Alarm notification system

Information

  • Patent Grant
  • 11699526
  • Patent Number
    11,699,526
  • Date Filed
    Monday, September 26, 2022
    a year ago
  • Date Issued
    Tuesday, July 11, 2023
    10 months ago
  • CPC
    • G16H40/67
    • G16H10/60
    • G16H50/30
    • G16Z99/00
    • G16H40/20
  • Field of Search
    • CPC
    • G06F19/3418
    • G06F19/3468
    • G06F19/00
    • G06F19/325
    • G06F19/34
    • G06F19/3462
    • G16H10/60
    • G16H40/20
  • International Classifications
    • G16H40/67
    • G16H10/60
    • G16Z99/00
    • G16H50/30
    • G16H40/20
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
An alarm notification system can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician's device can include a notification client which can respond to alarm notifications. The notification client can also provide one or more user interfaces that enable the clinician to view information about an alarm, such as information about a patient's status, physiological parameter values, trend data, audio/video of the patient, combinations of the same, or the like. Further, the notification client can provide functionality for a clinician to respond to an alarm, annotate an alarm, and/or indicate that the clinician can or cannot respond to the alarm, among other features. In addition, the clinician device can also (or instead) include an admit module that provides for automatic association of a patient to a device or location.
Description
BACKGROUND

Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters. Physiological parameters include, for example, respiratory rate, SpO2 level, pulse, and blood pressure, among others. Clinicians, including doctors, nurses, physician's assistants, and other medical personnel use the physiological parameters obtained from the medical patient to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor a patient during various clinical situations to determine whether to increase the level of medical care given to the patient.


Patient monitors capable of measuring pulse oximetry parameters, such as SpO2 and pulse rate in addition to advanced parameters, such as HbCO, HbMet and total hemoglobin (Hbt, THb, or SpHb) and corresponding multiple wavelength optical sensors are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006 and entitled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006 and entitled Noninvasive Multi-Parameter Patient Monitor, both assigned to Masimo Laboratories, Irvine, Calif. (Masimo Labs) and both incorporated by reference herein. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index, signal quality, HbCO, and HbMet among other parameters are also available from Masimo Corporation, Irvine, Calif. (Masimo).


Advanced physiological monitoring systems may incorporate pulse oximetry in addition to advanced features for the calculation and display of other blood parameters, such as carboxyhemoglobin (HbCO), methemoglobin (HbMet) and total hemoglobin (Hbt or SpHb), as a few examples. Advanced physiological monitors and corresponding multiple wavelength optical sensors capable of measuring parameters in addition to SpO2, such as HbCO, HbMet and Hbt are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, which are each hereby incorporated by reference herein in their entirety. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index (PI), signal quality (SiQ), pulse variability index (PVI), HbCO and HbMet among other parameters are also available from Masimo.


SUMMARY

For purposes of summarizing the disclosure, certain aspects, advantages and novel features of several embodiments have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the embodiments disclosed herein. Thus, the embodiments disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.


An alarm notification system can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician's device can include a notification client which can respond to alarm notifications. The notification client can also provide one or more user interfaces that enable the clinician to view information about an alarm, such as information about a patient's status, physiological parameter values, trend data, audio/video of the patient, combinations of the same, or the like. Further, the notification client can provide functionality for a clinician to respond to an alarm, annotate an alarm, and/or indicate that the clinician can or cannot respond to the alarm, among other features. In addition, the clinician device can also (or instead) include an admit module that provides for automatic association of a patient to a device or location.


Once a patient has been admitted (or optionally after), vital signs can be captured by the patient device and/or by the clinician and submitted via the patient device for inclusion in the patient's electronic medical record.





BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate embodiments of the inventions described herein and not to limit the scope thereof.



FIG. 1 depicts an embodiment of a clinical computing environment that includes a multi-patient monitoring system.



FIG. 2 depicts a more detailed embodiment of the multi-patient monitoring system of FIG. 1.



FIG. 3 depicts an example alarm lifecycle flow diagram.



FIG. 4 depicts an embodiment of a multi-factor alarm escalation process.



FIGS. 5 through 17 depict example clinician device user interfaces.



FIG. 18 depicts an example scenario for admitting a patient to a device or location.



FIG. 19 depicts an example process for admitting a patient to a device or location.



FIG. 20 depicts an embodiment of a patient monitoring device with a scanner for admitting the patient to the device.



FIG. 21 depicts an example monitoring device user interface that includes functionality for initiating a patient admittance process.



FIGS. 22 through 25 depict example monitoring device user interfaces for admitting a patient to the device.



FIG. 26 depicts an example monitoring device user interface that includes functionality for initiating a vital signs submission process for an admitted patient.



FIG. 27 depicts an example monitoring device user interface that includes functionality for submitting vital signs.



FIG. 28 depicts an embodiment of a process for verifying vital signs.





DETAILED DESCRIPTION
I. Introduction

Patient monitors typically monitor patients' physiological parameters to determine whether the parameters are within safe limits. If a physiological parameter exceeds a safety limit or threshold, or is otherwise trending toward a dangerous condition, a patient monitor can generate an alarm. The alarm may have audible and/or visual characteristics. Typically, the patient monitor sounds an alarm to attract the attention of nearby clinicians to alert the clinicians that the patient may need medical attention. Clinicians within earshot can respond to the patient and clear the alarm. In addition, some patient monitors send alarms over a network to a computer system at a nurse's station to alert the clinicians at the nurse's station. Still other patient monitors send alarms over a network to a paging system, which in turn pages clinicians regarding the alarm. As a result, clinicians who are not within earshot of the audible alarm can still be alerted to the alarm condition and provide a response.


A typical pager system includes a paging appliance or server that receives a notification from a patient device of an alarm condition and forwards a simple alarm message to one or more clinicians' pagers. The alarm message may include information about the patient's name or room number and possibly limited information about the alarm itself (such as “low SpO2”). Pagers used in hospitals and other clinical facilities are typical one way, unidirectional devices and therefore do not provide functionality for clinicians to respond to a page using the pager device itself. Accordingly, a pager system cannot tell if a clinician is going to respond to the alarm. The pager system may instead monitor whether the alarm has been cleared, and after the alarm has not been cleared for a certain amount of time, escalate the alarm to a second clinician (or group of clinicians). During the time when the pager system is waiting to see if the alarm has been cleared, patients may worsen and suffer adverse health effects. Accordingly, pager systems are limited in their capacity to improve patient care outcomes.


This disclosure describes embodiments of alarm notification systems that can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician device may be, for instance, a cellphone or smartphone, tablet, laptop, personal digital assistant (PDA), or the like. In certain embodiments, the clinician's device includes a notification client which may be a mobile software application, web application, or the like that can respond to alarm notifications. The notification client can also provide one or more user interfaces that enable the clinician to view information about an alarm, such as information about a patient's status, physiological parameter values, trend data, video of the patient, combinations of the same, or the like. Further, the notification client can provide functionality for a clinician to respond to an alarm, annotate an alarm, and/or indicate that the clinician can or cannot respond to the alarm, among other features. Advantageously, in certain embodiments, the notification client can enable a clinician to respond and indicate his or her availability or unavailability to handle the alarm, thereby facilitating more intelligent and rapid escalation to improve patient outcomes.


The clinician device may also include other functionality that improves other aspects of patient care. For instance, the clinician device may assist with keeping track of which patient monitoring devices are associated with which patients. Currently, clinicians type patient names into a computer system to associate patients with patient devices. Human error from mistyping may result in patients being associated with the wrong devices. Consequently, an alarm from a device may trigger a response that goes to the wrong room. As a result, a patient may not be reached in time to address the cause of the alarm or may otherwise suffer a poorer outcome.


Thus, in certain embodiments, the clinician device also includes an admit module that provides for automatic association of a patient to a device. The admit module may include a scanner application or the like that can scan a patient tag and a device tag, obtain identifiers from each tag, and couple the tags in physical computer storage (such as in an electronic medical records system). The tags may be machine-readable codes in the form of one-dimensional or two-dimensional barcodes such as UPC barcodes, quick response (QR) codes, Data Matrix codes, Aztec codes, Microsoft Tag barcodes or High Capacity Color Barcodes, Shotcode, Semacode, SPARQcode, PDF417 barcodes, Cauzin Softstrip codes, and the like, as well as radio-frequency identifiers (RFID), combinations of the same, or the like. Further, the admit component may also include functionality for associating the patient with a location such as a room, bed, bassinet (for infants), or the like.


Further, the patient monitor can include a vital signs verification component that includes functionality for initiating a vital signs submission process for an admitted patient. Once a patient has been admitted (or optionally thereafter), vital signs can be captured by the patient device and/or by the clinician and submitted via the patient device to a server system for inclusion in the patient's electronic medical record.


II. Example Clinical Computing Environment

Turning to FIG. 1, an embodiment of a clinical computing environment 100 is shown. The clinical computing environment 100 may be implemented in one or more hospitals or other clinical facilities. Further, the clinical computing environment 100 can facilitate monitoring patients within their homes if such patients are using network-enabled monitoring equipment.


In the clinical computing environment 100, various patient devices 102, clinician devices 104, and nurse's station systems or kiosks 106 communicate over a network 109 with a multi-patient monitoring system (MMS) 110. The network 109 may include a local area network (LAN), a wide area network (WAN), a public network (such as the Internet), a private network, or any combination of the same. For instance, the network 109 can include a wireless and/or wired hospital network or a network that connects multiple clinical facilities.


The patient devices 102 may be any of the patient monitors or monitoring devices described herein and may include bedside monitors, ambulatory or mobile monitors, in-home monitors, and the like. The patient devices 102 can receive input from physiological sensors coupled with a patient and may measure parameters such as oxygen saturation or SpO2, respiratory rate, blood pressure, heart rate or pulse rate perfusion, other blood gas parameters, brain activity, brain oxygen saturation, any of the other parameters described herein, and the like. The patient devices 102 can provide information about a patient's status, including current values of physiological parameters, trend values, and historical values of physiological parameters over the network 109 to the MMS 110. The MMS 110 can in turn store this data in an electronic medical records (EMR) system 120.


In addition, the MMS 110 can provide this data to the nurse's station systems 106. The nurse's station systems 106 can include any type of computing device including, but not limited to, a desktop, laptop, tablet, phone or the like. The nurse's station systems 106 may also include clinical facility kiosks such as computers on wheels (COWs), which may be dispersed throughout a clinical facility. The nurse's station systems 106 can communicate with a plurality of patient devices 102 to receive information of a plurality of patients so that the nurse's station systems 106 can provide clinicians with the ability to monitor physiological parameter data for a plurality of patients.


In addition, in some embodiments (not shown) patients' rooms may be equipped with video monitoring equipment that can provide video views of patients so as to view patients remotely (e.g., for telemedicine purposes). Such video data may be provided over the network 109 to the nurse's station systems 106, to the MMS 110, and/or to clinician devices 104 (see, e.g., FIG. 17). The video data may be captured by video cameras installed in the patient devices 102 or with separate video camera installed in patient rooms or the like.


The clinician devices 104 can include any device including a laptop, tablet, cell phone, smartphone, personal digital assistant (PDA), or any other device (including desktop systems). In the depicted embodiment, the clinician devices 104 include a notification client 108 that can receive alarm notifications from the patient devices 102 through the MMS 110. In an embodiment, when a patient device 102 detects that a parameter of a patient has exceeded a threshold set in the patient device 102 (or otherwise triggered an alarm condition), the patient device 102 can send an alarm over the network 109 to the MMS 110. In turn, the MMS 110 can send the alarm or a message representing the alarm to the nurse's station systems 106 and/or the clinician devices 104.


In another embodiment, the patient devices 102 have network capability that enables the patient devices 102 to send the alarm notifications directly over the network 109 to the nurse's station systems 106 and/or to the clinician devices 104. Further, the patient devices 102 may send other types of alarms to the MMS 110, the nurse's station systems 106, and/or the clinician devices 104. Such alarms can include nonclinical alarms that may not represent that a physiological parameter has exceeded a threshold but instead may include information about a sensor that has been disconnected or otherwise has fallen off (often referred to as a probe-off condition). Likewise, a brief power outage or surge can cause the patient device 102 to reset and send a nonclinical alarm to the other devices shown. Such nonclinical alarms are sometimes referred to herein as alerts to distinguish from alarms that may be clinically actionable.


Advantageously, in certain embodiments, the notification client 108 can enable two-way communication with the patient devices 102 and the MMS 110 (and/or the nurse's station systems 106) in the event of an alarm. For instance, an alarm sent from a patient device 102 through the network 109 to the MMS 110 could be routed to the clinician device 104. The notification client 108 can receive this alarm and respond back to the MMS 110 or any other component of the computing environment 100, replying that the message was received. This provision of a reply to the alarm made by the notification client 108 can enable the MMS 110 to determine whether to escalate the alarm or not. Since the MMS 110 has received the indication that the notification client 108 received the message, the MMS 110 may determine to wait a period of time before escalating the alarm to an escalated condition (which will be described in greater detail below).


Alternatively, if the notification client 108 does not respond indicating that the client device 104 has received the alarm message, the MMS 110 may determine that some error (whether of the network 109, the clinician device 104 or otherwise) has caused the clinician device 104 to not receive the message. As a result, the MMS 110 can immediately or otherwise rapidly escalate the alarm to one or more other clinicians without having to wait a set period of time.


Thus, the two-way communication ability of the clinician device 104 can facilitate this rapid escalation because the MMS 110 can assume that if a response is not provided by the notification client 108, that the clinician device 104 likely did not receive the alarm. In an embodiment, the MMS 110 can have high confidence in this conclusion because the clinician device 104 may be locked in software or at the operating system level (e.g., in a kiosk mode or the like) so that users can access only the notification client 108 (and optionally admit module 112 or vital signs verification component 114). Accordingly, no other application access by the clinician may prevent the clinician from viewing notifications from the notification client 108, in an embodiment, resulting in a logical conclusion at the MMS 110 that if the clinician device 104 does not respond, the clinician (or device 104) did not receive the message. Thus, the clinician device 104 may be limited in software to running the notification client 108 (and optionally admit module 112 or vital signs verification component 114) and/or to some other whitelisted set of applications, such as a phone call application, a texting application, a calendaring application, or the like. Additional applications may also be whitelisted or approved to run on the clinician device 104, for example, by a provider of the notification client 108 or by the hospital organization or staff. Many other example benefits of the notification client 108 are described in much greater detail below.


For convenience, this specification primarily describes alarms as being routed through the MMS 110 to the notification client 108 and corresponding response messages being sent from the notification client 108 to the MMS 110 and optionally on to the patient devices 102. However, in other embodiments the notification client 108 can communicate directly with the patient devices 102 or nurse's station systems 106.


As described above, in the depicted embodiment, the clinician device 104 also includes an admit module 112 and a vital signs verification component 114. The admit module 112 is optional in some embodiments. Alternatively, the clinician device 104 may include the admit module 112 without including the notification client 108.


The admit module 112 may include a scanner application or the like that can scan a patient tag and a device tag, obtain identifiers from each tag, and couple the tags in physical computer storage (such as in an electronic medical records system). The tags may be machine-readable codes in the form of barcodes, quick response (QR) codes, radio-frequency identifiers (RFID), combinations of the same, or the like. Further, the admit module 112 may also include functionality for associating the patient with a location such as a room, bed, bassinet (for infants), or the like. Example embodiments of the admit module 112 are described in greater detail below with respect to FIGS. 18 and 19.


The vital signs verification component 114 can include functionality for initiating a vital signs submission process for an admitted patient. Once a patient has been admitted (or optionally thereafter), vital signs can be captured by the patient device and/or by the clinician and submitted via the patient device to a server system for inclusion in the patient's electronic medical record. The vital signs verification component 114 is described in more detail below with respect FIGS. 26 through 28.


III. Example Multi-Patient Monitoring System Features

Turning to FIG. 2, a more detailed embodiment of a multi-patient monitoring system (MMS) 110 is shown, namely, an MMS 210. The MMS 210 can have all of the features of the MMS 110 described above. In the depicted embodiment, the MNS has several subsystems or modules that can be implemented in hardware and/or software. The example modules or components shown group functionality of embodiments of the MMS 210 together under logical descriptions. It should be understood, however, that the various modules and systems shown in the MMS 210 or portions thereof could be implemented together in a single system. In addition, not all of the systems or modules shown need be implemented on the same computing device but could instead be implemented in separate computing devices. Further, some of the modules shown may be omitted in various embodiments.


Certain aspects of the MMS 210 are described as being implemented across multiple clinical facilities. However, the MMS 210 may be implemented in a single clinical facility in other embodiments, and thus, some of the features described herein may be less applicable or not applicable at all to a single-facility installation of the MMS 210. More detailed example features of the MMS 210, any of which may be combined with the features described herein, are disclosed in U.S. application Ser. No. 14/030,360, filed Sep. 18, 2013, titled “Intelligent Medical Network Edge Router” (“the '360 application”), the disclosure of which is hereby incorporated by reference in its entirety and which is included as an Appendix hereto.


The MMS 210 includes, for example, a network management module 202. The network management module 202 can manage network communications with other networks, including networks in hospitals and other facilities as well as communications with mobile patient devices and clinician devices. For example, the network management module 202 can communicate with devices in hospitals and outside of hospitals, or inside of facilities and outside of facilities. The network management module 202 can provide networking services such as load balancing, failover, and the like. In addition, if a patient is monitored in a facility that communicates with the network management module 202, and then the patient is discharged from the facility, the network management module 202 can maintain connectivity with a body-worn or other mobile medical device associated with the patient, for example, over cellular or Wi-Fi links.


The MMS 210 also includes an EMR system 204 that can generally store patient data from any facility, including data collected from patient monitoring devices in patients' homes or while patients are mobile outside of their homes or out of facilities. For example, the EMR system 204 can include such information as parameter values, trend values, alarm histories, patient demographic data, patient condition data including diagnoses, patient medical histories, and patient medications, among a variety of other patient data. The data in the EMR 204 can advantageously be used by other components of the MMS 210 as described below to improve patient care. The EMR system 204 can also store data received from the vital signs verification component 114 described above and in more detail below with respect FIGS. 26 through 28.


A clinician portal 206 of the MMS 210 can provide a user interface or user interfaces that can be accessed by clinicians via their clinician devices to monitor the health status of their patients for whom they are responsible. The clinician portal 206 may, for example, be implemented in one or more web pages, mobile applications, or other network applications and may provide information about the wellness or relative wellness of each patient.


In one embodiment, a wellness score or index is computed for some or all patients by a risk analysis system 208 of the MMS 210, and the clinician portal 206 can depict these wellness indices among other parameter data, trend data and alarms for each patient. In one embodiment, the clinician portal 206 facilities triaging patients by providing functionality for patients to be ordered or ranked based on their wellness scores or indices as computed by the risk analysis system 208. Example features for computing wellness indices or risk assessments and which may be implemented herein are described in U.S. application Ser. No. 13/269,296, filed Oct. 7, 2011, titled “Risk Analysis System,” and Ser. No. 13/371,767, filed Feb. 13, 2012, titled “Medical Characterization System,” the disclosure of which is hereby incorporated by reference in its entirety. For example, the risk analysis system 208 can take into two or more parameters, such as any combination of the following parameters: oxygen saturation (e.g., SpO2), respiratory rate, pulse rate, heart rate, total hemoglobin level, methemoglobin, carboxyemoglobin, blood pressure, ECG output, encephalography output, or the like. The risk analysis system 208 can combine data from such parameters and reduce this data to a single value or data representation of the combination of those parameters. The single value may be, for example, an index or score that is on a scale of 0 to 10, where 10 may represent a most healthy state, while 0 may represent a least healthy state. Thus, such scores could be used to rank the relative health state or acuity of patient sicknesses and such numerical rankings can be output for presentation to clinicians in the clinician portal 206, thereby enabling clinicians to quickly triage patients.


In some embodiments where the MMS 210 is implemented for multiple clinical facilities, the risk analysis system 208 also leverages aspects of the cloud-based infrastructure of the MMS 210 to improve the wellness index calculation. For example, the risk analysis system 208 may be able to access patient profile data from the MMS 210 that comes from previous hospital visits or other clinical facility visits from a single facility or multiple facilities to compute historical wellness indices or to compute a current wellness index. The risk analysis system 208 can also personalize the wellness index based on patient attributes stored in the EMR system 204. For example, the risk analysis system 208 can personalize which parameters are weighted more heavily in the combination of parameters that are output as a wellness index based on previous patient conditions listed in EMR system 204. In currently available systems, different institutions typically do not share their EMR data, and EMRs therefore cannot be used to correlate patient data from multiple institutions together and thereby improve risk analysis and wellness indices. However, such advantages can be made possible in certain embodiments by the centralized cloud nature of the MMS 210.


The MMS 210 also includes a patient profile manager 211. The patient profile manager 211 can manage patient profiles, which can include information about patient demographics, patient alarm settings, including alarm settings from previous visits to potentially multiple different facilities, patient conditions and so forth, and example features of which are described in greater detail below with respect to FIG. 3. The MMS 210 further includes a device profile manager 212 that can manage and store device profiles for medical devices that interact with the MMS 210 as well as optionally other computing devices. The profiles may have information about rules that can be used to track the usage of these devices as well as a variety of other features.


The MMS 210 also includes an early warning system 216. The early warning system 216 can issue early warning alarms based on parameter measurements, indices such as the wellness index or other indices. The early warning system 216 can look for patterns in patients to facilitate detecting never events, including events that should occur never or rarely, like a patient dying in bed without any intervention, particularly when a patient is home and would not ordinarily be under the care of a hospital or have access to a system like the risk analysis system 208 or the early warning system 216.


An information exchange system 220 of the MMS 210 can facilitate communicating information about patients to government or research institutions 118 described above with respect to FIG. 1. One scenario where patient information may be submitted (anonymously) to government or research institutions is where a disease outbreak has occurred. For example, information may be provided that indicates several patients in a hospital have come down with the flu. The information exchange system 220 can report this occurrence to an external entity such as the CDC or the Center for Disease Control, or state or local government agency or national government agency or worldwide agency to alert such agencies other institutions of the potentiality of a disease outbreak. If multiple institutions are using the services of the MMS 210, then such information about patient conditions can be correlated and provided to these institutions as described above. More generally, the information exchange system 220 can provide data about changing patient conditions continuously or periodically to government or research organizations to enable such organizations to rapidly respond to changes in regional health issues.


Further, the data provided by the information exchange system 220 can be valuable to government agencies or research institutions to determine the effects of local conditions on health conditions. It may be discovered, for instance, that patients that go to a specific facility or set of facilities in a region are afflicted with disease related to nearby coal mining which can be ascertained by research institution or a government agency that has responsibility over such activities. Accordingly, the information exchange system 220 can provide value data that can provide reports that can be used by external entities to improve patient care.


A journaling module 222 of the MMS 210 can capture clinician interactions with medical devices that are in the institutions and/or that are in patients' homes or that are body worn in mobile situations. The interactions can include any type of button press, alarm setting change, machine-readable code (e.g., 1-D or 2-D barcode) or RFID tag interaction, or the like and can be recorded for the purposes of determining clinician response times to alarms or other measures of the quality of a clinician's care. The journaling module 222 can further leverage the centralized monitoring capabilities of the MMS 210 to compare the quality of care as journaled or otherwise calculated amongst different institutions as an apples-to-apples comparison because some or all of the data from these institutions can be provided to the centralized MMS 210.


Further, the journal module 222 can facilitate comparing the quality of care between different units in a hospital or other facility including different floors or groups of clinicians or shifts, or the like. The journal module 222 can also facilitate comparing similar groups amongst different facilities, such as an ICU group in two different facilities, and can thereby enable an organization to identify gaps or deficiencies of care in different facilities that can be corrected. This information can be provided in real time or near-real time so that adverse patient care outcomes can be quickly addressed, in contrast to the past where information about quality of care is often analyzed well after an adverse care event has occurred (or even after a patient has been discharged). Further embodiments of journaling and detecting clinician interactions with devices (including via RFID tags) are described in U.S. application Ser. No. 14/032,132, filed Sep. 19, 2013, titled “Medical Monitoring System” (“the '132 application”), the disclosure of which is hereby incorporated by reference in its entirety.


A telemedicine module 224 of the MMS 210 can facilitate telecommunications between clinicians and patients, including telepresence communications where clinicians can diagnosis, treat, or otherwise attend to the needs of patients remotely using audio visual systems or the like. In some embodiments, the telemedicine module 224 can also be used in conjunction with features of the escalation module 218 described below.


The escalation module 218 can provide functionality for escalating alarms from a first or primary care provider to a second or subsequent care provider in case the primary care provider is unavailable. In certain embodiments, the escalation module 218 can perform escalation as follows (or the like). If an alarm is received from a patient device, the escalation module 218 can initially supply an alarm notification message regarding the alarm to one or more clinician devices 104. These clinician device(s) 104 may correspond to a primary care clinician or group of clinicians who have primary responsibility for the patient for whom the alarm was made. (Any of the alarms described herein, including escalation alarms and reescalation alarms, may be provided to a group of clinicians rather than to a single clinician. However, for ease of explanation, many examples herein use a single clinician in the alarm message.) If no response to this initial alarm message is provided by the clinician device 104 (or the notification client 108 installed thereon), the escalation module 218 can escalate to a second clinician or group of clinicians by sending the alarm notification message to the second clinician or second group of clinicians. This escalation may optionally include sending the alarm notification message to the primary clinician or group of clinicians as well. The alarm notification message may indicate that it is an escalated message to reflect an increased urgency of the alarm.


If no response is provided by the clinician device(s) 104 to the escalation module 218 or, alternatively, if the alarm continues to be provided by the patient device 102 to the escalation module 218, the escalation module 218 can re-escalate. In an embodiment, the escalation module 218 re-escalates by sending the alarm notification message or a similar alarm message to a supervisor such as a charge nurse or an administrator who has responsibility over a group of patients. In addition, this reescalation message may be sent to the first and/or second groups of clinicians as well. The alarm notification message may indicate that it is a re-escalated message to reflect an even greater urgency of the alarm. As used herein, in addition to having its ordinary meaning, “escalation” can include re-escalation. Thus, for example, an alarm may initially be sent, escalated, and escalated again (e.g., re-escalated).


In an embodiment, since the notification client 108 described above can respond to the escalation module 218, the escalation module 218 can manage escalations more intelligently. For instance, the escalation module 218 can detect whether the clinician device has received an alarm notification message, an escalation message, or a re-escalation message. If the message has not been received, the escalation module 218 can escalate or re-escalate the alarm. In addition, if a clinician indicates through the notification client 108 that he or she cannot address the alarm, the escalation module 218 can automatically escalate or re-escalate the alarm. Additional embodiments of interactions between the escalation module 218 and the notification client 108 are described in greater detail below with respect to FIGS. 3 and 4.


As described above, the escalation module 218 can send an initial alarm to a first clinician or group of clinicians, escalate the alarm to a second clinician or group of clinicians, and re-escalate the alarm to a third clinician or group of clinicians. While these groups may be defined before the alarm occurs, in some embodiments, the escalation module 218 uses location-based rules to dynamically select which clinicians to send an alarm to (whether initially or via escalation/re-escalation). The location-based rules can take into account which clinicians are closer to the patient. For instance, the escalation module 218 can initially send an alarm to a clinician closest to a patient, then escalate to clinicians in closer proximity to the patient than other clinicians, and so on.


The escalation module 218 may know the locations or approximate locations of the clinicians because the clinician devices 104 may include location-tracking hardware and/or software that can report their locations to the escalation module 218. The location-tracking hardware and/or software can use triangulation techniques to determine clinician location, for example, by triangulating with wireless access points within a clinical facility (or cell towers to triangulate inside or outside a facility). The location tracking hardware and/or software may instead use global positioning system (GPS) features to track clinician location. Other location-tracking techniques can include dead-reckoning or dead-reckoning combined with any of the above techniques for calibration. In addition, in some embodiments, the escalation module 218 can implement any of the location-based escalation rules or clinician location tracking techniques described in the '132 application, incorporated above.


In other embodiments, the escalation module 218 may send alarms to or escalate to clinicians who are not close by the patient and who may, in fact, be geographically remote from the patient. Send alarms or escalations to such clinicians may be possible because such clinicians can use telepresence or telemedicine techniques to interact with patients. The telemedicine module 224 may provide remote clinicians with access to patient parameter data, trend data, and/or video data, enabling remote clinicians to intervene in at least some alarm situations. In some situations, a remote clinician can instruct a local clinician on techniques to be used to remediate an alarm and care for a patient. For instance, a doctor or specialist may remotely instruct a nurse on how to care for a patient undergoing an alarm condition. The escalation module 218 may use other remote escalation techniques described in the '360 application, incorporated above.


The MMS 210 also includes an admit module 226 in the depicted embodiment. The admit module 226 may communicate with the admit module 112 installed in the clinician device(s) 104. As described above, the admit module 112 in the clinician device(s) 104 may include a scanner application or the like that can scan a patient tag and a device or location tag, obtain identifiers from each tag, and couple the tags in physical computer storage (such as in an electronic medical records system). This coupling can include sending a message from the admit module 112 to the admit module 226. The admit module 226 can receive the patient identifier and device or location identifier(s) from the admit module 112 and associate the identifiers in physical computer storage, such as in the EMR system or another database. For instance, the admit module 226 can create a data record in a database that includes both the patient identifier and a device and/or location identifier. Further, the admit module 226 can receive a clinician identifier from the admit module 112 and store the clinician identifier together with the patient identifier and/or device/location identifier(s). This information may be accessed by the escalation module 218, among other modules, to properly identify which devices, locations, and/or clinicians are associated with a patient so to send alarm notification messages with proper identifying information to the proper clinicians.


IV. Example Alarm Notification Processes

Turning to FIG. 3, an example alarm lifecycle flow 300 is shown. The flow 300 depicts an example state flow of an alarm notification message from a patient monitor 302 to receipt by a clinician device 304. In an embodiment, the lifecycle flow 300 depicts examples of how the clinician device 304 can respond to the alarm so as to improve patient outcomes. The patient monitor 302 is an example embodiment of the patient monitor 102. Likewise, the clinician device 304 is an example embodiment of the clinician device 104. Also shown is a multi-patient monitoring system (MMS) 310, which may have some or all the functionality of the MMS 110 or 210.


In the depicted embodiment, the patient monitor 302 at state 1 issues an alarm to the MMS 310. The alarm may be a clinical alarm or a nonclinical alarm as described above. At state 2, the MMS 310 sends an alarm notification message to the clinician device 304. A notification client (not shown; see FIG. 1) in the clinician device 304 can indicate that the alarm was received at state 3 by providing a return message to the MMS 310. As a result, the MMS 310 can know that the alarm was received by the clinician device 304 and therefore justifiably wait a period of time to escalate. In contrast, if the alarm had not been indicated as being received by the clinician device 304 to the MMS 310, the MMS 310 may rapidly escalate (see, e.g., FIG. 4).


At state 4, a user of the clinician device 304 may view the alarm using, for example, the notification client 108. The user may view the alarm in a variety of ways. Generally speaking, the notification client 108 can depict a user interface that shows some aspect of the alarm on a lock screen of the notification client 108, on an active alerts screen, or on an application screen of the notification client 108. The notification client 108 may consider the alarm as being viewed if the clinician device 304 changes state from locked to unlocked (e.g., via button press by the clinician) and if the lock screen depicts the alarm (see, e.g., FIG. 5 below). In another embodiment, the notification client 108 considers the alarm as being viewed if the clinician unlocks the lock screen and views a list of alarms including this particular alarm (see, e.g., FIG. 6). In another embodiment, the notification client 108 considers the alarm as being viewed if the clinician unlocks the lock screen, views a list of alarms including this particular alarm, and then selects this particular alarm (see, e.g., FIG. 7).


At state 5, the clinician device 304 reports to the MMS 310 that the alarm has been viewed. This state may also be implemented by the notification client 108 by reporting that the alarm has been viewed. The notification client 108 of the clinician device 304 can enable the MMS 310 to know that the clinician is now aware of the alarm and not just that the clinician's device 304 has received the alarm. Knowing (or, equivalently, receiving or storing an indication in the MMS 310) that the clinician has viewed the alarm can further increase confidence that the clinician may respond to the alarm. Conversely, if the alarm had been received by the clinician device 304 but had not been indicated as being viewed by the clinician, the MMS 310 might hasten escalation to another clinician or set of clinicians (see, e.g., FIG. 4).


At state 6, the user can accept or decline to handle the alarm, for example, by inputting an indication of acceptance or declining to the clinician device 304. The notification client 108 may, in some embodiments, infer the clinician's decision to accept handling or decline handling the alarm based on the user's input. For instance, if the clinician marks an alarm notification message as “unread” (e.g., similar to marking an email as unread), then the notification device client 108 may infer that the clinician has decided not to handle the alarm. At state 7, the clinician device 304 reports to the MMS 310 whether the clinician has decided to accept or decline the alarm. If the clinician has declined to handle the alarm, the MMS 310 can rapidly or immediately escalate the alarm to another clinician or set of clinicians.


In one embodiment, acceptance is not provided as an option in the notification client 108 because a clinician may directly respond to the alarm without indicating his acceptance of the alarm. Likewise, many other aspects described herein are optional and may be omitted or added thereto in other embodiments.


Turning to FIG. 4, an embodiment of a multi-factor or two-way alarm escalation process 400 is shown. The alarm escalation process 400 may be implemented by any of the systems described herein including the MMS 110, MMS 210, or MMS 310. For convenience, the alarm escalation process 400 will be described in the context of the escalation module 218 of the MMS 210, although other computing systems not described herein may implement the alarm escalation process 400. In certain embodiments, the alarm escalation process 400 can advantageously provide improved patient outcomes by more rapidly responding to alarms via escalation due to the two-way nature of the alarm message lifecycle described herein.


At block 402, the escalation module 218 receives an alarm from a patient device and sends the alarm to a clinician device or devices at block 404. At decision block 406, it is determined by the escalation module 218 whether the clinician device or devices report the alarm having been received. If not, at block 408, the escalation module 218 escalates the alarm to one or more other clinician devices, which may but need not include the initial clinician device or devices to which the initial message was sent.


In an embodiment, if the initial message was sent to a single clinician device and at block 406 it is determined that the clinician device did not report receiving the message, escalation happens automatically at block 408. In another embodiment, when the initial message is sent to a plurality of clinician devices, block 406 does not trigger escalation at block 408 until it is determined that none of the clinician devices reported receiving the alarm. Alternatively, the escalation module 218 can implement a hybrid approach where if any of a plurality of client devices have not responded as receiving the message, the escalation module 218 can escalate at block 408. In another embodiment, the escalation module 218 escalates if a majority of the client devices did not receive the alarm or indicate having received the alarm message. Other embodiments are possible.


If, at decision block 406, the clinician device or devices reported receiving the alarm, then it is further determined by the escalation module 218 at block 410 whether the clinician device or devices reported the alarm being viewed by a user. If not, then the escalation module 218 can escalate or re-escalate the alarm at block 408 to one or more clinician devices. As used herein, in addition to having its ordinary meaning, the term “re-escalate” can refer to escalating a second time or any successive time after a previous escalation has occurred.


As with the decision block 406, the decision block 410 can select a different output depending on the number of clinician devices to which the alarm was sent. If a plurality of clinician devices received the alarm, then the escalation module 218 may proceed to block 408 and escalate if just one of them did not indicate that the user viewed the message. In another embodiment, escalation occurs at block 408 if a majority did not view the message, or if all did not view the message, or the like.


If the clinician device or devices reported the alarm being viewed at block 410, the process 400 proceeds to block 412. At block 412, the escalation module determines whether the clinician device or devices declined the alarm. If the clinician device or devices declined the alarm, then the escalation module 218 proceeds to escalate or re-escalate at block 408. As with the previous decision block 406 and 410, the escalation may occur at block 408 via block 412 if a single device declined the alarm or if a majority or all of the devices declined the alarm, depending on the implementation. If one or more devices did not decline the alarm at block 412, then the escalation module 218 awaits to determine whether the alarm has been cleared at block 414. If the alarm has been cleared, the process 400 ends; otherwise, the escalation module 218 escalates or re-escalates at block 408.


In certain embodiments, if multiple parameters are alarming at the same time or together (e.g., one after another and the first has not yet been cleared by clinician or on its own), the process 400 may be modified. For instance, any step in the process may be truncated in time, e.g., by shortening wait times, to escalate faster at any point in the process 400.


V. Example Alarm Notification User Interfaces


FIGS. 5 through 17 depict several example user interfaces that may be implemented in a clinician device 504. The user interfaces shown depict example output of the notification client 108 described above and may be implemented in any of the clinician devices described herein. The example clinician device 504 shown in FIGS. 5 through 17 may have any of the features of the clinician devices described above.


The user interfaces shown may be implemented in a mobile application such as an application that runs on a mobile operating system such as the Android™ operating system available from Google™ or the iOS™ operating system available from Apple™. Alternatively, or in addition to being a mobile application, the user interfaces shown can be implemented in a web application that runs in a browser. Thus, the notification client 108 may be a mobile application or may be a browser, or in some embodiments, may include the functionality of both.


The user interfaces shown are merely examples that illustrate some example embodiments described herein and may be varied in other embodiments. For instance, user interface controls shown may include buttons, touch-selective components and the like which may be altered to include any type of user interface control including, but not limited to, checkboxes, radio buttons, select boxes, dropdown boxes, textboxes or any combination of the same. Likewise, the different user interface controls may be combined or their functionality may be spread apart amongst additional controls while retaining the similar or same functionality as shown and described herein with respect to FIGS. 5 through 17. Although touchscreen interfaces are shown, other clinician devices may implement similar user interfaces with other types of user input devices such as a mouse, keyboard, stylus, or the like.


Turning specifically to FIG. 5, the clinician device 504 is shown depicting a lock screen user interface 500. The lock screen user interface 500 may be shown when the clinician device 504 comes out of a sleep mode or is otherwise unlocked by a user. The lock screen user interface 500 may be displayed, for instance, if the user presses a power button on the device 504 or if the device 504 receives an alarm notification.


The example lock screen user interface 500 shows lock screen notifications 510 which, in the depicted example, list three unread initial alarms, two unread escalated alarms, and two unread re-escalated alarms. In an embodiment, these alarms can be output by the notification client 108 to the lock screen. A user may select an unlock mechanism 520 on the lock screen user interface 500 to unlock the clinician device 504 and be presented with other user interfaces such as a user interface 600 shown in FIG. 6.


With reference to FIG. 6, the user interface 600 depicts a list of example alarm notifications 610 in more detail. Each notification 610 includes, in the depicted embodiment, information about the type of the alarm, whether it is an initial alarm, escalation, or reescalation; information about the patient, including the patient's identifier such as a room number of the patient; the time and date of the alarm; the parameter value associated with the alarm; and the like. An alarm type icon 612 shown next to each notification 610 can indicate the type of alarm whether it be an initial alarm, an escalation alarm, or a re-escalated alarm. The alarm type icon 612 is an envelope in the depicted embodiment and may be a different color depending on the type of the alarm. For instance, the alarm type icon 612 can be blue for an initial alarm, yellow for an escalated alarm, and red for a re-escalated alarm to indicate the degree of severity of those alarms, although other colors may be chosen. Another icon 614 depicts an open envelope, indicating that the notification has already been viewed by the user.


Other user interface elements may be chosen to indicate whether the alarm is an initial, escalation, or reescalation alarm. For example, the type of alarm may be spelled out with text in the user interface 600 as an initial, escalation, or reescalation alarm. The alarm might be indicated as the “1st” alarm, “2nd” alarm, or “3rd” alarm with numbers or the like, or with letters such as A, B, C, and the like. Further, an abbreviation such as “I” for initial, “E” for escalation, and “R” for reescalation may also be displayed. Although three different types of alarms are described herein, it should be understood that one or more additional levels of escalation may be displayed. Alternatively, there may be fewer than three levels of alarms, such as just an initial alarm and an escalated alarm.


Other options shown include a settings control 620 that enables a user to affect settings of the notification client. Selection of the settings control 620 can cause the user interface shown in FIG. 15 to be displayed, which is described in detail below. In addition, an edit control 622 is shown that enables deleting old notification 610. Selection of the edit control 622 can cause user interfaces such as are described below with respect to FIGS. 13 and 14 to be displayed. A lock control 624 is also shown that enables the user to put the client device 504 in a lock state, outputting a user interface such as the lock screen user interface 500 of FIG. 5.


Selection of any of the notifications 610 can cause user interfaces such as the user interfaces 700, 800 or 900 of FIG. 7, 8, or 9, respectively, to be displayed. FIG. 7 in particular depicts a user interface 700 for an initial alarm notification, FIG. 8 depicts a user interface 800 of an escalated alarm notification, and FIG. 9 depicts a user interface 900 of a re-escalated alarm notification.


With specific reference to FIG. 7, the user interface 700 includes information about the notification 710, a message read icon 706 indicating that the message has been opened, a notification type icon 712 that indicates that this is an initial alarm, and a room number 714 and a parameter value 716, which in this is depicted by SpO2. In an embodiment, the user can select the parameter value to see additional details about the user including a trend of the parameter value 716 over time, other historical data, or the like. In addition, other user interface controls may be provided in the user interface 700 (or 800 or 900) to access this trend and more detailed parameter information. Further, a user interface control may be provided for accessing a video of the user as described in greater detail below. Other controls, including a control 720 for deleting the message and a control 730 for marking the message unread are also shown. Selecting the control 730 can cause the user interface shown in FIG. 10 to be displayed, which will be described in greater detail below.


Turning to FIG. 8, many of the same features described with respect to FIG. 7 are shown with the difference that the notification type icon 812 is an escalated type icon. Likewise in FIG. 9, similar features are shown as in FIGS. 7 and 8 except that a notification type icon 912 indicates that this is a re-escalated alarm.


Turning to FIG. 10, selection of the mark unread control 730 from FIG. 7, 8 or 9 can cause the user interface 1000 to be shown. The user interface 1000 includes a button 1010 to confirm that the message is to be marked unread as well as a button 1012 to cancel the marking of the message being unread. If the message is marked unread, then the notification client 108 can send a message to the MMS that indicates that the clinician has declined to handle this alarm. The MMS can then use this message to automatically escalate rapidly unless perhaps other members of the team have not yet marked their messages unread (see FIG. 4).


Marking the message as unread can cause a user interface 1100 shown in FIG. 11 to be shown which is similar to the user interfaces 700, 800 and 900 except that the user interface 1100 includes a message unread icon 1106 at the top of the user interface 1100.



FIG. 12 shows a user interface 1200 that is another view of the user interface 600 of FIG. 6, including the notifications 620 described above as well as alarm cleared indicators 1222. The alarm cleared indicators 1222 are, in the depicted embodiment, boxes that surround a few of the notifications 620 shown. The boxes may be green or some other color that indicates that the alarm has been cleared. Other ways to show that the alarm has been cleared may include making the background color of the notification 620 green or some other color, or graying out the notification 620 for which their alarms are cleared, or collapsing them so that they are no longer visible on the display, or archiving them, for example, by auto-deleting them. However, in an embodiment, auto-deleting notifications when an alarm is cleared can be confusing for a clinician especially since some patients go in and out of alarm states rapidly, which could potentially cause flickering of alarms. Auto-deletion of alarm notifications upon alarm clearance could also cause confusion for clinicians. Thus, alarms are not auto deleted in some embodiments but instead are otherwise marked with their status as being cleared.



FIG. 13 depicts another user interface 1300 similar to the user interface 600 and 1200. The user interface 1300 may be accessed by selection of the edit button 622 in FIG. 6 or any of the previous screens that depicts the edit control 622. Selection of the edit control 622 can cause delete selector controls 1310 to be depicted next to the notifications 620.


Selection of a deletion selector control 1310 can cause a user interface such as that shown in FIG. 14 to be displayed. The user interface 1400 includes a selected delete selector control 1412, which selection causes a delete button 1430 to be displayed in-line with the notification 620 selected for deletion. A user can select the delete button 1430 to cause the notification to be deleted and then select the done button 1322 to leave the edit view. Thus, in one embodiment, three user inputs are used (selecting the edit button, the delete selector control 1310, and then the delete button 1430) to delete a notification, thereby enabling deletions without having too few steps to make deletions too easy to accidentally perform. In other embodiments, however, there may be other mechanisms for deleting notification 620 such as long pressing to delete, swiping to delete, or the auto deletion scenario described above.



FIG. 15 depicts an example user interface 1500 that may be reached by selection of the settings control 620 from FIG. 6 and depicts various settings 1510 associated with an embodiment of the notification client 108. These settings 1510 include an auto-lock timer, an auto-dim timer, passcode function and network parameters such as a port for which to communicate with the MMS 310. Other settings may also be provided in other embodiments.


Turning to FIG. 16, another example user interface 1600 is shown that includes additional detailed patient information that may be accessed by selecting the additional details from any of the user interfaces described above or by other menu options not shown herein. The user interface 1600 includes patient biographical info 1606, parameter values 1610, and a parameter trend 1620 that depicts values of a selected parameter over time. The parameter trend 1620 can depict the parameter that triggered the alarm or another parameter and may be selected by the clinician. Although not shown, the wellness index described above or a trend thereof may also be shown.


One value of depicting the parameter trend 1620 and/or the parameter values 1610 in more detail can enable a clinician to determine whether the alarm is actionable. The parameter value 1610 and the trend 1620 can update as the clinician is observing the user interface 1600. Thus, the clinician can observe the parameter value 1610 and/or the trend 1620 to see if the patient comes out of the alarm state. As a result, the clinician may decide that the patient does not need intervention or perhaps that immediate intervention is not needed. The clinician can then use this information to prioritize other more serious alarms over this alarm.


In other embodiments, if the clinician determines that no intervention is necessary, the clinician can select a control 1640 to cancel the alarm remotely. In response to selection of the control 1640, the notification client 108 can send a message to the MMS 110, which sends an alarm cancellation message to the patient device 102.


The user interface 1600 also includes menu options 1630 to select between trend and parameter waveform views. In addition, the menu options 1630 can turn audio on or off. The audio may include audio obtained from a respiration sensor attached to the patient, which can detect the patient's breathing sounds. The audio may also include audio from a microphone attached to or coupled with the patient device 102, which can allow the clinician to communicate with the patient verbally. Video options are also available (see FIG. 17) for viewing a video of the patient. Video may include two-way video chat in an embodiment, such that the clinician device 504 captures video of the clinician and provides this video to the patient device (e.g., through the MMS or directly), which in turn outputs the video or outputs the video on a separate display, such as a television in the patient's room. The MMS can also route the video directly to a television or monitor in the patient's room. Through these audio and/or video features, the clinician can observe the health of the patient remotely, even while walking toward the patient's room to clear the alarm. The clinician can therefore anticipate in advance, based on what he or she sees and/or hears, what needs the patient may have, enabling the clinician to call for additional help, equipment, or medicines as necessary. Accordingly, providing audio and/or video of the patient to the clinician device can enable clinicians to improve patient outcomes.


In another embodiment, the user interface 1600 can be modified to depict the same user interface that is shown on the patient device, enabling the clinician to see exactly or substantially the same type of view as if he or she were to enter into the patient's room and view the patient device in person. In another embodiment, the user interface 1600 can depict a view of a second screen monitor that receives other parameters being monitored for the patient, such as a television that receives ventilation data or other data.


Any of these audio, video, and screen-sharing features can facilitate the performance of telemedicine or remote monitoring of patients.


Further, in some embodiments, the options 1630 enable the clinician to annotate an alarm to include a note as to what the clinician thinks should be done. The clinician device can transmit this annotated note to the patient device (e.g., through the MMS), which can display the note. Thus, a second clinician who sees a note written by a first clinician may have the benefit of the first clinician's thinking on the alarm, even if the first clinician cannot personally remediate the alarm. Similarly, the options 1630 can allow the clinician to dictate a recommended course of action, which can be sent to the patient monitor and played back.


Turning to FIG. 17, another example user interface 1700 is shown, which depicts a video 1710 of the patient that may be obtained by a video camera installed on a patient device or other location in a patient's room. The video view can help the clinician determine the status of the patient and it may further facilitate the telemedicine features described above. If the clinician determines from the video 1710 that the patient is in suitable condition that would facilitate remediating the alarm, the clinician can select the cancel alarm button 614 as in FIG. 16 to remediate the alarm.


VI. Patient Admit Embodiments

Turning to FIG. 18, an example scenario 1800 is shown for admitting a patient to a device. In the scenario 1800, as described above with respect to the admit module 226 of FIG. 2, it can be desirable to automatically associate a patient with a device so as to reduce or eliminate errors that can occur through typing such information into a computer. Automatic patient-device association can also speed up the care of a patient by quickly facilitating the association of the patient with the device.


Admitting that patient to a device is distinct from admitting a patient to a hospital in one embodiment, although these two separate activities may in practice occur at the same time. In one embodiment, the patient is first admitted to the hospital, and during this process, information about the patient is stored in the MMS 110 or EMR 120. Subsequently, the patient may be assigned a room in the hospital and/or a patient device 102 (see FIG. 1) to monitor that patient. The patient may be admitted to the patient device so as to associate a profile of the patient in the MMS 110 with the patient device. Admitting the patient to the device can enable accurate tracking of the patient's movements through the hospital, accurate keeping of records in an electronic medical record (EMR) system associated with the MMS 110, accurate escalation of alarms with accurate patient data, as well as possibly other benefits.


In the depicted embodiment, a clinician device 1804 is shown that can include all the features of the clinician devices described herein. The clinician device 1804 can include the functionality of the admit module 112 or 226 described above with respect to FIGS. 1 and 2 and may, for instance, include the ability to scan machine readable codes, RFID tags, or the like. For instance, the clinician device 1804 includes a scanner view 1710 that enables a user to scan machine readable codes and a scan button 1710 that enables the user to select the scan button 1710 to cause the scan to occur by the clinician device 1804. In alternative embodiments, the clinician device 1804 does not include the scan button 1710 but instead automatically scans any image that it encounters and then determines whether the image includes a machine readable code. The scanner can automatically extract the information from the machine readable code accordingly.


A patient bracelet 1810 is also shown which includes barcodes 1812 that can be scanned by the clinician device 1804. Although two barcodes 1812 are shown in this example, one may be omitted in some embodiments. The two barcodes 1812 may be used for different purposes. A patient device 1820 is also shown that may also include a barcode that may be scanned by the clinician device 1804. In an embodiment, a clinician uses the clinician device 1804 to scan the patient bracelet 1810 and the patient device 1820 so as to associate the two together in physical computer storage. The clinician can scan the bracelet 1810 first or the device 1820 first. The clinician device 1804 can send data obtained from the scanned codes to the MMS so that the admit module 226 of the MMS can link together the device 1820 and the patient in computer storage. This linkage can enable the patient device 1820 to send data records associated with the patient to the EMR 120.


In other embodiments, instead of linking the patient bracelet 1810 with a patient device 1820, the clinician device 1804 can link the patient bracelet 1810 with a data record in the EMR 120 or MMS 110 that represents a location. Examples of such locations include a room, facility, bed, bassinette, or any other location in a clinical facility. As the patient is moved from room to room in a clinical facility, the clinician can use the clinician device 1804 to scan an identifier tag in or near or otherwise associated with (e.g., as a tag at the nurse's station) the new location (or new device in the new location). As a result, accurate records can be maintained for the patient and accurate alarm notifications may be sent, as described above.


In still other embodiments, the clinician device 1804 can use other technologies to automatically associate the patient bracelet 1810 with the patient device 1820 or patient location. For instance, the clinician device 1804 can scan an RFID tag in the patient bracelet 1810 and scan an RFID tag in the patient device 1820 or location associated with the patient so as to link the two together. Thus, more generally, the clinician device 1804 can scan identifier tags and cause the identifiers of those tags to be associated together.


Thus, the patient bracelet 1810 is an example of an identification tag that can be scanned optically (if including a machine-readable code such as a barcode) or wirelessly (e.g., if the bracelet 1810 includes an RFID tag). Similarly, a sticker or plate affixed to the patient device 1820 or location is also an example of an identification tag that can be scanned optically (if including a machine-readable code such as a barcode) or wirelessly (e.g., if the bracelet 1810 includes an RFID tag).



FIG. 19 depicts an example process 1900 for associating a patient with a device or location. The process 1900 may be implemented by any of the systems or devices described herein. For convenience, the process 1900 will be described in the context of the clinician device, although other computing devices not described herein may implement the process 1900.


At block 1902, the clinician device receives a scan of a patient tag which may be an RFID tag, machine readable code or the like. At block 1904, the clinician device receives a scan of a device or location tag and obtains a patient identifier from the patient tag at block 1906. The clinician device obtains a device or location identifier from the device or location tag at block 1908.


The clinician device associates the patient identifier with the device or location identifier 1910 in an embodiment, for instance, by providing both of these identifiers to the admit module 226 described above with respect to FIG. 2. The admit module 226 can in turn store an association between the device or location and the patient in the EMR 120. At block 1912, the clinician device can optionally associate the patient identifier in the device or location identifier with a clinician, such as the clinician who is the user of the clinician device. As a result, in an embodiment, the MMS can know which clinician is assigned to the patient and which patient device is assigned to the patient programmatically.



FIG. 20 depicts an embodiment of a patient monitoring device 2000 with a scanner 2024 for admitting the patient to the device. The patient monitoring device 2000 is another example of the monitoring device 1820 and may include all the features thereof. Likewise, the patient monitoring device 2000 is an example of the patient devices 102 described above. The patient monitoring device 2000 includes a hub 2010 (which is an example of a patient monitor) and a portable physiological monitor (PPM) 2022. The PPM 2022 is also an example patient device 102 and connects to the hub 2010 via a docking port (obscured by the connection of the PPM 2022 to the hub 2010). The hub 2010 and PPM 2022 may have all the functionality of the corresponding hubs and PPMs described in U.S. application Ser. No. 13/651,167, titled “Medical Monitoring Hub,” filed Oct. 12, 2012, the disclosure of which is hereby incorporated by reference in its entirety. For instance, physiological parameter data may be output on a display 2020 of the hub 2010 and/or on a display of the PPM 2022. In addition to their ordinary meaning, this specification often uses the terms “physiological monitor,” “patient monitor,” and “patient device” interchangeably.


In the embodiment shown, the display 2020 of the hub 2010 includes a patient admit screen that may implement some or all of the functionality described above with respect FIGS. 18 and 19. Additional examples of patient admit user interfaces are described in greater detail below with respect to FIGS. 21 through 25. The scanner 2024 shown is an example of an optical scanner that can be used instead of the clinician device 1804 to scan the identifier tags described above with respect to FIG. 18. The scanner 2024 can include electrical circuitry and/or a processor configured to cause an infrared beam to be emitted, such that when the user brings the scanner 2024 into close proximity with an identifier tag, the scanner 2024 reads a value associated with the identifier tag. A button 2025 on the scanner 2024 may be depressed by a user to cause a scan to occur. In another embodiment, the scanner 2024 is an RFID scanner, rather than an optical scanner, and may have suitable circuitry configured to scan an RFID identifier tag. A cable 2026 connects the scanner 2024 to the hub 2010 to convey scanned data to the hub 2010 (or the PPM 2010) so that the hub can perform the admit processing described above, including with respect to FIG. 19. The scanner 2024 may be wireless in other embodiments.



FIG. 21 depicts an example monitoring device user interface that includes functionality for initiating a patient admittance process. The user interface can be implemented by any of the patient devices described herein, including patient devices 102, 1820, or 2000. The user interface shown in FIG. 21 displays numerous monitored physiological parameters of a patient. In addition, and admit icon 2110 is displayed. When pressed or otherwise selected (e.g., with a mouse) by a user (such as a clinician), the user can admit a patient to the patient device. Selecting the admit icon 2110 can enable a user to perform the scanning described above with respect to FIGS. 18 through 20. In another embodiment, selecting the admit icon 2110 can enable a user to perform a manual admit process without using the scanning technology described above.



FIGS. 22 through 25 depicts an example monitoring device user interface for admitting a patient to the device. These user interfaces can be implemented by any of the patient devices described herein, including patient devices 102, 1820, or 2000.


Referring specifically to FIG. 22, a user interface is shown that may be displayed by the patient device in response to the user selecting the admit icon 2110 of FIG. 21. The user interface shown includes a search button 2210 to enable a user to search for a patient's record (or the name of the patient) in the MMS 110 or EMR 120 (see FIG. 1). When the patient is admitted to the hospital, or at an earlier time, a patient record may be created in the MMS 110 or EMR 110, which may subsequently be searched for at the patient device to associate that patient with the device. As an alternative (or additional feature) to searching, a user may type the text of the patient's last name into a text box of the user interface next to the search button 2210.


Fields 2220 are also included for manually inputting a patient's first name and middle name. Search boxes 2230 are also provided for entering a primary assignment and an optional secondary assignment. The primary assignment may refer to a clinician assigned to be the primary caregiver of the patient, while the secondary assignment can refer to a clinician assigned to be a secondary caregiver of the patient. The primary and secondary assignments can be used in part to manage patient escalation using any of the escalation features described above. For instance, an alarm generated by the patient device may initially be sent to a clinician device of the primary assignment and may subsequently be escalated to a clinician device of the secondary assignment.


Text boxes 2240 are also provided for inputting a label or short name for the patient, a room number associated with the room that the patient is staying in at the hospital or clinical facility, and any notes a clinician wishes to provide.



FIG. 23 depicts another example user interface with the text box 2310 for searching for patient. This user interface may be reached in an embodiment after a user selects the search button 2210 of FIG. 22. FIG. 24 shows another example user interface with example search results 2410 shown, which may be reached after the search is conducted in FIG. 23. The user can select a patient's name and touch an Okay button 2422 to continue the admit process.



FIG. 25 depicts a similar screen to FIG. 22, this time with patient name, label, and room number filled in. Any of this data may be populated automatically or manually as described above, based on the results of the search or based on user data entry. An admit button 2510 may be selected by the user to admit the user to the device. Upon selection of the admit button 2510 by a user, the patient device can send a notification or message to the MMS 110, which can store an identifier of the device together with the record of the patient in data storage, such as the EMR 120.


VII. Vital Signs Verification and Submission Embodiments

Periodically, nurses in a clinical facility read a patient's vitals and write those vitals down in a patient's chart, walk to the nurse's station, and input those vitals into computer to be associated with an electronic medical record of the patient. Examples of vitals that may be monitored by the nurse and written down include temperature, pulse, respiration, blood pressure, oxygen saturation, pain assessment, and level of consciousness (see also FIG. 27). Intervals for entering patient vitals may vary based on different monitoring situations and in different clinical facilities. One example interval would be to enter a patient's vitals half an hour after the patient has been admitted, and once every hour for four hours, and then once every 6 to 8 hours once the patient has stabilized.


Writing down vitals on a chart and physically entering the vitals into the computer can be time intensive and inaccurate. The patient devices described above can automatically send many vital signs to the electronic medical record of the patient associated with the MMS 110, but other vital signs are not continuously monitored by the patient devices. Thus, clinicians typically still enter such vital signs manually on paper in the process outlined above. An alternative approach is described below with respect to FIGS. 26 through 28.


The approaches described with respect to FIGS. 26 to 28 may be implemented with an admitted patient or non-admitted patient, although doing so with an admitted patient may provide the advantage of simplifying the process of associating the vital signs with the correct patient record. Alternatively, vital signs may be submitted and later associated with a patient record (e.g., at the nurse's station or after the patient is admitted to the device). Both the automatic scanning or manually-inputted admit processes may be used prior to or after the vital signs verification and submission embodiments described below. The following embodiments can be implemented at least in part by the vital signs verification component 114 (see FIG. 1).



FIG. 26 depicts an example monitoring device user interface that includes functionality for initiating a vital signs submission process for an admitted patient. Once a patient has been admitted, vital signs can be captured by the patient device and/or by the clinician and submitted via the patient device to the MMS 110 for inclusion in the patient's electronic medical record. An icon 2610 in the user interface can be selected by a user to initiate a vitals verification and submission process.


Selection of the icon 2610 can cause a user interface such as the one shown in FIG. 27 to be displayed on the patient device. In particular, FIG. 27 depicts an example monitoring device user interface that includes functionality for submitting vital signs. Some vital signs 2710 are automatically captured by the patient device at the point in time that the user selects the icon 2610. Fields 2720 are provided for a user to optionally input additional vital signs not continuously monitored, including temperature, blood pressure (or noninvasive blood pressure (NIBP)), level of consciousness, and a pain scale rating. Each of the fields 2720 may be drop-down boxes or text boxes that the user can enter text or scroll down to select a value. Other fields for other spot-check sensor values or other patient parameter data, not shown, may also be displayed in other embodiments.


The level of consciousness values may include qualitative measures of consciousness, such as on a scale including alert, drowsy, lethargic, obtunded, and coma. Other scales may also be used. The pain scale may be a 1 to 10 pain scale rating, where 10 is the most severe pain and 1 is the least severe or zero pain. Other scales may also be used. A nurse can observe the level of consciousness campaign level and input the same in the fields 2720 with or without input from the patient.


An approved button 2730 is provided and may be selected by the user to submit the vital signs to the MMS 110 for inclusion in the EMR 120.



FIG. 28 depicts an embodiment of a process 2800 for verifying vital signs. The process 2800 may be implemented by any of the patient devices described above, including the patient device 102, 1820, or 2000. The process 2800 can cause the user interfaces described above with respect to FIGS. 26 and 27 to be output for display. Corresponding user input can be received in those user interfaces and can be sent to the MMS 110 as described above.


At block 2812, the patient device receives a user request to capture and submit vital signs. For instance, the user may select the icon 2610 in the user interface of FIG. 26 to initiate the vital signs verification and submission process. At block 2814, the patient device automatically captures monitored vital sign values at that point in time (e.g., from a most recent or recent value stored in a memory device of the patient monitor). The patient device outputs the captured vital sign values for clinician verification at block 2816. An example display including such values is described above with respect to FIG. 27.


At block 2818, the patient device receives any manually entered vital signs. Such manually entered vital signs may be implemented using the user interface of FIG. 27 or the like. Upon clinician instruction (such as by selection of the Okay button 2730 of FIG. 27), the patient device submits the vital signs over a network (e.g., to the MMS 110) at block 2820.


VIII. Terminology

Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.


Each of the user interfaces shown includes one or more user interface controls that can be selected by a user, for example, using a browser or other application software associated with a patient or clinician device. The user interface controls shown are merely illustrative examples and can be varied in other embodiments. For instance, buttons, icons, dropdown boxes, select boxes, text boxes, check boxes, slider controls, and other user interface controls shown may be substituted with other types of user interface controls that provide the same or similar functionality. Further, user interface controls may be combined or divided into other sets of user interface controls such that similar functionality or the same functionality may be provided with very different looking user interfaces. Moreover, each of the user interface controls may be selected by a user using one or more input options, such as a mouse, touch screen input, or keyboard input, among other user interface input options.


The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.


The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.


Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.

Claims
  • 1. A method of managing alarm notifications, the method comprising: by a multi-patient monitoring computing device comprising physical computer hardware: sending an alarm notification message to a clinician device associated with a first clinician;determining whether a first indication that the alarm notification message was received by the clinician device has been received from the clinician device;in response to not receiving, from the clinician device, the first indication, accelerating escalation of an alarm associated with the alarm notification message;in response to receiving, from the clinician device, the first indication: determining whether a second indication that the alarm notification message was viewed by a clinician user at the clinician device has been received from the clinician device, wherein the second indication indicates that the clinician user has viewed but not yet responded to the alarm notification message;in response to not receiving, from the clinician device, the second indication, accelerating escalation of the alarm; andin response to receiving, from the clinician device, the second indication: determining whether a response responsive to a user input, provided by the clinician user at the clinician device, indicating that the clinician user has declined handling the alarm has been received from the clinician device;in response to receiving, from the clinician device, the response responsive to the user input, accelerating escalation of the alarm; andin response to not receiving, from the clinician device, the response responsive to the user input: determining whether the alarm has been cleared; and in response to determining that the alarm has not been cleared, accelerating escalation of the alarm;determining whether or not an escalation condition is present based at least in part on at least one of: receipt or non-receipt of the first indication from the clinician device, receipt or non-receipt of the second indication from the clinician device, or receipt or non-receipt of the response from the clinician device; andin response to determining that the escalation condition is present, automatically escalating the alarm by sending the alarm notification message to a second clinician device associated with a second clinician.
  • 2. The method of claim 1, wherein the user input comprises an indication that the clinician user has marked the alarm notification message as unread.
  • 3. The method of claim 1, wherein the user input comprises an indication that the clinician user is unable to respond to the alarm.
  • 4. The method of claim 1, wherein the clinician device comprises a smartphone or other mobile device.
  • 5. The method of claim 1 further comprising: by the multi-patient monitoring computing device comprising physical computer hardware: sending the alarm notification message in response to receiving an alarm indication from a patient monitor.
  • 6. The method of claim 5 further comprising: by a patient monitor comprising memory, a display, a port that connects with a physiological sensor configured to be coupled with a patient, and one or more processors that processes input from the physiological sensor to compute physiological parameter values for output on the display: determining that the physiological parameter values trigger an alarm; andsending, to the multi-patient monitoring computing device, the alarm indication responsive to determining that the physiological parameter values trigger the alarm.
  • 7. The method of claim 1 further comprising: by a patient monitor configured to monitor physiological parameters of a patient: receiving a first optical scan of a first identification tag from an optical scanner, the first identification tag comprising a first machine-readable code on a patient bracelet, wherein the optical scanner is configured to be in communication with the patient monitor optionally through a cable, the optical scanner operable to scan machine-readable codes when the optical scanner is in use;receiving a second optical scan of a second identification tag from the optical scanner, the second identification tag comprising a second machine-readable code on the patient monitor;obtaining a first identifier associated with the patient from the first optical scan;obtaining a second identifier associated with the patient monitor or location from the second optical scan; andassociating the first identifier with the second identifier in physical computer storage so as to admit the patient to the patient monitor and to store a location of the patient in the physical computer storage.
  • 8. The method of claim 7 further comprising: by the patient monitor: outputting an admit user interface comprising functionality for a user to assign a first clinician to a primary assignment for the patient and for the user to assign the second clinician to a secondary assignment for the patient.
  • 9. The method of claim 7 further comprising: by the patient monitor: outputting a scanning user interface that enables a user to perform scanning of the first identification tag and the second identification tag.
  • 10. The method of claim 7 further comprising: by the patient monitor: transmitting the first and second identifiers over a network to an electronic medical records (EMR) system to be associated together in a record of the patient in the EMR.
  • 11. The method of claim 7, wherein the optical scanner and the patient monitor are configured to be supported by a combined stand and holder.
  • 12. The method of claim 11, wherein the optical scanner is further configured to be placed in the holder of the stand when the optical scanner is not in use.
  • 13. The method of claim 1 further comprising: by a vital signs verification component of a patient monitor configured to monitor physiological parameters of a patient:outputting, on a display of the patient monitor, a vital signs verification user interface comprising captured vital signs.
  • 14. The method of claim 13, wherein the vital signs verification user interface further comprises functionality for a user to input additional vital signs manually.
  • 15. The method of claim 14, wherein the additional vital signs comprise at least one of: temperature, blood pressure, level of consciousness, or pain scale.
  • 16. The method of claim 14 further comprising: by the vital signs verification component: submitting the vital signs over a network upon instruction from the user.
RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 17/035,382, filed Sep. 28, 2020, which is a continuation of U.S. application Ser. No. 14/511,972, filed Oct. 10, 2014, which application is non-provisional of U.S. Application No. 61/890,076, filed Oct. 11, 2013, the disclosure of which is hereby incorporated by reference in its entirety. Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1963)
Number Name Date Kind
3646606 Buxton et al. Feb 1972 A
3690313 Weppner et al. Sep 1972 A
3810102 Parks, III et al. May 1974 A
3815583 Scheidt Jun 1974 A
3972320 Kalman Aug 1976 A
3978849 Geneen Sep 1976 A
4108166 Schmid Aug 1978 A
4231354 Kurtz et al. Nov 1980 A
4589415 Haag May 1986 A
4662378 Thomis May 1987 A
4827943 Bornn et al. May 1989 A
4838275 Lee Jun 1989 A
4852570 Levine Aug 1989 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5092340 Yamaguchi et al. Mar 1992 A
5140519 Friesdorf et al. Aug 1992 A
5159932 Zanetti et al. Nov 1992 A
5161539 Evans et al. Nov 1992 A
5163438 Gordon et al. Nov 1992 A
5262944 Weisner et al. Nov 1993 A
5277189 Jacobs Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5282474 Valdes Sosa et al. Feb 1994 A
5296688 Hamilton et al. Mar 1994 A
5318037 Evans et al. Jun 1994 A
5319355 Russek Jun 1994 A
5331549 Crawford, Jr. Jul 1994 A
5333106 Lanpher et al. Jul 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5348008 Bornn et al. Sep 1994 A
5358519 Grandjean Oct 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5375599 Shimizu Dec 1994 A
5375604 Kelly et al. Dec 1994 A
5377676 Vari et al. Jan 1995 A
5400794 Gorman Mar 1995 A
D357982 Dahl et al. May 1995 S
5416695 Stutman et al. May 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5434611 Tamura Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5462051 Oka et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483968 Adam et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494041 Wilk Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503149 Beavin Apr 1996 A
5505202 Mogi et al. Apr 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5537289 Dahl Jul 1996 A
5544649 David et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5566676 Rosenfeldt et al. Oct 1996 A
5576952 Stutman et al. Nov 1996 A
5579001 Dempsey et al. Nov 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5619991 Sloane Apr 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5640967 Fine et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5685314 Geheb et al. Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5694020 Lang et al. Dec 1997 A
5724580 Levin et al. Mar 1998 A
5724983 Selker et al. Mar 1998 A
5725308 Smith et al. Mar 1998 A
5726440 Kalkhoran et al. Mar 1998 A
5734739 Sheehan et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5754111 Garcia May 1998 A
5758079 Ludwig et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772585 Lavin et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5782805 Meinzer Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5801637 Lomholt Sep 1998 A
5810734 Caro et al. Sep 1998 A
5813403 Soller et al. Sep 1998 A
5822544 Chaco et al. Oct 1998 A
5822546 George Oct 1998 A
5823950 Diab et al. Oct 1998 A
5829723 Brunner Nov 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5855550 Lai et al. Jan 1999 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5876351 Rohde Mar 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5910139 Cochran et al. Jun 1999 A
5919134 Diab Jul 1999 A
5921920 Marshall et al. Jul 1999 A
5924074 Evans Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931791 Saltzstein et al. Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5942986 Shabot et al. Aug 1999 A
5951469 Yamaura Sep 1999 A
5987343 Kinast Nov 1999 A
5987519 Peifer et al. Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6006119 Soller et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014346 Malone Jan 2000 A
6018673 Chin et al. Jan 2000 A
6024699 Surwit et al. Feb 2000 A
6027452 Flaherty et al. Feb 2000 A
6032678 Rottem Mar 2000 A
6035230 Kang et al. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6036718 Ledford et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6045527 Appelbaum et al. Apr 2000 A
6057758 Dempsey et al. May 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6093146 Filangeri Jul 2000 A
6101478 Brown Aug 2000 A
6106463 Wilk Aug 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6132218 Benja-Athon Oct 2000 A
6139494 Cairnes Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6167258 Schmidt et al. Dec 2000 A
D437058 Gozani Jan 2001 S
6168563 Brown Jan 2001 B1
6171237 Avitall et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6183417 Gehab et al. Feb 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6185448 Borovsky Feb 2001 B1
6195576 John Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6221012 Maschke et al. Apr 2001 B1
6224553 Nevo May 2001 B1
6229856 Diab et al. May 2001 B1
6230142 Benigno et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6241684 Amano et al. Jun 2001 B1
6251113 Appelbaum Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6267723 Matsumura et al. Jul 2001 B1
6269262 Kandori et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6304767 Soller et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6322502 Schoenberg et al. Nov 2001 B1
6325761 Jay Dec 2001 B1
6329139 Nova et al. Dec 2001 B1
6332100 Sahai et al. Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6338039 Lonski et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6352504 Ise Mar 2002 B1
6354235 Davies Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6364834 Reuss et al. Apr 2002 B1
6364839 Little et al. Apr 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6385476 Osadchy et al. May 2002 B1
6385589 Trusheim et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6406426 Reuss et al. Jun 2002 B1
6407335 Franklin-Lees Jun 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470893 Boesen Oct 2002 B1
6480505 Johansson et al. Nov 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6516289 David et al. Feb 2003 B2
6519487 Parker Feb 2003 B1
6524240 Thede Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6570592 Sajdak et al. May 2003 B1
6578428 Dromms et al. Jun 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6616606 Peterson et al. Sep 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6641533 Causey et al. Nov 2003 B2
6643530 Diab et al. Nov 2003 B2
6646556 Smith et al. Nov 2003 B1
6650917 Diab et al. Nov 2003 B2
6650939 Takpke, II et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
D483872 Cruz et al. Dec 2003 S
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6663570 Mott et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694180 Boesen Feb 2004 B1
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719694 Weng et al. Apr 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6725086 Marinello Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6730026 Christ et al. May 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6746406 Lia et al. Jun 2004 B2
6750463 Riley Jun 2004 B1
6751492 Ben-haim Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6766188 Soller Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6783492 Dominguez Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6790178 Mault et al. Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6795724 Hogan Sep 2004 B2
6796186 Lia et al. Sep 2004 B2
6804656 Rosenfeld Oct 2004 B1
6807050 Whitehorn et al. Oct 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6817979 Nihtila et al. Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6837848 Bonner et al. Jan 2005 B2
6841535 Divita et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6855112 Kao et al. Feb 2005 B2
6860266 Blike Mar 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6893396 Schulze et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6907237 Dorenbosch et al. Jun 2005 B1
6915149 Ben-haim Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6952340 Son et al. Oct 2005 B2
6956649 Acosta et al. Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6980419 Smith et al. Dec 2005 B2
6983179 Ben-haim Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6990087 Rao et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6997884 Ulmsten Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7025729 De Chazal et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7033761 Shafer Apr 2006 B2
7035686 Hogan Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7042338 Weber May 2006 B1
7044918 Diab May 2006 B2
7044930 Stromberg May 2006 B2
7048687 Reuss et al. May 2006 B1
7063666 Weng et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7079035 Bock et al. Jul 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7188621 DeVries et al. Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7208119 Kurtock et al. Apr 2007 B1
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7229415 Schwartz Jun 2007 B2
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7241287 Shehada et al. Jul 2007 B2
7244251 Shehada et al. Jul 2007 B2
7245373 Soller et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7252659 Shehada et al. Aug 2007 B2
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7256708 Rosenfeld Aug 2007 B2
7261691 Asomani Aug 2007 B1
7261697 Berstein Aug 2007 B2
7264616 Shehada et al. Sep 2007 B2
7267671 Shehada et al. Sep 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292141 Staats et al. Nov 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7307543 Rosenfeld Dec 2007 B2
7313423 Griffin et al. Dec 2007 B2
7314446 Byrd et al. Jan 2008 B2
7315825 Rosenfeld Jan 2008 B2
7321862 Rosenfeld Jan 2008 B2
7322971 Shehada et al. Jan 2008 B2
7327219 Lederer Feb 2008 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356178 Ziel et al. Apr 2008 B2
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7378975 Smith et al. May 2008 B1
7382247 Welch et al. Jun 2008 B2
7383070 Diab et al. Jun 2008 B2
7390299 Weiner et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7395216 Rosenfeld Jul 2008 B2
7402338 Weintritt et al. Jul 2008 B2
7411509 Rosenfeld Aug 2008 B2
7413546 Agutter et al. Aug 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7419483 Shehada Sep 2008 B2
7428432 Ali et al. Sep 2008 B2
7433827 Rosenfeld Oct 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7439856 Weiner et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7454359 Rosenfeld Nov 2008 B2
7454360 Rosenfeld Nov 2008 B2
7462151 Childre et al. Dec 2008 B2
7467002 Weber et al. Dec 2008 B2
7467094 Rosenfeld Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7475019 Rosenfeld Jan 2009 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489250 Bock et al. Feb 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7497828 Wilk et al. Mar 2009 B1
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7515043 Welch et al. Apr 2009 B2
7515044 Welch et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7523044 Rosenblood Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7532919 Soyemi et al. May 2009 B2
7549961 Hwang Jun 2009 B1
7551717 Tome et al. Jun 2009 B2
7559520 Quijano et al. Jul 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7577475 Consentino et al. Aug 2009 B2
7590950 Collins et al. Sep 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7597665 Wilk et al. Oct 2009 B2
7606608 Blank et al. Oct 2009 B2
7612999 Clark et al. Nov 2009 B2
7616303 Yang et al. Nov 2009 B2
7618375 Flaherty Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7639145 Lawson et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
7650291 Rosenfeld Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
7654966 Westinskow et al. Feb 2010 B2
7671733 McNeal et al. Mar 2010 B2
7684845 Juan Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
RE41236 Seely Apr 2010 E
D614305 Al-Ali et al. Apr 2010 S
7693697 Westinskow et al. Apr 2010 B2
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7722542 Lia et al. May 2010 B2
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7736318 Consentino et al. Jun 2010 B2
7740590 Bernstein Jun 2010 B2
7749164 Davis Jul 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7763420 Strizker et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621515 Chua et al. Aug 2010 S
D621516 Kiani et al. Aug 2010 S
7766818 Iketani et al. Aug 2010 B2
7774060 Westenskow et al. Aug 2010 B2
7778851 Schoenberg et al. Aug 2010 B2
7791155 Diab Sep 2010 B2
7794407 Rothenberg Sep 2010 B2
7801581 Diab Sep 2010 B2
7806830 Bernstein Oct 2010 B2
7820184 Strizker et al. Oct 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7831450 Schoenberg Nov 2010 B2
7841986 He et al. Nov 2010 B2
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7848935 Gotlib Dec 2010 B2
7858322 Tymianski et al. Dec 2010 B2
7865222 Weber et al. Jan 2011 B2
7865232 Krishnaswamy et al. Jan 2011 B1
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7881892 Soyemi et al. Feb 2011 B2
7884314 Hamada Feb 2011 B2
7890156 Ooi et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7914514 Calderon Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7942844 Moberg et al. May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7963927 Kelleher et al. Jun 2011 B2
7967749 Hutchinson et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7978062 LaLonde et al. Jul 2011 B2
7988637 Diab Aug 2011 B2
7988639 Starks Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
7991463 Kelleher et al. Aug 2011 B2
7991625 Rosenfeld Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8027846 Schoenberg Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8033996 Behar Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8036736 Snyder et al. Oct 2011 B2
8038625 Afonso et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
8068104 Rampersad Nov 2011 B2
8073707 Teller et al. Dec 2011 B2
8094013 Lee et al. Jan 2012 B1
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
D659836 Bensch et al. May 2012 S
8170887 Rosenfeld May 2012 B2
8175672 Parker May 2012 B2
8175895 Rosenfeld May 2012 B2
8180420 Diab et al. May 2012 B2
8180650 Graves et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8200308 Zhang et al. Jun 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8206312 Farquhar Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8224667 Miller et al. Jul 2012 B1
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8235907 Wilk et al. Aug 2012 B2
8239780 Manetta et al. Aug 2012 B2
8241213 Lynn et al. Aug 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8249815 Taylor Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8294588 Fisher et al. Oct 2012 B2
8294716 Lord et al. Oct 2012 B2
8298153 Boute et al. Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8311747 Taylor Nov 2012 B2
8311748 Taylor et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
8315812 Taylor Nov 2012 B2
8315813 Taylor et al. Nov 2012 B2
8315814 Taylor et al. Nov 2012 B2
8321150 Taylor Nov 2012 B2
RE43860 Parker Dec 2012 E
8326649 Rosenfeld Dec 2012 B2
8327002 Van Dussen et al. Dec 2012 B1
8328793 Birkenbach et al. Dec 2012 B2
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8360936 Dibenedetto et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
D679018 Fullerton et al. Mar 2013 S
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8401874 Rosenfeld Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8423378 Golderg Apr 2013 B1
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489167 Buxton et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8565847 Buxton et al. Oct 2013 B2
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8578082 Medina et al. Nov 2013 B2
8579813 Causey, III et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8588924 Dion Nov 2013 B2
8597287 Benamou et al. Dec 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8600777 Schoenberg Dec 2013 B2
8606342 Diab Dec 2013 B2
8612260 Hasan et al. Dec 2013 B2
8620678 Gotlib Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8655680 Bechtel et al. Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690771 Wekell et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8694331 DeBelser et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8717909 Shekhar et al. May 2014 B1
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8758020 Burdea et al. Jun 2014 B2
8761850 Lamego Jun 2014 B2
D709846 Oswaks Jul 2014 S
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8792950 Larsen et al. Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8818477 Soller Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830054 Weiss Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8866620 Amir Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8873035 Yang et al. Oct 2014 B2
8878888 Rosenfeld Nov 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8907287 Vanderpohl Dec 2014 B2
8909310 Lamego et al. Dec 2014 B2
8909330 McCombie et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8956292 Wekell et al. Feb 2015 B2
8956294 McCombie et al. Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
8998830 Halperin et al. Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9041530 Sprigg et al. May 2015 B2
9057689 Soller Jun 2015 B2
9058635 Rybkin Jun 2015 B1
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095291 Soller Aug 2015 B2
9095316 Welch et al. Aug 2015 B2
9104789 Gross et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9125578 Grunwald Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
D745167 Canas et al. Dec 2015 S
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9262586 Steiger et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9384652 Gilham et al. Jul 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9529762 Gisler et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Al-Ali et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojitczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10512436 Muhsin et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Sherim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10825568 Muhsin et al. Nov 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
20010011355 Kawai Aug 2001 A1
20010031922 Weng et al. Oct 2001 A1
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20010051765 Walker et al. Dec 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020038392 De La Huerga Mar 2002 A1
20020045836 Alkawwas Apr 2002 A1
20020052311 Solomon et al. May 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020062230 Morag et al. May 2002 A1
20020063690 Chung et al. May 2002 A1
20020099275 Schmidt et al. Jul 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20020140675 Ali et al. Oct 2002 A1
20020177758 Schoenberg Nov 2002 A1
20020198445 Dominguez et al. Dec 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030027326 Ulmsten et al. Feb 2003 A1
20030036683 Kehr et al. Feb 2003 A1
20030052787 Zerhusen et al. Mar 2003 A1
20030058838 Wengrovitz Mar 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030149598 Santoso et al. Aug 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20030216670 Beggs Nov 2003 A1
20040013647 Solomon et al. Jan 2004 A1
20040059599 McIvor Mar 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20040122787 Avinash et al. Jun 2004 A1
20040126007 Ziel et al. Jul 2004 A1
20040139571 Chang et al. Jul 2004 A1
20040147818 Levy et al. Jul 2004 A1
20040172222 Simpson Sep 2004 A1
20040172302 Martucci et al. Sep 2004 A1
20040186357 Soderberg et al. Sep 2004 A1
20040230118 Shehada et al. Nov 2004 A1
20040230132 Shehada et al. Nov 2004 A1
20040230179 Shehada et al. Nov 2004 A1
20040243017 Causevic Dec 2004 A1
20040249670 Noguchi et al. Dec 2004 A1
20040254431 Shehada et al. Dec 2004 A1
20040254432 Shehada et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20050020918 Wilk et al. Jan 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050055276 Kiani et al. Mar 2005 A1
20050065417 Al Ali et al. Mar 2005 A1
20050080336 Byrd et al. Apr 2005 A1
20050096542 Weng et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050124864 Mack et al. Jun 2005 A1
20050125256 Schoenberg Jun 2005 A1
20050143671 Hastings et al. Jun 2005 A1
20050146431 Hastings et al. Jul 2005 A1
20050148890 Hastings Jul 2005 A1
20050164933 Tymianski et al. Jul 2005 A1
20050190747 Sindhwani et al. Sep 2005 A1
20050191294 Arap et al. Sep 2005 A1
20050203775 Achan Sep 2005 A1
20050234317 Kiani Oct 2005 A1
20050268401 Dixon et al. Dec 2005 A1
20050277872 Colby, Jr. et al. Dec 2005 A1
20060049936 Collins, Jr. et al. Mar 2006 A1
20060058647 Strommer et al. Mar 2006 A1
20060073719 Kiani Apr 2006 A1
20060089543 Kim et al. Apr 2006 A1
20060094936 Russ May 2006 A1
20060149393 Calderon Jul 2006 A1
20060155175 Ogino et al. Jul 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060169773 Lyons et al. Aug 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060190833 SanGiovanni et al. Aug 2006 A1
20060200009 Wekell et al. Sep 2006 A1
20060217684 Shehada et al. Sep 2006 A1
20060217685 Shehada et al. Sep 2006 A1
20060224413 Kim et al. Oct 2006 A1
20060235300 Weng et al. Oct 2006 A1
20060253042 Stahmann et al. Nov 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070002533 Kogan et al. Jan 2007 A1
20070021675 Childre et al. Jan 2007 A1
20070027368 Collins et al. Feb 2007 A1
20070032733 Burton et al. Feb 2007 A1
20070055116 Clark et al. Mar 2007 A1
20070055544 Jung et al. Mar 2007 A1
20070060798 Krupnik et al. Mar 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070073555 Buist Mar 2007 A1
20070088406 Bennett et al. Apr 2007 A1
20070096897 Weiner May 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070118399 Avinash et al. May 2007 A1
20070140475 Kurtock et al. Jun 2007 A1
20070156033 Causey et al. Jul 2007 A1
20070157285 Frank et al. Jul 2007 A1
20070159332 Koblasz Jul 2007 A1
20070163589 DeVries et al. Jul 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070185739 Ober et al. Aug 2007 A1
20070192140 Gropper Aug 2007 A1
20070213600 John et al. Sep 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070244724 Pendergast et al. Oct 2007 A1
20070254593 Jollota et al. Nov 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080000479 Elaz et al. Jan 2008 A1
20080001735 Tran Jan 2008 A1
20080003200 Arap et al. Jan 2008 A1
20080015903 Rodgers Jan 2008 A1
20080021854 Jung et al. Jan 2008 A1
20080033661 Syroid et al. Feb 2008 A1
20080039701 Ali et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080058657 Schwartz et al. Mar 2008 A1
20080064965 Jay et al. Mar 2008 A1
20080090626 Griffin et al. Apr 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091090 Guillory et al. Apr 2008 A1
20080091471 Michon et al. Apr 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080097167 Yudkovitch et al. Apr 2008 A1
20080099366 Niemiec et al. May 2008 A1
20080108884 Kiani May 2008 A1
20080119412 Tymianski et al. May 2008 A1
20080138278 Scherz et al. Jun 2008 A1
20080169922 Issokson Jul 2008 A1
20080171919 Stivoric et al. Jul 2008 A1
20080188795 Katz et al. Aug 2008 A1
20080194918 Kulik et al. Aug 2008 A1
20080201174 Ramasubramanian et al. Aug 2008 A1
20080208912 Garibaldi Aug 2008 A1
20080221396 Garces et al. Sep 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20080228077 Wilk et al. Sep 2008 A1
20080249804 Kim Oct 2008 A1
20080275309 Stivoric et al. Nov 2008 A1
20080281167 Soderberg et al. Nov 2008 A1
20080281168 Gibson et al. Nov 2008 A1
20080281181 Manzione et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080292172 Assmann et al. Nov 2008 A1
20080300020 Nishizawa et al. Dec 2008 A1
20080319275 Chiu et al. Dec 2008 A1
20080319354 Bell et al. Dec 2008 A1
20090005651 Ward et al. Jan 2009 A1
20090018808 Bronstein et al. Jan 2009 A1
20090024008 Brunner et al. Jan 2009 A1
20090036759 Ault et al. Feb 2009 A1
20090043172 Zagorchev et al. Feb 2009 A1
20090046837 Thiel Feb 2009 A1
20090052623 Tome et al. Feb 2009 A1
20090054735 Higgins et al. Feb 2009 A1
20090054743 Wekell et al. Feb 2009 A1
20090062682 Bland et al. Mar 2009 A1
20090069642 Gao et al. Mar 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090099480 Salgo et al. Apr 2009 A1
20090119330 Sampath et al. May 2009 A1
20090119843 Rodgers et al. May 2009 A1
20090124867 Hirsch et al. May 2009 A1
20090131759 Sims et al. May 2009 A1
20090143832 Saba Jun 2009 A1
20090146822 Soliman Jun 2009 A1
20090157058 Ferren et al. Jun 2009 A1
20090164236 Gounares et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090171225 Gadodia et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090182287 Kassab Jul 2009 A1
20090204977 Tavares et al. Aug 2009 A1
20090221880 Soderberg et al. Sep 2009 A1
20090226372 Ruoslahti et al. Sep 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090264778 Markowitz et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090281462 Heliot et al. Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20090309755 Williamson et al. Dec 2009 A1
20090322540 Richardson et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100030094 Lundback Feb 2010 A1
20100036209 Ferren et al. Feb 2010 A1
20100069725 Al-Ali Mar 2010 A1
20100088121 Shih et al. Apr 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100125217 Kuo et al. May 2010 A1
20100144627 Vitek et al. Jun 2010 A1
20100185101 Sakai et al. Jul 2010 A1
20100188230 Lindsay Jul 2010 A1
20100198622 Gajic et al. Aug 2010 A1
20100210958 Manwaring et al. Aug 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100261979 Al-Ali et al. Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298659 McCombie et al. Nov 2010 A1
20100298661 McCombie et al. Nov 2010 A1
20100298742 Perlman et al. Nov 2010 A1
20100305412 Darrah et al. Dec 2010 A1
20100312103 Gorek et al. Dec 2010 A1
20100317936 Al-Ali et al. Dec 2010 A1
20100317951 Rutkowski et al. Dec 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110021930 Mazzeo et al. Jan 2011 A1
20110023130 Gudgel et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110046495 Osypka Feb 2011 A1
20110066051 Moon et al. Mar 2011 A1
20110077473 Lisogurski Mar 2011 A1
20110077488 Buxton et al. Mar 2011 A1
20110078596 Rawlins et al. Mar 2011 A1
20110080294 Tanishima et al. Apr 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110087083 Poeze et al. Apr 2011 A1
20110087084 Jeong et al. Apr 2011 A1
20110087117 Tremper et al. Apr 2011 A1
20110087756 Biondi Apr 2011 A1
20110098583 Pandia et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110105956 Hirth May 2011 A1
20110106561 Eaton, Jr. et al. May 2011 A1
20110106565 Compton et al. May 2011 A1
20110117878 Barash et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110118573 Mckenna May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110130636 Daniel et al. Jun 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110152629 Eaton et al. Jun 2011 A1
20110166465 Clements et al. Jul 2011 A1
20110167133 Jain Jul 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110172967 Al-Ali et al. Jul 2011 A1
20110178373 Pacey et al. Jul 2011 A1
20110184252 Archer et al. Jul 2011 A1
20110184253 Archer et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110208018 Kiani Aug 2011 A1
20110208073 Matsukawa et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110212090 Pedersen et al. Sep 2011 A1
20110213210 Temby et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110227739 Gilham et al. Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110257544 Kaasinen et al. Oct 2011 A1
20110263950 Larson et al. Oct 2011 A1
20110288383 Diab Nov 2011 A1
20110295094 Doyle et al. Dec 2011 A1
20110301444 Al-Ali Dec 2011 A1
20120002791 Kraus et al. Jan 2012 A1
20120004579 Luo et al. Jan 2012 A1
20120025992 Tallent et al. Feb 2012 A1
20120029300 Paquet Feb 2012 A1
20120029304 Medina et al. Feb 2012 A1
20120029879 Sing et al. Feb 2012 A1
20120041316 Al-Ali et al. Feb 2012 A1
20120041783 McKee et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059230 Teller et al. Mar 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120071771 Behar Mar 2012 A1
20120075464 Derenne et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120095778 Gross et al. Apr 2012 A1
20120101353 Reggiardo et al. Apr 2012 A1
20120112903 Kaib et al. May 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120123231 O'Reilly May 2012 A1
20120123799 Nolen et al. May 2012 A1
20120134257 Knox May 2012 A1
20120136221 Killen et al. May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120184120 Basta et al. Jul 2012 A1
20120197619 Namer Yelin et al. Aug 2012 A1
20120203078 Sze et al. Aug 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120226160 Kudoh Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120239434 Breslow et al. Sep 2012 A1
20120242501 Tran et al. Sep 2012 A1
20120259233 Chan et al. Oct 2012 A1
20120265039 Kiani Oct 2012 A1
20120278104 Traughber et al. Nov 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120284053 Rosenfeld Nov 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120293323 Kaib et al. Nov 2012 A1
20120294801 Scherz et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120302894 Diab et al. Nov 2012 A1
20120303476 Krzyzanowski et al. Nov 2012 A1
20120306881 Nemoto Dec 2012 A1
20120315867 Davis et al. Dec 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130006131 Narayan et al. Jan 2013 A1
20130006151 Main et al. Jan 2013 A1
20130012830 Leininger Jan 2013 A1
20130023775 Lamego et al. Jan 2013 A1
20130035603 Jarausch et al. Feb 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046197 Dlugos, Jr. et al. Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060108 Schurman et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130069802 Foghel et al. Mar 2013 A1
20130079610 Al-Ali Mar 2013 A1
20130092805 Funk et al. Apr 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130109929 Menzel May 2013 A1
20130109935 Al-Ali et al. May 2013 A1
20130123616 Merritt et al. May 2013 A1
20130162433 Muhsin et al. Jun 2013 A1
20130178749 Lamego Jul 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130197364 Han Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130261494 Bloom et al. Oct 2013 A1
20130262730 Al-Ali et al. Oct 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130279109 Lindblad et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130304559 Stone et al. Nov 2013 A1
20130317327 Al-Ali et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130317393 Weiss et al. Nov 2013 A1
20130324804 McKeown et al. Dec 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130324817 Diab Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130340176 Stevens et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140022081 Ribble et al. Jan 2014 A1
20140025306 Weber et al. Jan 2014 A1
20140031650 Weber et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140046674 Rosenfeld Feb 2014 A1
20140051952 Reichgott et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140051954 Al-Ali et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140073167 Al-Ali et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081090 Picard et al. Mar 2014 A1
20140081097 Al-Ali et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140097961 Vaglio et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140125495 Al-Ali May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128696 Al-Ali May 2014 A1
20140128699 Al-Ali et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142399 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140142402 Al-Ali et al. May 2014 A1
20140152673 Lynn et al. Jun 2014 A1
20140155712 Lamego et al. Jun 2014 A1
20140162598 Villa-Real Jun 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140188516 Kamen Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140200420 Al-Ali Jul 2014 A1
20140200422 Weber et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140257057 Reis Cunha et al. Sep 2014 A1
20140266787 Tran Sep 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140288947 Simpson et al. Sep 2014 A1
20140296664 Bruinsma et al. Oct 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140309506 Lamego et al. Oct 2014 A1
20140309559 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140316804 Tran et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20140343889 Ben Shalom et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20140358574 Tara et al. Dec 2014 A1
20140371548 Al-Ali et al. Dec 2014 A1
20140371632 Al-Ali et al. Dec 2014 A1
20140378784 Kiani et al. Dec 2014 A1
20150001302 Gelay et al. Jan 2015 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150019231 Sadler et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150094618 Russell et al. Apr 2015 A1
20150097701 Al-Ali et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150140863 Al-Ali et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150201874 Diab Jul 2015 A1
20150208966 Al-Ali Jul 2015 A1
20150213217 Amarasingham et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150220696 Lekutai et al. Aug 2015 A1
20150223705 Sadhu Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160029933 Al-Ali et al. Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160073967 Lamego et al. Mar 2016 A1
20160078747 King et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Triman et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160285717 Kim et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160321904 Johnson et al. Nov 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali et al. Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170102901 Burke Apr 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224216 Al-Ali Aug 2017 A1
20170224231 Al-Ali Aug 2017 A1
20170224233 Al-Ali Aug 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170235910 Cantillon et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190130730 Boyer May 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200021930 Iswanto et al. Jan 2020 A1
20200060629 Muhsin et al. Feb 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200219335 Gintz et al. Jul 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210012906 Muhsin et al. Jan 2021 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
Foreign Referenced Citations (37)
Number Date Country
202889636 Apr 2013 CN
0 735 499 Oct 1996 EP
1 075 831 Feb 2001 EP
1 226 783 Jul 2002 EP
10-336064 Dec 1998 JP
2002-513602 May 2002 JP
2002-165764 Jun 2002 JP
2002-172096 Jun 2002 JP
2002-542493 Dec 2002 JP
2005-218036 Aug 2005 JP
2005-295375 Oct 2005 JP
2007-021213 Feb 2007 JP
2007-095365 Apr 2007 JP
2007-174051 Jul 2007 JP
2008-519635 Jun 2008 JP
2008-541045 Nov 2008 JP
2009-017959 Jan 2009 JP
2009-207836 Sep 2009 JP
2010-503134 Jan 2010 JP
2010-524510 Jul 2010 JP
2011-519607 Jul 2011 JP
2011-519684 Jul 2011 JP
2011-152261 Aug 2011 JP
WO 98029790 Jul 1998 WO
WO 99013766 Mar 1999 WO
WO 99056613 Nov 1999 WO
WO 00063713 Oct 2000 WO
WO 2004056266 Jul 2004 WO
WO 2004059551 Jul 2004 WO
WO 2006051461 May 2006 WO
WO 2011001302 Jan 2011 WO
WO 2011002904 Jan 2011 WO
WO 2011025549 Mar 2011 WO
WO 2013056160 Apr 2013 WO
WO 2013119982 Aug 2013 WO
WO 2015054665 Apr 2015 WO
WO 2019204368 Oct 2019 WO
Non-Patent Literature Citations (24)
Entry
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
U.S. Pat. No. 9,749,323, Intelligent Medical Network Edge Router, Aug. 29, 2017.
U.S. Pat. No. 10,833,983, Intelligent Medical Escalation Process, Nov. 10, 2020.
U.S. Pat. No. 10,832,818, Alarm Notification System, Nov. 10, 2020.
U.S. Pat. No. 10,825,568, Alarm Notification System, Nov. 3, 2020.
U.S. Pat. No. 11,488,711, Alarm Notification System, Jan. 22, 2022.
U.S. Pat. No. 10,667,764, Mobile Patient Alarm Display, Jun. 2, 2020.
U.S. Pat. No. 11,109,818, Mobile Patient Alarm Display, Sep. 7, 2021.
U.S. Appl. No. 17/061,495, Intelligent Medical Escalation Process, Oct. 1, 2020.
U.S. Appl. No. 17/952,793, Alarm Notification System, Sep. 26, 2022.
U.S. Appl. No. 17/372,328, Mobile Patient Alarm Display, Jul. 9, 2021.
Invitation to Pay Additional Fees in PCT Application No. PCT/US2019/027772, dated Jul. 5, 2019.
International Search Report & Written Opinion in PCT Application No. PCT/US2019/027772, dated Aug. 29, 2019.
International Preliminary Report on Patentability & Written Opinion in PCT Application No. PCT/US2019/027772, dated Oct. 29, 2020.
Cahalin et al., “The Six-Minute Walk Test Predicts Peak Oxygen Uptake and Survival in Patients with Advanced Heart Failure”, Chest, 110(2):325-332, (Aug. 1996), Downloaded from http://journal.publications.chestnet.org/ on Oct. 16, 2013.
Capuano et al., “Remote Telemetry—New Twists for Old Technology”, Nursing Management, Jul. 1995, vol. 26, No. 7, pp. 26-32.
Elmer-Dewitt, Philip, “Apple's iWatch: The killer apps may be in hospitals, not health clubs”, Fortune.com, Feb. 3, 2014, http://fortune.com/2014/02/03/apples-iwatch-the-killer-apps-may-be-in-hospitals-not-health-clubs/, 4 pages.
Grundy et al., “Telemedicine in Critical Care: An Experiment in Health Care Delivery”, JACEP, Oct. 1977, vol. 6, No. 10, pp. 439-444.
Grundy et al., “Telemedicine in Critical Care: Problems in Design, Implementation and Assessment”, Jul. 1982, vol. 10, No. 7, pp. 471-475.
“Multihoming”—Wikipedia, the free encyclopedia, Retrieved from http://en.wikipedia.org/w/index.php?title=Multihoming&oldid=511630157 on Sep. 25, 2012.
Ruppen et al., “A WoT Approach to eHealth: Case Study of a Hospital Laboratory Alert Escalation System”, Proceedings of the Third International Workshop on the Web of Things; 2012, vol. 1. No. 6, pp. 6.
Rysavy, Peter, “Making the Call with Two-Way Paging”, Network Computing, Published Jan. 15, 1997, www.rysavy.com/Articles/twoway.htm, pp. 5.
Wachter et al., “The Employment of an Iterative Design Process to Develop a Pulmonary Graphical Display”, Journal of the American Medical Informatics Association, vol. 10, No. 4, Jul./Aug. 2003, pp. 363-372.
Related Publications (1)
Number Date Country
20230019901 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
61890076 Oct 2013 US
Continuations (2)
Number Date Country
Parent 17035382 Sep 2020 US
Child 17952793 US
Parent 14511972 Oct 2014 US
Child 17035382 US