively block incoming calls by utilizing the area code and telephone prefix to identify the origin of the call, allowing calls only from selected area codes and prefixes. Alternatively, the cellular transceiver may selectively block all calls except those from list of phone numbers that is stored in memory.


In embodiments of the remote tracking system, the wearer may also initiate voice communications with the call center. In these embodiments, at least one of the buttons on the exterior of the device housing may be configured to activate voice communications using the cellular transceiver. When pressed, the device is programmed such that cellular transceiver may only contacts the monitoring center. The device preferably has stored in memory a primary number for the call center and a secondary number in case a connection cannot be achieved on the primary number. Further, the device is programmed to attempt make a predetermined number of attempts to contact the call center, first at the primary number, then at the secondary number. Should all attempts fail, the device is preferably programmed to sound an alert condition to the wearer as an indication that the device is out of a cellular service area or requires service for an internal fault.


As has been referenced above, the monitoring center, or call center, is the focal point of the preferred embodiments of the remote tracking system according to the concepts described herein. The monitoring center is able to communicate with the remote tracking devices, the wearers of the remote tracking devices, and the officers, supervisors or administrators in charge of the persons wearing the RTDs. The monitoring center is also the repository for all the data collected from the RTDs and allows direct access to the data by the monitoring center employees and remote access by the administrators through the web application. The monitoring center also provides the mechanisms for establishing and modifying the operating parameters of the RTDs, including the rules for each wearer.


Referring now to FIG. 6, an example of an embodiment of a monitoring center administration flow 600 is shown. Flow 600 begins with the login access 626. Administrator login 601 provides a user with administrator privileges access to the entirety of flow 600, including administrator flow 627, operator flow 628, script manager flow 629, fulfillment home 630, and supervisor flow 631. Lesser login privileges, such as supervisor login 602, operator login 603, script manager login 604 and fulfillment login 605 provided only access to their respective flows and any less included flows, such as the supervisor login providing access to supervisor flow 631 and operator flow 628.


Administrator flow, accessible by an authorized administrator, includes access to the administrator home 606 and to agency overview functions 607 and manage agency functions 608, as well as employee management functions 609. Supervisor privileges provides access to supervisor home 610, manage user functions 611, as well as to employee management functions 610. Supervisor privileges also provide access to operator flow 628 as does operator privileges. Operator flow 628 includes access to operator home 612 which includes access to reports functions 613, messaging functions 614, client and offender detail 615 and 616, respectively, and to search function 617. Client detail 615 and offender detail 616 provide further access to demographics functions 620 which contains access to contacts 621 and medical history 622.


Script manager privileges provide access to script manager home 618 and to script management functions 619. Fulfillment privileges provide access to fulfillment home 623 and device management functions 624 and device assignment functions 625.


A preferred embodiment of a call monitoring center in accordance with the concepts described herein includes a monitoring center which is staffed 24 hours, seven days a week. The monitoring center is responsible for monitoring all of the remote tracking devices in the field and is staffed based on historical patterns of requirements for intervention by monitoring center staff. The computers of the monitoring center automatically receive and process the location and status information continuously or periodically sent by each of the remote tracking devices. Based on programmable rules in the monitoring center software, the occurrence of certain conditions in the remote tracking devices results in the monitoring center software sending an alert to one of the monitoring center personnel. These conditions are usually related to alarm conditions in a remote tracking device, but can be programmed to be any condition which might be of interest to the monitoring center personnel or the supervisors or administrators of the person being monitored.


When a condition is determined to require the attention of monitoring center personnel, the monitoring center software determines the appropriate monitoring center agent and sends the alert to the agent's terminal. The agent can then respond to the alert or access data in the monitoring center computers related to the history of the remote tracking device, the current parameters programmed into the remote tracking device, information on the wearer of the device or the agency or administrator in charge of the wearer and the device. If intervention, such as the initiation of a two-way voice call, is required by the agent, the monitoring center software provides a predetermined script for the agent to follow to ensure that the intervention by the agent conforms to the policies of the monitoring center and the agency or supervisor responsible for the tracking device and wearer.


In addition to the monitoring center software generating an alert which requires the attention of a monitoring center agent, agents may be required to respond to incoming calls from various interested persons including the wearer of the remote tracking device or the supervisor or administrator of a wearer or device. Referring now to FIG. 7, an embodiment of a call routing system 700 for use in the call monitoring center is described. Routing system 700 is operable to receive incoming calls from a variety of sources 70 I, 702, 703 and 704, which could be the wearer of a remote tracking device 702, a supervisor or administrator 703, or other incoming call 701 or 704. A routing function 705 in the monitoring center call system determines the appropriate agent to receive the call from currently active agents at the center. The call may be routed based on the source of the call or may be routed based on a queue of available agents or any other routing criteria which may be used to select an appropriate agent.


Once the agent has been selected the application passes the call details to the agent's terminal as shown by process 706. In process 707, the application uses the dialed number to select an application context, and then in process 708 determines a call handling flow for each specific type of call. Call routing system 700 also includes a contingent process flow 709 for situations in which no call detail information is available to determine context and call flow for the agent. In the contingent process 709, the agent manually enters the caller's phone number into the agent application which then looks up the customer records and uses those records to determine the appropriate context and flow for the call.


As has been described, embodiments of the remote tracking device maintain status on themselves in the form of states for various aspects of the devices. This status is sent to the monitoring center and maintained by the monitoring center application. Monitoring center personnel, or supervisors or administrators can access the status of the any particular device under their control. An example of the types of status which can be maintained by the RTD and monitoring center is shown in FIG. 8. FIG. 8 is an illustration of a screen shot of an embodiment of the monitoring center application in accordance with the concepts described herein. While FIG. 8 shows particular aspects of the RTD on which status is maintained other aspects of the RTD, its operating environment, or operating conditions can also be maintained within the scope of the concepts described herein.


Referring now to FIGS. 9A through 9J, embodiments of flow charts illustrating the operation and functionality of an embodiment of aspects of the monitoring center software and/or applications are shown. FIG. 9A illustrates an embodiment of an agency setup flow. Agency setup flow 900 illustrates a process by which an administrator or operator can create an agency for which one or more officers will be assigned RTDs that will be monitored by the monitoring center. FIG. 9B illustrates an embodiment of an officer/administrator setup flow. Officer setup flow 901 illustrates the process by which officers/administrators of a particular agency can be setup with control over particular RTDs and provided access to the monitoring center application.



FIG. 9C illustrates an embodiment of an offender/wearer setup flow. Offender/wearer setup flow 902 illustrates the process by which supervisors or agents of the monitoring center or officers/administrators of a particular agency can setup particular RTDs and provided relevant and required information to the monitoring center application concerning each offender wearer of an RTD. FIG. 9D illustrates an embodiment of an offender/wearer assignment flow. Assignment flow 903 illustrates the process by which officers/administrators of a particular agency are assigned with authority over particular RTDs and offenders/wearers.



FIG. 9E illustrates an embodiment of an offender/wearer device assignment flow. Device assignment flow 904 illustrates the process by which individual offenders/wearers are assigned with particular RTDs. FIGS. 9F, 9G and 9H illustrate an embodiment of an inclusion/exclusion zone, referred to collectively as geo-zones, setup flow. Geo-zone setup flows 905,906 and 907 illustrate the process by which operators or officers/administrators can setup inclusion and exclusion zone rules for a particular RTDs and offender/wearer.



FIG. 91 illustrates an embodiment of a contact monitoring center flow. Assignment flow 903 illustrates the process by which the monitoring center can be contacted by standard message, live chat or email. FIG. 9J illustrates an embodiment of an offender/wearer scheduling flow. Scheduling flow 909 illustrates the process by which operators or officers/administrators of a particular agency can manage alarm schedules for particular RTDs and offenders/wearers.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.


The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A tracking device configured for use in implementing an alarm hierarchy, the tracking device comprising: a location determining mechanism;a wireless communication mechanism;memory storing a set of programmed rules; anda processor operable to monitor the status of the tracking device and to compare the location of the tracking device to the set of programmed rules,wherein the tracking device implements a method that includes: invoking an automated response to an initial indication of an alarm condition based on a change to the status of the tracking device or a violation of the programmed rules, the automated response providing an indication of the alarm condition to the wearer;establishing communication with the monitoring center when the alarm condition persists, the monitoring center providing instructions to the wearer based on the alarm condition; andactivating a warning mechanism in the tracking device when the wearer does not comply with the instructions from the monitoring center.
  • 2. The tracking device of claim 1, wherein the automated response is the tracking device playing one or more prerecorded messages.
  • 3. The tracking device of claim 2, wherein the one or more prerecorded messages are stored in the tracking device.
  • 4. The tracking device of claim 1, wherein establishing communication with the monitoring center includes establishing a two-way voice communication using the wireless communication mechanism.
  • 5. The tracking device of claim 1, wherein the warning mechanism is an audible alarm.
  • 6. The tracking device of claim 5, wherein the audible alarm is a high decibel siren.
  • 7. The tracking device of claim 1, wherein the tracking device sends an indication of the alarm condition to the monitoring center upon the initial indication of the alarm condition.
  • 8. The tracking device of claim 1, wherein remote activation of the warning mechanism is enabled by the monitoring center using a signal sent to the processor over the wireless communication mechanism.
  • 9. The tracking device of claim 1, wherein the initial indication of the alarm condition is based on a low battery condition detected at the tracking device.
  • 10. The tracking device of claim 1, wherein the initial indication of the alarm condition is based on poor or unavailable communication detected at the tracking device.
  • 11. A method of implementing an alarm hierarchy in a tracking device tracked by a monitoring center, wherein the tracking device is worn by a wearer and includes a location determining mechanism, a wireless communication mechanism and a processor operable to monitor the status of the tracking device and to compare the location of the tracking device to a set of programmed rules, and wherein the method comprises: detecting, at the tracking device, an initial alarm condition based on at least one predetermined rule and a current state of the tracking device monitored at the tracking device;the tracking device responsively generating a first alarm comprising a first automated response at the tracking device to the initial alarm condition based on the occurrence of the initial alarm condition;detecting at the tracking device that the initial alarm condition remains unresolved; andthe tracking device responsively generating a second alarm comprising a second automated response from the tracking device in response to detecting that the initial alarm condition remains unresolved, the second automated response being a different type of automated response than the first automated response.
  • 12. The method recited in claim 11, wherein the first automated response comprises one or more audible instructions or notifications rendered by the tracking device.
  • 13. The method recited in claim 12, wherein the second automated response includes an audible siren generated at the tracking device.
  • 14. The method recited in claim 12, wherein detecting that the initial alarm condition remains unresolved includes determining that the wearer of the tracking device is failing to comply with the one or more audible instructions or notifications.
  • 15. The method recited in claim 11, wherein the current state is a battery condition and wherein the initial alarm condition is based on detecting a low battery condition at the tracking device.
  • 16. The method recited in claim 11, wherein the current state is a communication state and wherein the initial alarm condition is based on an inability of the tracking device to communicate with the monitoring center.
  • 17. The method recited in claim 16, wherein the initial alarm condition is based the tracking device being out of a cellular range required for establishing a communication link with the monitoring center.
  • 18. The method recited in claim 11, wherein the current state is a detected location of the tracking device.
  • 19. A method of implementing an alarm hierarchy in a tracking device tracked by a monitoring center, wherein the tracking device is worn by a wearer and includes a location determining mechanism, a wireless communication mechanism and a processor operable to monitor the status of the tracking device and to compare the location of the tracking device to a set of programmed rules, and wherein the method comprises: detecting, at the tracking device, an alarm condition that is based on at least one predetermined rule and a current state of the tracking device;the tracking device responsively generating an automated response at the tracking device to the alarm condition;detecting, at the tracking device, that the initial alarm condition remains unresolved;escalating the alarm condition to a next level in response to detecting that the alarm condition remains unresolved;initiating an additional automated response in response to detecting the alarm condition remains unresolved;detecting, at the tracking device, that the alarm condition remains unresolved following the additional automated response; andescalating the alarm condition to a subsequent level in response to detecting that the alarm condition remains unresolved following the additional automated response.
  • 20. The method recited in claim 19, wherein the method further includes initiating a subsequent automated response in response to detecting that the alarm condition remains unresolved following the additional automated response.
  • 21. The method recited in claim 19, wherein the method further includes receiving input at the tracking device that only temporarily suspends application of the at least one predetermined rule and so as to only temporarily suspend the alarm condition.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 11/486,992, filed Jul. 14, 2006, entitled “ALARM AND ALARM MANAGEMENT SYSTEM FOR REMOTE TRACKING DEVICES”, which issued as U.S. Pat. No. 7,737,841 on Jun. 15, 2010 and which is incorporated herein by specific reference in its entirety.

US Referenced Citations (524)
Number Name Date Kind
2986543 Daniel May 1961 A
3210747 Clynes Oct 1965 A
3440633 Vinding Apr 1969 A
3462692 Bartlett Aug 1969 A
3478344 Schwitzgebel Nov 1969 A
3568161 Knickel Mar 1971 A
3572316 Vogelman Mar 1971 A
3609741 Miller Sep 1971 A
3639907 Greatbatch Feb 1972 A
3656456 Stigmark Apr 1972 A
3665448 McGlinchey May 1972 A
3743865 Reichmann Jul 1973 A
3758855 Meyer Sep 1973 A
3764819 Muller Oct 1973 A
3876890 Brown Apr 1975 A
3882277 DePedro May 1975 A
3898472 Long Aug 1975 A
3898984 Mandel Aug 1975 A
3914692 Seaborn Oct 1975 A
3925763 Wadhwani Dec 1975 A
3930249 Steck Dec 1975 A
3972320 Kalman Aug 1976 A
3973208 Diamond Aug 1976 A
3983483 Pando Sep 1976 A
4095214 Minasy Jun 1978 A
4110741 Hubert Aug 1978 A
4157540 Oros Jun 1979 A
4234840 Konrad Nov 1980 A
4237344 Moore Dec 1980 A
4258709 Flack Mar 1981 A
4259665 Manning Mar 1981 A
4275385 White Jun 1981 A
4285146 Charles Aug 1981 A
4293852 Rogers Oct 1981 A
4295132 Burney Oct 1981 A
4309697 Weaver Jan 1982 A
4316134 Balan Feb 1982 A
4319241 Mount Mar 1982 A
4331161 Patel May 1982 A
4342986 Buskirk Aug 1982 A
4359733 O'Neill Nov 1982 A
4445118 Taylor Apr 1984 A
4446454 Pyle May 1984 A
4523184 Abel Jun 1985 A
4536755 Holzgang Aug 1985 A
4549169 Moura Oct 1985 A
4558309 Antonevich Dec 1985 A
4559526 Tani Dec 1985 A
4578539 Townsing Mar 1986 A
4591661 Benedetto May 1986 A
4596988 Wanka Jun 1986 A
4598272 Cox Jul 1986 A
4598275 Ross Jul 1986 A
4622544 Bially Nov 1986 A
4630035 Stahl Dec 1986 A
4651157 Gray Mar 1987 A
4665370 Holland May 1987 A
4665385 Henderson May 1987 A
4665387 Cooper May 1987 A
4667203 Counselman May 1987 A
4673936 Kotoh Jun 1987 A
4675656 Narcisse Jun 1987 A
4682155 Shirley Jul 1987 A
4701760 Raoux Oct 1987 A
4728959 Maloney Mar 1988 A
4731613 Endo Mar 1988 A
4736196 McMahon Apr 1988 A
4737976 Borth Apr 1988 A
4740792 Sagey Apr 1988 A
4741245 Malone May 1988 A
4742336 Hall May 1988 A
4742357 Rackley May 1988 A
4747120 Foley May 1988 A
4750197 Denekamp Jun 1988 A
4751512 Longaker Jun 1988 A
4754283 Fowler Jun 1988 A
4754465 Trimble Jun 1988 A
4764757 DeMarco Aug 1988 A
4777477 Watson Oct 1988 A
4791572 Green Dec 1988 A
4809005 Counselman Feb 1989 A
4812823 Dickerson Mar 1989 A
4812991 Hatch Mar 1989 A
4819053 Halavais Apr 1989 A
4819162 Webb Apr 1989 A
4819860 Hargrove Apr 1989 A
4820966 Fridman Apr 1989 A
4825457 Lebowitz Apr 1989 A
4833477 Tendler May 1989 A
4837568 Snaper Jun 1989 A
4843377 Fuller Jun 1989 A
4864277 Goodman Sep 1989 A
4885571 Pauley Dec 1989 A
4888716 Ueno Dec 1989 A
4891650 Sheffer Jan 1990 A
4891761 Gray Jan 1990 A
4894662 Counselman Jan 1990 A
4897642 Dilullo Jan 1990 A
4903212 Yokouchi Feb 1990 A
4907290 Crompton Mar 1990 A
4908629 Apsell Mar 1990 A
4912756 Hop Mar 1990 A
4916435 Fuller Apr 1990 A
4918425 Greenberg Apr 1990 A
4918432 Pauley Apr 1990 A
4924699 Kuroda May 1990 A
4928107 Kuroda May 1990 A
4952913 Pauley Aug 1990 A
4952928 Carroll Aug 1990 A
4953198 Daly Aug 1990 A
4956861 Kondo Sep 1990 A
4961212 Marui Oct 1990 A
4965548 Fayfield Oct 1990 A
4980671 McCurdy Dec 1990 A
4983980 Ando Jan 1991 A
4993061 Hsieh Feb 1991 A
4996161 Conners Feb 1991 A
4999613 Williamson Mar 1991 A
5003317 Gray Mar 1991 A
5003595 Collins Mar 1991 A
5008930 Gawrys Apr 1991 A
5014040 Weaver May 1991 A
5014066 Counselman May 1991 A
5014206 Scribner May 1991 A
5019802 Brittain May 1991 A
5019828 Schoolman May 1991 A
5021794 Lawrence Jun 1991 A
5023904 Kaplan Jun 1991 A
5025253 Dilullo Jun 1991 A
5025261 Ohta Jun 1991 A
5032823 Bower Jul 1991 A
5032845 Velasco Jul 1991 A
5043736 Darnell Aug 1991 A
5055851 Sheffer Oct 1991 A
5075670 Bower Dec 1991 A
5077788 Cook Dec 1991 A
5081667 Drori Jan 1992 A
5115223 Moody May 1992 A
5117222 McCurdy May 1992 A
5119102 Barnard Jun 1992 A
5131020 Liebesny Jul 1992 A
5146207 Henry Sep 1992 A
5146231 Ghaem Sep 1992 A
5148471 Metroka Sep 1992 A
5148473 Freeland Sep 1992 A
5155689 Wortham Oct 1992 A
5170426 D'Alessio Dec 1992 A
5179519 Adachi Jan 1993 A
5182543 Siegel Jan 1993 A
5193215 Olmer Mar 1993 A
5198831 Burrell Mar 1993 A
5203009 Bogusz Apr 1993 A
5204670 Stinton Apr 1993 A
5206897 Goudreau Apr 1993 A
5218344 Ricketts Jun 1993 A
5218367 Sheffer Jun 1993 A
5220509 Takemura Jun 1993 A
5223844 Mansell Jun 1993 A
5225842 Brown Jul 1993 A
5235320 Romano Aug 1993 A
5235633 Dennison Aug 1993 A
5243652 Teare Sep 1993 A
5247564 Zicker Sep 1993 A
5255183 Katz Oct 1993 A
5255306 Melton Oct 1993 A
5257195 Hirata Oct 1993 A
5266944 Carroll Nov 1993 A
5266958 Durboraw Nov 1993 A
5268845 Startup Dec 1993 A
5274695 Green Dec 1993 A
5278539 Lauterbach Jan 1994 A
5297186 Dong Mar 1994 A
5298884 Gilmore Mar 1994 A
5299132 Wortham Mar 1994 A
5305370 Kearns Apr 1994 A
5307277 Hirano Apr 1994 A
5311197 Sorden May 1994 A
5311374 Oh May 1994 A
5317309 Vercellotti May 1994 A
5317620 Smith May 1994 A
5319374 Desai Jun 1994 A
5319698 Glidewell Jun 1994 A
5334974 Simms Aug 1994 A
5334986 Fernhout Aug 1994 A
5349530 Odagawa Sep 1994 A
5353376 Oh Oct 1994 A
5355140 Slavin Oct 1994 A
5357560 Nykerk Oct 1994 A
5365451 Wang Nov 1994 A
5365570 Boubelik Nov 1994 A
5367524 Rideout Nov 1994 A
5369699 Page Nov 1994 A
5374933 Kao Dec 1994 A
5377256 Franklin Dec 1994 A
5379224 Brown Jan 1995 A
5388147 Grimes Feb 1995 A
5389934 Kass Feb 1995 A
5392052 Eberwine Feb 1995 A
5394333 Kao Feb 1995 A
5396227 Carroll Mar 1995 A
5396516 Padovani Mar 1995 A
5396540 Gooch Mar 1995 A
5398190 Wortham Mar 1995 A
5402466 Delahanty Mar 1995 A
5416468 Baumann May 1995 A
5416695 Stutman May 1995 A
5416808 Witsaman May 1995 A
5418537 Bird May 1995 A
5422816 Sprague Jun 1995 A
5426425 Conrad Jun 1995 A
5428546 Shah Jun 1995 A
5430656 Dekel Jul 1995 A
5437278 Wilk Aug 1995 A
5438315 Nix Aug 1995 A
5444430 McShane Aug 1995 A
5448221 Weller Sep 1995 A
5451948 Jekel Sep 1995 A
5461365 Schlager Oct 1995 A
5461390 Hoshen Oct 1995 A
5465388 Zicker Nov 1995 A
5475751 McMonagle Dec 1995 A
5479149 Pike Dec 1995 A
5479479 Braitberg Dec 1995 A
5479482 Grimes Dec 1995 A
5485385 Mitsugi Jan 1996 A
5490200 Snyder Feb 1996 A
5493692 Theimer Feb 1996 A
5493694 Vicek Feb 1996 A
5497148 Olivia Mar 1996 A
5497149 Fast Mar 1996 A
5504482 Schreder Apr 1996 A
5510797 Abraham Apr 1996 A
5512879 Stokes Apr 1996 A
5513111 Wortham Apr 1996 A
5515043 Bernard May 1996 A
5515062 Maine May 1996 A
5515285 Garrett May 1996 A
5517419 Lanckton May 1996 A
5518402 Tommarello May 1996 A
5519380 Edwards May 1996 A
5519403 Bickley May 1996 A
5519621 Wortham May 1996 A
5523740 Burgmann Jun 1996 A
5525967 Azizi Jun 1996 A
5525969 LaDue Jun 1996 A
5528248 Steiner Jun 1996 A
5532690 Hertel Jul 1996 A
5537102 Pinnow Jul 1996 A
5541845 Klein Jul 1996 A
5542100 Hatakeyama Jul 1996 A
5543780 Mcauley Aug 1996 A
5544661 Davis Aug 1996 A
5546445 Dennison Aug 1996 A
5550551 Alesio Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5557254 Johnson Sep 1996 A
5559491 Stadler Sep 1996 A
5559497 Hong Sep 1996 A
5563931 Bishop Oct 1996 A
5568119 Schnipper Oct 1996 A
5572204 Timm Nov 1996 A
5572217 Flawn Nov 1996 A
5574649 Levy Nov 1996 A
5576716 Sadler Nov 1996 A
5587715 Lewis Dec 1996 A
5588038 Snyder Dec 1996 A
5589834 Weinberg Dec 1996 A
5594425 Ladner Jan 1997 A
5594650 Shah Jan 1997 A
5596262 Boll Jan 1997 A
5596313 Berglund Jan 1997 A
5598151 Torii Jan 1997 A
5600230 Dunstan Feb 1997 A
5602739 Haagenstad Feb 1997 A
5612675 Jennings Mar 1997 A
5617317 Ignagni Apr 1997 A
5621388 Sherburne Apr 1997 A
5625668 Loomis Apr 1997 A
5627520 Grubbs May 1997 A
5627548 Woo May 1997 A
5629693 Janky May 1997 A
5630206 Urban May 1997 A
5644317 Weston Jul 1997 A
5646593 Hughes Jul 1997 A
5650770 Schlager Jul 1997 A
5652570 Lepkofker Jul 1997 A
5673035 Huang Sep 1997 A
5673305 Ross Sep 1997 A
5677521 Garrou Oct 1997 A
5682133 Johnson Oct 1997 A
5682142 Loosmore Oct 1997 A
5684828 Bolan Nov 1997 A
5686910 Timm Nov 1997 A
5686924 Trimble Nov 1997 A
5687215 Timm Nov 1997 A
5694452 Bertolet Dec 1997 A
5699256 Shibuya Dec 1997 A
5703598 Emmons Dec 1997 A
5705980 Shapiro Jan 1998 A
5712619 Simkin Jan 1998 A
5715277 Goodson Feb 1998 A
5721678 Widl Feb 1998 A
5722081 Tamura Feb 1998 A
5722418 Bro Mar 1998 A
5724316 Brunts Mar 1998 A
5726893 Schuchman Mar 1998 A
5727057 Emery Mar 1998 A
5731757 Layson Mar 1998 A
5732076 Ketseoglou Mar 1998 A
5736962 Tendler Apr 1998 A
5740049 Kaise Apr 1998 A
5740532 Fernandez Apr 1998 A
5740547 Kull Apr 1998 A
5742233 Hoffman Apr 1998 A
5742509 Goldberg Apr 1998 A
5742666 Alpert Apr 1998 A
5742686 Finley Apr 1998 A
5742904 Pinder Apr 1998 A
5745037 Guthrie Apr 1998 A
5745849 Britton Apr 1998 A
5745868 Geier Apr 1998 A
5748089 Sizemore May 1998 A
5748148 Heiser May 1998 A
5751246 Hertel May 1998 A
5752976 Duffin May 1998 A
5757367 Kapoor May 1998 A
5760692 Block Jun 1998 A
5767788 Ness Jun 1998 A
5771002 Creek Jun 1998 A
5774825 Reynolds Jun 1998 A
5777580 Janky Jul 1998 A
5781101 Stephen Jul 1998 A
5784029 Geier Jul 1998 A
5786789 Janky Jul 1998 A
5790022 Delvecchio Aug 1998 A
5790974 Tognazzini Aug 1998 A
5793283 Davis Aug 1998 A
5793630 Theimer Aug 1998 A
5794174 Janky Aug 1998 A
5796613 Kato Aug 1998 A
5796777 Terlep Aug 1998 A
5797091 Clise Aug 1998 A
5805055 Colizza Sep 1998 A
5809426 Radojevic Sep 1998 A
5809520 Edwards Sep 1998 A
5811886 Majmudar Sep 1998 A
5815118 Schipper Sep 1998 A
5818333 Yaffe Oct 1998 A
5819864 Koike Oct 1998 A
5825283 Camhi Oct 1998 A
5825327 Krasner Oct 1998 A
5825871 Mark Oct 1998 A
5828292 Kokhan Oct 1998 A
5831535 Reisman Nov 1998 A
5835017 Ohkura Nov 1998 A
5835907 Newman Nov 1998 A
5842146 Shishido Nov 1998 A
5844894 Bent Dec 1998 A
5847679 Yee Dec 1998 A
5852401 Kita Dec 1998 A
5857433 Files Jan 1999 A
5867103 Taylor Feb 1999 A
5868100 Marsh Feb 1999 A
5873040 Dunn Feb 1999 A
5874801 Kobayashi Feb 1999 A
5874889 Higdon Feb 1999 A
5875402 Yamawaki Feb 1999 A
5877724 Davis Mar 1999 A
5889474 LaDue Mar 1999 A
5890061 Timm Mar 1999 A
5890092 Kato Mar 1999 A
5892447 Wilkinson Apr 1999 A
5892454 Schipper Apr 1999 A
5892825 Mages Apr 1999 A
5894498 Kotzin Apr 1999 A
5898391 Jefferies Apr 1999 A
5900734 Munson May 1999 A
5905461 Neher May 1999 A
5906655 Fan May 1999 A
5907555 Raith May 1999 A
5912623 Pierson Jun 1999 A
5912886 Takahashi Jun 1999 A
5912921 Warren Jun 1999 A
5914675 Tognazzini Jun 1999 A
5917405 Joao Jun 1999 A
5918180 Dimino Jun 1999 A
5918183 Janky Jun 1999 A
5919239 Fraker Jul 1999 A
5920278 Tyler Jul 1999 A
5926086 Escareno Jul 1999 A
5928306 France Jul 1999 A
5929752 Janky Jul 1999 A
5929753 Montague Jul 1999 A
5933080 Nojima Aug 1999 A
5936529 Reisman Aug 1999 A
5937164 Mages Aug 1999 A
5940004 Fulton Aug 1999 A
5940439 Kleider Aug 1999 A
5945906 Onuma Aug 1999 A
5945944 Krasner Aug 1999 A
5948043 Mathis Sep 1999 A
5949350 Girard Sep 1999 A
5959533 Layson Sep 1999 A
5963130 Schlager Oct 1999 A
5966079 Tanguay Oct 1999 A
5969600 Tanguay Oct 1999 A
5969673 Bickley Oct 1999 A
5982281 Layson Nov 1999 A
5982813 Dutta Nov 1999 A
5983115 Mizikovsky Nov 1999 A
5990785 Suda Nov 1999 A
5990793 Bieback Nov 1999 A
5991637 Mack Nov 1999 A
5995847 Gergen Nov 1999 A
5997476 Brown Dec 1999 A
5999124 Sheynblat Dec 1999 A
6009363 Beckert Dec 1999 A
6011510 Yee Jan 2000 A
6014080 Layson Jan 2000 A
6014555 Tendler Jan 2000 A
6018667 Ghosh Jan 2000 A
6025774 Forbes Feb 2000 A
6025779 Huang Feb 2000 A
6026125 Larrick Feb 2000 A
6026300 Hicks Feb 2000 A
6026345 Shah Feb 2000 A
6028551 Schoen Feb 2000 A
6029111 Croyle Feb 2000 A
6031454 Lovejoy Feb 2000 A
6034622 Levine Mar 2000 A
6035201 Whitehead Mar 2000 A
6035217 Kravitz Mar 2000 A
6044257 Boling Mar 2000 A
6046687 Janky Apr 2000 A
6047196 Makela Apr 2000 A
6054928 Lemelson Apr 2000 A
6055426 Beasley Apr 2000 A
6060982 Holtrop May 2000 A
6061018 Sheynblat May 2000 A
6061392 Bremer May 2000 A
6061561 Alanara May 2000 A
6069570 Herring May 2000 A
6072396 Gaukel Jun 2000 A
6075797 Thomas Jun 2000 A
6075821 Kao Jun 2000 A
6084510 Lemelson Jul 2000 A
6084906 Kao Jul 2000 A
6084917 Kao Jul 2000 A
6088387 Gelblum Jul 2000 A
6088586 Haverty Jul 2000 A
6091325 Zur Jul 2000 A
6091786 Chen Jul 2000 A
6091957 Larkins Jul 2000 A
6094140 Parente Jul 2000 A
6097337 Bisio Aug 2000 A
6100806 Gaukel Aug 2000 A
6115597 Kroll Sep 2000 A
6130620 Pinnow Oct 2000 A
6160481 Taylor Dec 2000 A
6181253 Eschenbach Jan 2001 B1
6198394 Jacobsen Mar 2001 B1
6198914 Saegusa Mar 2001 B1
6218945 Taylor Apr 2001 B1
6226510 Boling May 2001 B1
6232916 Grillo May 2001 B1
6236319 Pitzer May 2001 B1
6239700 Hoffman May 2001 B1
6262666 Lodichand Jul 2001 B1
6285867 Boling Sep 2001 B1
6313733 Kyte Nov 2001 B1
6356841 Hamrick Mar 2002 B1
6362778 Neher Mar 2002 B2
6405213 Layson Jun 2002 B1
6437696 Lemelson Aug 2002 B1
6518889 Schlager Feb 2003 B2
6580908 Kroll Jun 2003 B1
6636732 Boling Oct 2003 B1
6639516 Copley Oct 2003 B1
6639519 Drummond Oct 2003 B2
6646617 Gaukel Nov 2003 B1
6671351 Menard Dec 2003 B2
6674368 Hawkins Jan 2004 B2
6675006 Diaz Jan 2004 B1
6687497 Parvulescu Feb 2004 B1
6703936 Hill Mar 2004 B2
6762684 Camhi Jul 2004 B1
6765991 Hanuschak Jul 2004 B1
6766159 Lindholm Jul 2004 B2
6774797 Freathy Aug 2004 B2
6782208 Lundholm Aug 2004 B1
6847892 Zhou Jan 2005 B2
6859650 Ritter Feb 2005 B1
6912399 Zirul Jun 2005 B2
6972684 Copley Dec 2005 B2
7002477 Camhi Feb 2006 B1
7015817 Copley Mar 2006 B2
7026929 Wallace Apr 2006 B1
7038590 Hoffman May 2006 B2
7042338 Weber May 2006 B1
7092695 Boling Aug 2006 B1
7106191 Liberati Sep 2006 B1
7123141 Contestabile Oct 2006 B2
7251471 Boling Jul 2007 B2
7289031 Hock Oct 2007 B1
7330122 Derrick Feb 2008 B2
7545318 Derrick Jun 2009 B2
7737841 Derrick et al. Jun 2010 B2
20020115436 Howell Aug 2002 A1
20030027547 Wade Feb 2003 A1
20030107487 Korman Jun 2003 A1
20030197612 Tanaka Oct 2003 A1
20050192353 Barrett Sep 2005 A1
20060047543 Moses Mar 2006 A1
20070041427 Small Feb 2007 A1
20070082677 Hart Apr 2007 A1
20070258417 Harvey Nov 2007 A1
20080012760 Derrick Jan 2008 A1
20080018458 Derrick Jan 2008 A1
20080018459 Derrick Jan 2008 A1
20080096521 Boling Apr 2008 A1
20080174422 Freathy Jul 2008 A1
20080218358 Derrick Sep 2008 A1
20090224909 Derrick Sep 2009 A1
Foreign Referenced Citations (28)
Number Date Country
4413974 Nov 1995 DE
19625581 Dec 1997 DE
0017448 Oct 1980 EP
0242099 Oct 1987 EP
0489915 Jun 1992 EP
496538 Jul 1992 EP
745867 Dec 1996 EP
0780993 Jun 1997 EP
0809117 Nov 1997 EP
0889631 Jan 1999 EP
0946037 Sep 1999 EP
1363258 Nov 2003 EP
2141006 Dec 1984 GB
2007200 Jan 1990 JP
6020191 Jan 1994 JP
6036185 Feb 1994 JP
38838 Oct 2005 RE
39909 Nov 2007 RE
WO 87-04851 Aug 1987 WO
WO 87-06713 Nov 1987 WO
WO 97-03511 Jan 1997 WO
WO 00-77688 Dec 2000 WO
WO 0173466 Oct 2001 WO
PCTUS200630432 Aug 2007 WO
PCTUS2007072736 Jan 2008 WO
PCTUS2007072743 Jan 2008 WO
PCTUS2007072740 Apr 2008 WO
PCTUS2007072746 Jul 2008 WO
Related Publications (1)
Number Date Country
20100238024 A1 Sep 2010 US
Continuations (1)
Number Date Country
Parent 11486992 Jul 2006 US
Child 12792572 US