Information
-
Patent Grant
-
6426697
-
Patent Number
6,426,697
-
Date Filed
Wednesday, November 10, 199925 years ago
-
Date Issued
Tuesday, July 30, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Hamilton, Brook, Smith & Reynolds, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 340 506
- 340 505
- 340 508
- 340 514
- 340 6933
- 340 31
- 340 32
- 340 35
- 340 351
- 340 321
- 340 101
- 340 352
- 340 1034
- 340 1032
- 340 1033
- 340 732
- 340 737
- 340 30915
- 340 8252
- 340 82521
-
International Classifications
-
Abstract
An alarm system is provided which includes multiple notification appliances for signaling an alarm condition. The system controller intelligently controls the notification appliances including notification devices such as an audible or visual alarm through multi-bit digital messages sent over communication lines. The alarm system has both a standby and active mode of operation in which communication between the controller and notification appliances is possible in both modes of operation. In the standby mode, the notification appliances are powered at a first voltage level. Communication between the notification appliances and the system controller is provided by sending data pulses along the communication lines relative to the first voltage level. In an active mode of operation, the first voltage level is raised to a second voltage level. Communication in the active mode is accomplished by reducing the second voltage level to about the first voltage level and sending data pulses along the power lines relative to the first voltage level. According to a further aspect of the present invention, the system controller can synchronize respective timers of each notification appliance with a Synchronization Poll. The system controller can also program application specific group numbers into a first or second notification device of a notification appliance via a Notification First or Second Notification Device Assignment Command. Furthermore, the system controller can solicit general status information from a cluster of notification appliances via a Cluster Service Poll.
Description
BACKGROUND OF THE INVENTION
Typical building fire alarm systems include a number of fire detectors positioned throughout a building. Signals from those detectors are monitored by a system controller, which, upon sensing an alarm condition, sounds audible alarms throughout the building. Flashing light strobes may also be positioned throughout the building to provide a visual alarm indication. A number of notification appliances comprising audible alarms and strobes, the audible alarms and strobes being generally referred to as notification devices, are typically connected across common power lines on a notification circuit.
A first polarity DC voltage may be applied across the notification circuit in a supervisory mode of operation. In this supervisory mode, rectifiers at the notification appliances are reverse biased so that the alarms are not energized, but current flows through the power lines at the notification circuit to an end-of-line resistor and back, allowing the condition of those lines to be monitored. Because notification circuits are supervised using an end-of-line resistor, the wires of the circuit must be a single continuous run with no branches and an end-of-line resistor across the wires at the end farthest from the system controller. With an alarm condition, the polarity of the voltage applied across the power lines is reversed to energize all notification appliances on the notification circuit.
U.S. Pat. No. 5,559,492 issued to Stewart et al. (hereinafter the '492 Stewart patent) operates according to the system described above. The '492 Stewart patent further discloses that the visual alarms, or strobes, may be synchronized to fire simultaneously resulting from power interruptions, also referred to as synchronization pulses, in the power lines. Additional timing lines for synchronizing the strobes are not required because the synchronizing signals are applied through the existing common power lines.
Other alarm systems have controlled the function of the audible and visual alarms by interrupting the power signal to the alarms in a predetermined pattern as control signals over the common power lines or by communicating during the synchronization interruption of power. The audible and visual alarms operate their respective loads responsive to the control signal received.
SUMMARY OF THE INVENTION
Prior art systems have not provided for control signals to be issued from the system controller to the notification appliances during the term of the supervisory mode. As such, prior art systems do not provide for communication between the notification appliances and the system controller during supervisory mode other than passive communication, such as monitoring the common power lines for a short circuit or other fault.
The invention disclosed below provides detailed communication between the system controller and notification appliances during a supervisory or standby mode of operation. This is accomplished by providing notification appliances which are powered during the standby mode by a pair of communication lines at a first voltage level by a system controller. Communication between the notification appliances and the system controller is provided by sending data pulses along the power lines relative to the first voltage level. In an active mode of operation, the first voltage level is raised to a second voltage level providing the power so that the appliances can be commanded on. Communication in the active mode is accomplished by reducing the second voltage level to about the first voltage level and sending data pulses along the power lines relative to the first voltage level.
The communications between the controller and the appliances during the supervisory mode allows the notification circuit including the devices to be supervised. Branching of the circuit is allowed because communication is used to supervise the circuit. Any breaks in the notification circuit wires will inhibit communications to one of the devices and can be quickly identified by the system controller.
Preferably, the data pulses form a digital message that comprises a first synchronization signal, a command field, a data field, and a second synchronization signal. Each notification appliance includes an electronic circuit that receives the digital message and responds to the digital message as directed by the command field.
According to one aspect of the invention, the system controller can synchronize respective timers at each notification appliance on a notification appliance circuit with a digital message comprising a Synchronization Poll. The timer of each notification appliance is used to control timed operation in the notification appliance, such as actuation of an audible and/or visual alarm. An electronic circuit at each notification appliance decodes a multi-bit time descriptor of the Synchronization Poll and resets the timer of the notification appliance to the time of the time descriptor. The Synchronization Poll includes a first synchronization signal, a command signal identifying the synchronization poll as the synchronization poll, the multi-bit time descriptor, and a second synchronization signal.
It is desirable to organize the notification appliances including notification devices into groups such that the system controller can efficiently operate the same. Accordingly, the system controller can apply application specific group numbers to a first notification device of a particular notification appliance via a digital message comprising a Notification Appliance First Notification Device Group Assignment Command. Each notification appliance includes an electronic circuit that decodes a multi-bit command identifying the digital message as a Notification First Notification Device Group Assignment Command. The circuit decodes an address field of the digital message assigning the first notification device a first particular group number. More than one group number may be assigned to the first notification device.
The system controller can apply application specific group numbers to a second particular notification device of notification appliances having at least two notification devices via a digital message comprising a Notification Appliance Second Notification Device Group Assignment Command. Each notification appliance includes an electronic circuit that decodes a multi-bit command identifying the digital message as a Notification Second Notification Device Group Assignment Command. The circuit decodes an address field of the digital message assigning the first notification device a first particular group number. More than one group number may be assigned to the second notification device.
According to a further aspect of the present invention, the system controller can solicit general status information from a cluster or set of notification appliances via a digital message comprising a Cluster Service Poll. Each notification appliance includes an electronic circuit that decodes a multi-bit command identifying the digital message as a Cluster Service Poll and a cluster set address field which addresses a cluster of notification appliances, for example, a set of eight notification appliances. The individual notification appliances of a cluster respond to the Cluster Service Poll at a designated response time which may follow a single synchronization pulse or, alternatively, each notification appliance may follow a respective synchronization response signal. The notification appliance responds with a message indicating the status of the notification appliance.
According to other aspects, an alarm system is provided which includes a plurality of notification appliances, a system controller that communicates with the notification appliances in a standby mode of operation, and a notification circuit that powers the notification appliances and carries the communications between the system controller and the notification appliances. The notification appliances include an electronic circuit to respond to the system controller with indications of appliance state. The system controller uses the communications to supervise the notification appliances.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
FIG. 1
illustrates an alarm system embodying a first preferred embodiment of the present invention.
FIG. 2
illustrates an alarm system embodying an alternative preferred embodiment of the present invention.
FIGS. 3 and 4
illustrate communication between a system controller and a notification appliance with the alarm system in an ACTIVE mode and STANDBY mode, respectively.
FIG. 5
illustrates, in block diagram, an exemplary notification appliance.
FIG. 6
is a plan view of the alarm system of the present invention installed in a building.
FIG. 7
illustrates, in block diagram, the isolator shown in FIG.
6
.
FIGS. 8A-8D
illustrate the significance of each bit in a status field with respect to a particular notification appliance.
FIGS. 9A-9D
illustrate the significance of each bit within a configuration field with respect to a particular notification appliance.
DETAILED DESCRIPTION OF THE INVENTION
A system embodying the present invention is illustrated in FIG.
1
. As in a conventional alarm system, the system includes one or more detector networks
12
having individual alarm condition detectors D which are monitored by a system controller
14
. When an alarm condition is sensed, the system controller
14
signals the alarm to the appropriate devices through at least one network
16
of addressable alarm notification appliances A. Each device, also called a notification appliance
24
, may include one or more notification devices, for example, a visual alarm (strobe), an audible alarm (horn), or a combination thereof (A/V device). Also, a speaker for broadcasting live or prerecorded voice messages and a strobe may be combined into a single unit (S/V device). A visible indicator (LED) may be provided on any of the above-described notification appliances
24
, the LED also controlled by the system controller
14
. For example, the LED may be operated under NAC commands (described below) such that the LED blinks every time the notification appliance
24
is polled.
Because the individual notification appliances
24
are addressable, supervision occurs by polling each device, as will be discussed in detail below, so that a network
16
, also referred to as a notification appliance circuit (NAC), can include one or more single-ended stub circuits
22
. The use of stub circuits
22
, also referred to as ‘T-tapping’, provides a number of immediate advantages, including lessening the effect of IR losses, reducing the wire material and installation costs, and allowing for increased NAC wiring distances. As shown, all of the notification appliances are coupled across a pair of power lines
18
and
20
that advantageously also carry communications between the system controller
14
and the notification appliances
24
.
FIG. 2
illustrates an alternative embodiment of the present invention wherein the detectors D are placed on the same NAC
16
as the notification appliances
24
. This feature of the invention provides the immediate advantage of reducing wire material and installation costs.
The notification appliances
24
of the present invention are operated through commands or polls received over the NAC
16
from the system controller
14
. Each notification appliance
24
transfers identification, configuration, and status messages to/from the system controller
14
. The format of the communication message or poll between each notification appliance
24
and the system controller
14
can comprise a first synchronization signal, a command signal identifying a particular poll number, a data field which may include an address of a particular notification appliance, and a second synchronization signal. The notification appliance
24
or appliances being addressed by the system controller
14
would then respond according to the Poll that was directed to the appliance(s). An exemplary listing of various polls that the present invention is capable of performing is found in Table 2 infra.
The alarm system of the present invention includes two normal modes of operation: ACTIVE mode and STANDBY mode, as illustrated in
FIGS. 3 and 4
, respectively. In the STANDBY mode, the system controller
14
applies a first voltage level of approximately 8 VDC (or data
0
) to the NAC
16
to provide only enough power to support two-way communications between the system controller and the notification appliance(s). In the ACTIVE mode, the system controller
14
applies a nominal 24 VDC to the NAC
16
to supply power to operate the audible and/or visible alarms of each notification appliance but drops the applied voltage to 8 VDC during communication with the appliances.
In the preferred embodiment of the present invention, each message from the system controller
14
begins with a first synchronization signal
26
, or SYNC(p), that acts as a flag to signal the notification appliances on the NAC
16
that a message is forthcoming. The command signal
30
and data field
32
follow the SYNC(p)
26
. A parity bit
34
may be provided before and after the data field
32
for detecting communication errors. A second synchronization signal
28
, or SYNC(r) signal, is provided after the data field
32
for re-synchronizing and prompting immediate notification appliance response for those messages that require a response. It should be noted that all Polls have both the SYNC(p) signal
26
and SYNC(r) signal
28
, even if no response is required from the notification appliance
24
. A 3-bit time interval
36
is provided between the last bit sent from the system controller
14
and the SYNC(r) signal
28
to provide the addressed notification appliance
24
time to process the message and prepare an appropriate response.
In the preferred embodiment of the invention as shown in
FIGS. 3 and 4
, the system controller
14
communicates digital data to the notification appliances
24
using a three level voltage signal: 24 volts, data
1
(preferably in the range of about 11 to 14 volts and more preferably about 13 volts), and data
0
(preferably in the range of about 7 to 9 volts and more preferably about 8 volts). Both the SYNC(p)
26
and SYNC(r) signal
28
comprise a fixed length pulse of power signal from the system controller
14
to and from Data
0
to 24 volts. Because other data communications use other voltage levels to communicate, the SYNC(p)
26
and SYNC(r)
28
signals form a unique event to either start communication or prompt a response from the notification appliances
24
.
More specifically, SYNC(p)
26
comprises
3
elements: a fixed length 24 volt pulse, a data
0
pulse, and a data
1
pulse. The fixed length 24 volt pulse begins from the data
0
level and is used to “wake up” a notification appliance
24
that is in a “sleeping” mode (to be described below). The SYNC(p) signal
26
width is approximately 1000 us which allows time for the notification appliances to prepare for the upcoming message. The data
0
and data
1
bit widths are dependent upon the bit rate used by the system controller
14
over the NAC
16
. In the preferred embodiment, data
0
and data
1
are each 250 us in width.
SYNC(r) signal
28
comprises a single fixed length (500 us) 24 volt pulse and also begins from the data
0
level. The transition between data
0
and 24 volts is intended to give the addressed notification appliances
24
a new point to sync up to.
FIG. 5
is a block diagram of an exemplary notification appliance. As shown, power lines
18
and
20
connect to the notification appliance
24
, each power line connecting to a communications decoder
84
and a power conditioning unit
62
. As understood in the art, the power conditioning unit
62
is used to maintain a constant power flow to the notification appliance
24
. The communications decoder
84
is provided to interpret or decode the commands or polls received over the NAC
16
from the system controller
14
. Communicating with the decoder
84
is microcontroller
66
which controls the visible notification device
64
, such as a strobe, audible notification device
70
, such as a horn, and indicator LED
72
. A reed switch
74
is provided for testing an individual notification appliance similar to switch
114
disclosed in commonly assigned co-pending application Ser. No. 09/047,894, filed Mar. 25, 1998, the entire contents of which are incorporated herein by reference. An internal timer
96
connected to microcontroller
66
is used to control the actuation of the visual and/or audible alarm of a respective notification appliance, as will be described below. Timer
96
can be positioned within microprocessor
66
.
Strobe
64
includes a strobe circuit
68
which includes a charging circuit and a firing circuit similar to those disclosed in the '492 Stewart patent. A pulse width modulator
67
is provided in strobe
64
to control the charging circuit. Microcontroller
66
turns the power to the PWM
67
on/off at the beginning/end of a strobe sequence.
STANDBY Mode
STANDBY mode of operation is used except when ACTIVE mode of operation is actuated. All communication tasks or messages may be performed in the STANDBY mode of operation including the following which will be described below:
Notification device identification
Notification device configuration
Group assignment
Group control
Any diagnostic functions
Status polling
Detailed status query
Primary notification device On/Off by notification appliance/group
Indicators On/Off by notification appliance
In the preferred embodiment of the present invention, each notification appliance
24
on the NAC
16
is polled at least once over 4.0 seconds in STANDBY mode to ensure that any status changes in any notification appliance(s) can be identified quickly, so that additional messages may be sent within 4.0 seconds.
ACTIVE Mode
The system controller
14
wanting to turn on a notification appliance or appliances
24
on the NAC
16
must enable the selected device(s) via command Polls, then transition the voltage level on the NAC
16
from a STANDBY mode to an ACTIVE mode by raising the steady-state voltage to the 24 V level at the completion of each Poll/response cycle (see FIG.
3
). Notification appliances at the enabled addresses will then turn on their notification devices after a 24 V power detection for 1 ms is detected. Steady state voltage verification must be accomplished after each Poll cycle for the notification appliance
24
to operate the notification device.
In the preferred embodiment of the present invention, a Poll is sent every 250 ms while the system is in the ACTIVE mode. This allows full power transfer to enabled notification device loads most of the time, e.g, outside of a Poll. It should be noted that the only time that the line voltage level is at 24 V during the Poll cycle is for the fixed duration of the SYNC(p)
26
and SYNC(r)
28
signals. Thus, it is beneficial to limit the amount of polling during the ACTIVE mode because each ACTIVE mode poll is a break in the transfer of notification device power to the notification appliances
24
.
The system controller
14
can turn more notification devices of additional notification appliances
24
on or off by issuing additional commands without needing to transition to the STANDBY mode. The system controller
14
may also turn off all the notification devices on the NAC
16
at once by failing to return the voltage level to 24 V between Polls. Each notification appliance
24
is programmed to disconnect their notification device loads from the power lines
18
and
20
when the line voltage is detected to have dropped to the data
0
level.
Notification appliances
24
operating their respective notification devices must interrupt current draw from power lines
18
and
20
when SYNC(p) signal
26
is detected. More specifically, notification appliances
24
must stop notification device current draw when the first bit (i.e., the 24 V pulse) of the SYNC(p) signal
26
is detected, then validate the second and third bits or (“0” and “1”). If the notification appliance receives a valid SYNC(p)
26
, it disables notification device current draw from the NAC
16
until the voltage level is again verified above the 24 v threshold for the required duration. If no valid SYNC(r) signal
28
is detected, the enabled notification device is allowed to draw current from NAC
16
as soon as the line voltage returns to 24 V for the required duration.
The following communications may take place in the ACTIVE mode:
Status polling
Detailed status query
Notification appliance identification
Primary notification device On/Off by notification appliance/Group
Selected diagnostic functions
Sync poll
Grouping of Notification Appliances
By means of a DIP switch, each notification appliance
24
is assigned an address that is unique on a particular NAC
16
. The system controller
14
communicates with each notification appliance
24
using these addresses. One aspect of the present invention is to organize the notification appliances
24
of a NAC
16
into functional Groups, which is advantageous for control purposes. For example, one Group may comprise “All Strobes,” while another may comprise “First Floor Audible Alarms.” A Group, also known as a “virtual NAC,” may comprise notification appliances
24
which are located on different NACs
16
.
The advantage of grouping is to provide accelerated actuation of the appliance(s) of each notification appliance
24
belonging to the particular Group. Otherwise, each notification appliance
24
would have to be individually addressed, which is time-consuming, especially during alarm conditions.
FIG. 6
illustrates the alarm system of the present invention as installed in a multiple floor
82
building. The system controller
14
is connected to a pair of power lines
78
,
78
′, commonly referred to as a riser. Multiple single-ended stub circuits
22
are connected to the riser, each circuit having one or more notification appliances
24
connected thereto. Also illustrated is the use of an isolator
76
, which may be provided on each floor
82
, or even between as many notification appliances
24
as is economically feasible for a particular alarm system. Generally, the isolator
76
includes circuitry for detecting a short circuit in the particular stub circuit
22
or notification appliance
24
it is programmed to monitor. In the event of a short in the stub circuit
22
or notification appliance
24
, the isolator
76
automatically disconnects the respective notification appliances
24
from the riser
78
,
78
′, while maintaining power to the remaining notification appliances in the alarm system. Advantageously, the isolator
76
may be used to pinpoint earth faults in the alarm system.
The isolator
76
is illustrated in more detail in FIG.
7
. Generally, the isolator
76
includes a first port
88
and a second port
90
and a set of contacts
92
and
94
which connects/separates the ports from the riser
78
,
78
′. The function of isolator
76
is driven by microcontroller
86
with control firmware that monitors hardware circuits which report the status of each port. As described above, isolator
76
takes commands from system controller
14
regarding the open/closed position of the contacts
92
and
94
. Thus, system controller
14
can sequentially close contacts
92
,
94
of each isolator to connect a new segment of the NAC
16
, thereby allowing any faults in the NAC to be pinpointed.
In the preferred embodiment of the present invention, a total of 64 groups are possible on a given NAC
16
. Five of the 64 groups are “default” groups and are illustrated in Table 1 below:
TABLE 1
|
|
Group Name
Group ID
|
|
ALL NOTIFICATION DEVICE OUTPUTS
0
|
ALL HORNS
1
|
ALL SPEAKERS
1
|
ALL VISIBLE
3
|
ALL ISOLATORS (perNAC)
4
|
|
A further aspect of the present invention is to assign each notification appliance
24
to a specific Sub-Group. That is to say, besides being assigned to a default group, each notification appliance
24
can be assigned up to 3 Groups in addition to the default Group. Notification appliances
24
having more than one notification device, e.g., an audible and visual alarm, can independently assign each device to a different Group (creating a total of eight assignable Groups, three for each device in addition to the two default Groups). In this manner, separate control for each notification device of a particular notification appliance
24
is possible. In accordance with the present invention, every Group is either ON, OFF, or DISABLED.
Cluster Service Polls
Cluster Service Polls are polls from the system controller
14
which are used to maintain supervision of the notification appliances
24
on the NAC
16
. In the preferred embodiment of the present invention, each Cluster Service Poll is directed to eight consecutive notification appliance
24
addresses. After the Cluster Service Poll (which will be detailed below) is sent, which includes a SYNC(r) signal
28
prompt pulse, the system controller
14
issues a SYNC(r) signal
28
and waits for a response from each address. If present, each of the notification appliances
24
at that address cluster responds to the prompt pulse with a 3 bit status word consisting of a 2 bit status code followed by a pad bit. For example, as indicated in the section below entitled “Message Field Descriptions,” the notification appliance
24
could respond with a two bit code flag indicating that the notification appliance is normal (with notification devices on or off), the notification appliance is in need of service or in Test mode, or a No response, indicating the notification appliance received the Cluster Service Poll in error, there is missing notification appliance, or an empty address. How the system controller
14
responds to an error message resulting from a Cluster Service Poll depends on whether the alarm system is in STANDBY or ACTIVE mode.
If the alarm system is in STANDBY mode, the system controller
14
may immediately issue a Notification Appliance Status Query Poll to the notification appliance
24
that responded with an error to the Cluster Service Poll. The system controller
14
may also elect to come back to the notification appliance
24
after Cluster Service Poll cycle has been completed for the remaining notification appliances
24
. In the preferred embodiment of the present invention, the system controller
14
will become aware of any status changes of any notification appliance
24
within 4.0 seconds.
If the alarm system is in ACTIVE mode, the system controller
14
only issues a Notification Appliance Status Query Poll to any notification appliances
24
that respond with an error after the controller has obtained a status report from all the notification appliances on the NAC
16
, i.e., after the controller has completed the Cluster Service Poll cycle. If the notification appliance responds with an error after two consecutive Cluster Service Polls, the system controller
14
registers a “Trouble” condition with respect to that notification appliance. If the notification appliance
24
responds correctly to the first or second Detailed Status Query Poll, the system controller is programmed to attempt to bring the notification appliance back (i.e., recover) to the proper operational state. This may be accomplished by using one or more of the following Polls: Notification Appliance Configuration Command, Group Assignment Commands, and Actuators ON/OFF by Group/notification appliance (all described below). Notification appliances
24
may only be declared “Normal” after this recovery process is complete. Since NAC
16
bandwidth is limited during the ACTIVE mode, the recovery process commands are only issued after the Cluster Service Polls and other command polls for notification appliances
24
in good standing have been completed.
Each addressed notification appliance
24
sends the 2-bit response after the SYNC(r) signal
28
at a time determined by the modulo-8 residue of that notification appliance's address. For example, if the residue is 0, then that notification appliance responds immediately after the SYNC(r) signal
28
; if the residue is 7, then that notification appliance waits for 7×3 or (21) bit times, then responds.
In an alternative embodiment of the present invention, the system controller
14
generates a single SYNC(p) signal
26
and eight SYNC(r) signals
28
with each notification appliance
24
of the Cluster responding after a designated SYNC(r) signal
28
.
It should be noted that Cluster Service polling cycles are directed at all addresses regardless of the result of individual polls in the individual polls in the ACTIVE mode. However, the Cluster Service polling cycle may be interrupted by other message types that turn notification appliances
24
on or off.
Notification Appliance Circuit Initialization
Upon initialization of the alarm system, the system controller
14
sends a series of Cluster Service Polls to the notification appliances
24
on the NAC
16
. In the preferred embodiment, a total of 63 notification appliances are placed on the NAC
16
, so that eight Cluster Service Polls would be needed to poll the 63 notification appliances. Each notification appliance
24
is programmed to self-initialize on power-up events in a diagnostics mode. This is done to have an active response on the NAC
16
and to keep the notification appliances in a “benign” (off/open) state. That is to say, each notification appliance
24
is in a responsive state ready to respond to a Cluster Service Poll directed at it. The system controller
14
completes the polling of all address and compiles a listing of all the notification appliances
24
that responded to the Cluster Service Polls.
The system controller
14
then compares the number of active notification appliances' addresses to the number that it is programmed to have. Alternatively, the system controller
14
can compare the actual roster of active notification appliance addresses detected on the NAC
16
to the address map it is programmed to have. If these numbers are equal, the system controller
14
sets up each notification appliance by first sending a Notification Appliance Status Query Poll to determine the type and status of the notification appliance
24
at each active address. The system controller
14
then sends Notification Appliance Configuration and Group Assignment commands for the notification appliances
24
that require them. Once a notification appliance
24
has successfully completed this sequence, it is taken out of the diagnostics mode, so it can enter the “sleep” state between Polls, thereby minimizing power consumption.
If fewer notification appliances
24
are detected in the Cluster Service Poll than expected, Notification Appliance Status Query Polls are sent to each address to determine notification appliance type and status. If these polls show notification appliances
24
still missing, the system controller
14
registers a “Trouble” condition and continues initialization of the notification appliances
24
present.
In the event that extra notification appliances
24
are detected in the Cluster Service Poll cycle, Notification Appliance Status Query Polls are sent to all addresses to determine notification appliance type and status. If these polls shows that there are still extra notification appliances, the system control
14
registers a “Trouble” condition and continues initialization of the notification appliances that are programmed to be on the NAC
16
.
When the initialization sequence is completed for all the active addresses, the system controller
14
reverts to continual Cluster Service polling cycles until an event causes another operation.
Sleep Mode
A properly configured NAC
16
engages in simple status polling most of the time. Accordingly, STANDBY mode includes a mechanism that requires notification appliance to go to “sleep” after poll cycles and to “wake-up” on detection of a SYNC(p) signal
26
. This sleeping mode reduces overall power consumption on the NAC
16
.
Upon power-up, a notification appliance
24
is not enabled to transition to sleep until after receipt of a Notification Appliance Status Query and Response Acknowledge poll sequence. This means that the system controller
14
must signal successful receipt of that notification appliance's configuration before initialization of the notification appliance is complete. Once a notification appliance
24
is enabled, the transition to sleep is made when the notification appliance does not receive a 24 V pulse for a predetermined amount of time, for example, 10 ms. That is to say, if there is an interval of time of more than 10 ms between synchronization pulses, the device is programmed to go to “sleep” to conserve power. Upon receipt of SYNC(p) signal
26
, the notification appliance
24
is programmed to “wake up” and monitor the NAC
16
. In the preferred embodiment of the present invention, the notification appliance
24
can make the transition out of a “sleep” mode and be ready to time the bit interval within 500 us after the leading edge of the SYNC(p) signal
26
.
Once a notification appliance has been enabled to turn on or actuate, a notification device (e.g., a visual alarm [strobe] or an audible alarm [horn]) is programmed not to transition to sleep. Once a timeout from the last SYNC signal is exceeded, a notification appliance that is still enabled to turn on a notification device logs this condition, disables sleep mode, and responds to the next Cluster Service Poll directed at it with a need-service response.
Error Detection and Response
As shown in
FIGS. 3 and 4
, the system controller
14
uses an odd parity bit
34
at the end of certain fields to detect errors in transmission. The system controller
14
is also responsible for detecting an error where more than one notification appliance
24
answers to a particular address. This condition is discovered by monitoring the current levels during notification appliance response.
When a notification appliance
24
detects a communication error or invalid data field
32
in a message from the system controller
14
, the notification appliance neither acts on nor responds to the message. Such errors may include a parity error, a truncated Poll message, an excess of fields for a particular message, or invalid field data, e.g., fixed bits wrong or contents of message inconsistent with type of notification appliance
24
.
The system controller
14
will respond to a detected error in accordance to a set of programmed instructions, such instructions being dependent, for example, on what mode the system controller is in and which Poll is being attempted. In general, a particular Poll that produces an error causes the system controller
14
to re-try the Poll. The system controller
14
will only register a “Trouble” condition for a particular notification appliance
24
after two or more consecutive Polls to the notification appliance result in errors. These errors may include any combination of parity error, multiple responses detected, or response timeout (failure of notification appliance to respond to the Poll). It should be noted that an error resulting from a Cluster Service Poll does not count for purposes of attaining two consecutive errors. If a “Trouble” condition is registered with respect to a particular notification appliance
24
, the system controller
14
may later attempt to regain communications with that device but must re-initialize the notification appliance before registering the notification appliance as “Normal.”
Messsage Formats
Table 2 below provides a non-exhaustive list of Polls available to the system controller
14
.
TABLE 2
|
|
ACTIVE
STANDBY
|
POLL #
POLL
RESPONSES
MODE
MODE
|
|
FF
Sync
None
X
X
|
C0
Notification
Detailed status
X
X
|
Appliance
response
|
Status Query
|
C7
Notification
Notification
—
X
|
Appliance
appliance type &
|
Configuration
configuration
|
Query
status
|
C1
Notification
Checksum of
—
X
|
Appliance
assigned
|
Group
group IDs
|
Checksum
|
Query
|
C8
Notification
Requested group ID
—
X
|
Appliance
|
Group
|
I.D. Query
|
C4
Response
Address echo
X
X
|
Acknowledge
|
F1
Notification
Address echo
—
X
|
Appliance
|
Configuration
|
Cmd #1
|
E4
Notification
Address echo
—
X
|
Appliance
|
1st Notification
|
Device
|
Group
|
Assignment
|
Cmd
|
E3
Notification
Address echo
—
X
|
Appliance
|
2nd
|
Notification
|
Device
|
Group
|
Assignment
|
Cmd
|
OA
Cluster
M[8] residue gated
X
X
|
Service Poll
response
|
D8
Actuators
None
X
X
|
On/Off by
|
Group Cmd
|
E1
Actuators
Address echo
X
X
|
On/Off by
|
Notification
|
Appliance
|
Cmd
|
FE
Notification
Address echo
X
X
|
Appliance
|
Reset Cmd
|
F4
Notification
Address echo
—
X
|
Appliance
|
Configuration
|
Cmd #2
|
|
The first column indicates the Poll Number in hexadecimal format. The second column indicates the Poll Name wherein “queries” request information from a notification appliance and “commands” configure or direct a particular action to a device(s). The third column indicates the response that is expected from a notification appliance according to the respective poll. The fourth and fifth columns indicate where the Poll is valid in the ACTIVE mode and/or STANDBY mode. Provided below are brief explanations of each Poll.
Sync Poll
The Sync Poll is used to synchronize all the notification appliances
24
on a particular NAC
16
to a system controller
14
generated four second clock. The system controller
14
sends out the Sync Poll along the NAC
16
after enabling the notification appliance(s)
24
to turn on their respective notification devices, and continues to periodically send the Sync Poll while the NAC is in the ACTIVE mode. In the preferred embodiment, communication between the system controller
14
and notification appliances
24
are accomplished every 245 ms. The notification appliance(s)
24
on the NAC
16
, operating their respective notification device(s), reset their respective timers to the nearest multiple of the 245 ms interval. Thus, the timer
96
of every notification appliance
24
on the NAC
16
is synchronized to the same time base. The system controller is programmed to send the Sync Poll at a minimum rate of one poll every 3.92 seconds in the ACTIVE mode.
It is preferable that a notification appliance
24
that controls a notification device maintain the internal timer
96
with a range of 7.84 seconds at an accuracy of +/−5 ms over the 245 ms period that separates consecutive polls in the ACTIVE mode. This allows a notification appliance
24
to miss a Sync Poll at the minimum rate, update the value at the next poll, while maintaining synchronization accuracy throughout the ACTIVE mode polling.
Any notification appliance(s) that has its notification device(s) enabled and has not yet received a valid Sync poll in a predetermined time, e.g., 7.84 seconds, is programmed to send a “Need Service” response in the next Cluster Poll directed at it. If that notification appliance(s)
24
has been in ACTIVE mode for that entire time, then it is programmed to activate the enabled device(s), which would then be synchronized only to the 245 ms ACTIVE mode poll timing sequence. The notification appliance(s)
24
continues in this manner until it gets a Sync Poll, or it receives a command to shut off the notification devices, or detection of a transition out of ACTIVE mode (i.e., no more 24 volts).
In the event the system controller
14
needs to leave the NAC
16
in STANDBY for a period exceeding 245 ms while maintaining the notification device(s) enabled, the controller updates the notification appliance(s) with a Sync poll before entering the ACTIVE mode. The format of the Sync Poll is given below:
|
[SYNC(p)]
[POLL#(FF)]
[P]
[8bit descriptor for 4 sec clock]
[P] {3sp}
[SYNC(r)]
|
[S]
[11111111]
[1]
[8bits]
[P]
000
500us
|
500us+2
8
1
8
1
3 =500us+23 bits
|
|
As shown, the Sync Poll begins with the 3-bit synchronization SYNC(p) signal
26
, as do all the Polls. Following SYNC(p) signal
26
is an 8-bit command signal
30
which identifies the Poll number (“FF”) in hexadecimal format. A parity bit
34
may follow the command signal
30
for purposes of error detection. A data field
32
follows the parity bit
34
and comprises an 8-bit descriptor for a four second clock for purposes of resetting timer
96
located at each notification appliance
24
. The 8-bit descriptor field represents units of 16.384 ms. All notification appliances
24
that correctly receive this poll replace their modulo four second clock value of timer
96
with the new value received in the Sync Poll. This includes setting any fraction of the 16 ms interval to zero. The timer
96
of notification appliance
24
may control actuation of the visual and/or audible alarm of a respective notification appliance. As heretofore known, it is exceptionally beneficial, for example, as discussed in the '492 Stewart patent, to synchronize the actuation of the visual alarms. Thus, the present invention provides a method of synchronizing the actuation of visual and audible alarms. The data field
32
is followed by a second parity bit
34
which is also used for purposes of error detection. A 3-bit spacer may be provided after the data field
32
. Thus, a total of the 500 us SYNC(p) signal
26
followed by 23 bits comprises the format of the message to this point. A 500 us SYNC(r) signal
28
follows the 3-bit spacer. No response is required from the notification appliance
24
.
If a notification appliance
24
in the ACTIVE mode counts more than eight seconds without receiving a Sync Poll, it is programmed to signal a “Need Service” response at the next Cluster Service Poll.
Notification Appliance Status Query Poll
The Notification Appliance Status Query Poll solicits status information from an individual notification appliance
24
. The format of the query and response is given below:
Format: [SYNC(p)] [POLL#(C0)[P] [ADDR][P] {3 sp} [SYNC(r)]
Response: [ADDR][P] [Notification Appliance Type][P] [Stat][P]
As shown, the Notification Appliance Status Query Poll begins with SYNC(p) signal
26
followed by the command signal
30
, which in this case would indicate “C0” identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
. A 3-bit spacer may follow the data field
32
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
, and a first and second field indicating the notification appliance type
38
and status
40
. More particularly, the notification appliance type field is an 8-bit binary encoded identification code which, according to a look-up table, identifies a specific type of notification appliance
24
. Such notification appliances may include a ceiling or wall mounted strobe, an audio/visual device, a speaker/visual device, a horn, or an isolator.
The status field is also an 8-bit field indicating the status of the particular notification appliance.
FIGS. 8A-8D
indicate the significance of each bit with respect to a particular notification appliance. More specifically,
FIG. 8A
indicates the status of a wall or ceiling mounted strobe or an S/V device. The significance of each bit within each bit position is given below:
Notification appliance configured:
1=notification appliance has been configured since last device power-up/reset, Reset Command
0=not configured
Diagnostics Busy:
1=The notification appliance has been configured since last device power-up, reset, Rest Command
0=not configured (Re-setting this bit forces the Needs Service response to a Cluster Poll. This bit remains reset until the notification appliance received a notification appliance Configuration Command.)
Device Busy:
1=busy responding to Manual input (only valid with Diagnostics enabled)
0=ready
Manual Input Detected 1=input detected since last Response Acknowledge Poll (described below)
0=no unacknowledged manual inputs (The setting (0->transition) of this bit forces the Needs Service response to a Cluster Poll. This bit remains set until the device receives a Response Acknowledge Poll.)
LED Status:
1 LED lit
0=LED off
Primary Output
1
:
1=output operating
0=not operating
Primary Output
1
—Strobe:
1=output operating
0=not operating
FIG. 8B
is similar to
FIG. 8A
but indicates the status of an A/V notification appliance, which may include wall or ceiling mounted notification appliances, the only difference being that bit position number
1
indicates Primary Output
2
, which is the audible notification device on the A/V device. A “1” indicates the audible is operating and a “0” indicates the audible is OFF.
FIG. 8C
is also similar to
FIG. 8A
but indicates the status of a notification appliance having an electronic horn notification device. In this case a “1” in the Primary Output
2
field (bit position
2
) indicates the horn notification device is operating and a “0” indicates the device is OFF.
FIG. 8D
indicates the status of an isolator
76
. The significance of each bit within each bit position is given below:
Isolator Configured:
1=Isolator has been configured since last Isolator power-up, reset, Reset Command
0=not configured (Re-setting this bit forces the Needs Service response to a Cluster Poll. This bit remains reset until the Isolator receives an Isolator Configuration Command.)
Isolator Busy:
1=busy charging the trigger coil capacitor
0=ready
Powered Port#:
0=powered from port
1=powered from port
2
(Defaults to 0 when contacts are closed.)
LED Status:
1=LED lit
0=LED off
Contacts:
1=contacts closed
0=open
(A state change at this bit forces the Needs Service response to a cluster Poll.)
Other Port [.1,.0]:
00=normal (“good voltage”) at other (non-powered port)
01=short circuit at other port
10=reserved
11=open circuit at other port
(A state change of these bits forces the Needs Service response to a Cluster Poll.)
As shown, a parity bit
34
may follow all fields except the SYNC(p)
26
and SYNC(r)
28
signals.
Notification Appliance Configuration Query Poll
The Notification Appliance Configuration Query Poll solicits configuration information from a particular notification appliance
24
. The format of the query and response is given below:
Format: [SYNC(p)] [POLL#(C7)] [P] [ADDR][P] [3sp] [SYNC(r)]
Response: [ADDR][P] [Config][P]
As shown, the Notification Appliance Configuration Query Poll begins with a SYNC(p) signal
26
followed by a command signal
30
(“C7”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
. A 3-bit spacer may be provided after the data field
32
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
, and a field indicating a configuration (i.e., status) of the individual notification appliance
24
. The configuration field is notification appliance type specific as shown in
FIGS. 9
A-D.
More specifically,
FIG. 9A
indicates the configuration of a wall or ceiling mounted strobe or an S/V notification appliance. The significance of each bit within each bit position is given below.
Strobe Mode:
0=normal
1
flash per second
1=Sync
1
flash/sec. to horn cadence if temporal.
Diagnostics Mode:
0=manual input disabled; normal function.
1=manual input enabled; manual input will force LED annunciation of address, and be reported on communication channel.
LED Mode:
0=LED will follow channel on/off commands with initial state off
1=LED will blink on valid Poll\
FIG. 9B
indicates the configuration of an A/V device, which may include a wall or ceiling mounted device. The significance of each bit within each bit position is given below:
Strobe Mode:
0=normal
1
flash per second
1=Sync
1
flash/sec. to horn cadence if temporal
Diagnostic Enable:
0=manual input disabled; normal function.
1=manual input enabled; manual input will force LED annunciation of address
LED Mode:
0=LED will follow channel on/off commands with initial state off
1=LED will blink on valid Poll
Audible output level:
1=high
0=low
Audible Coding Type (2, 1, 0):
000=temporal
001=march time
010=fast march time
011=continuous
FIG. 9C
is identical to FIG.
9
B and indicates the configuration of a notification appliance having a horn notification device. The significance of each bit within each bit position is also identical to the configuration set-up described above with respect to an A/V device.
FIG. 9D
indicates the configuration of an isolator
76
. The significance of each bit within each bit position is given below:
LED Mode:
0=LED will follow channel on/off commands with initial state off
1=LED will blink on valid Poll
It should also be noted that multiple configuration fields may be used in accordance with the present invention. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Notification Appliance Group Checksum Query
The system controller can check sub-group information from an individual notification appliance via a digital message comprising a Notification Appliance Group Checksum Query. Each notification appliance includes at least one notification device having at least one group number and an electronic circuit that decodes a multi-bit command identifying the digital message as a Notification Appliance Group Checksum Query. The electronic circuit further decodes an address field directing the digital message at the particular notification appliance. The notification appliance then responds with an indication of the group number. If the notification device includes more than one group number, then the notification appliance responds to the digital message with an indication of a summation of the group numbers.
Thus, the Notification Appliance Group Checksum Query is used to solicit sub-Group information from an individual notification appliance
24
. The format of the query and response is given below:
Format: [SYNC(p)] [POLL#(C1)][P] [ADDR][P] {3sp} [SYNC(r)]
Response: [ADDR][P] [Checksum#][P]
As shown, the Notification Appliance Group Checksum Query begins with a SYNC(p) signal
26
followed by a command signal
30
(“C1”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
. A 3-bit spacer may be provided after the data field
32
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
, and a field indicating a Checksum number. This number is an algebraic sum of up to 6 (6-bit) Group numbers. The system controller
14
compares the Checksum number to a number programmed in the controller. If the respective numbers are not equal, the controller is programmed to issue a Notification Appliance Group I.D. Query (see below). It should be noted that only the low 8 bits are transmitted. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Notification Appliance Group I.D. Query
The Notification Appliance Group I.D. Query is used to check individual Group entries on a particular notification appliance
24
. The format of the query and response is given below:
Format: [SYNC(p)] [POLL#(C8)[P] [ADDR][P] [00000 a0 g1g0][P] {3sp} [SYNC(r)]
Response: [ADDR] [P] [Slot#/Grp#] [P]
As shown, the Notification Appliance Group I.D. Query begins with a SYNC(p) signal
26
followed by a command signal
30
(“C8”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
. Data field
32
is followed by a second data field which directs the Poll at a first or second notification device Group set and a particular Group location. More specifically, a0 indicates whether the Poll is directed to the first (0) or second (1) notification device set. The g1 and g0 bit locations indicate which Group is being requested. A 3-bit spacer
36
may be provided after the data field
48
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
, and a Group identification field identifying the addressed Group. More particularly, the identification field is an 8-bit Group identifier where the first two bits designate which sub-Group identification (1-3) follows and the next 6 bits that have that Group number. A zero in the Grp# field means there is no sub-Group entry. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Response Acknowledge
The Response Acknowledge Poll is used to send confirmation to a notification appliance
24
that the information sent by the notification appliance in the last Poll addressed to that notification appliance was received successfully. The system controller
14
is programmed to send this Poll in order to complete the sequence of Polls that occurs after a notification appliance
24
has signaled in a Cluster Service Poll that service is required. A notification appliance
24
, which requested service because of some initial event and sent information in a Poll response, will only cease requesting service based on that initial event when it receives a Response Acknowledge.
The format of the Response Acknowledge Poll including the response is given below:
Format: [SYNC(p)] [POLL#(C4)][P] [ADDR][p] {3sp} [SYNC(r)]
Response: [ADDR][P]
As shown, the Response Acknowledge begins with a SYNC(p) signal
26
followed by a command signal
30
(“C4”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
. A 3-bit spacer may be provided after the data field
32
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Notification Appliance Configuration Command#1
The Notification Appliance Configuration Command is used to send configuration information to an individual notification appliance
24
. The format of the command including the response is given below:
Format: [SYNC(p)] [POLL#(F1)][P] [ADDR][P] [Config#1][P] {3sp} [SYNC(r)]
Response: [ADDR][P]
As shown, the Notification Appliance Configuration Command begins with a SYNC(p) signal
26
followed by a command signal
30
(“F 1”) identifying this particular Poll. The data field
32
includes an address of a particular notification appliance
24
. Data field
32
is followed by a configuration field which is an 8-bit identification of a specific configuration of a notification appliance
24
that is being addressed. The configuration settings are notification appliance type specific and are identical to the those described above in the section entitled “Notification Appliance Configuration Query.” A 3-bit spacer may be provided after the configuration field. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes the data field
32
indicating the address of the particular notification appliance
24
. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Notification Appliance Configuration Command#2
The Notification Appliance Configuration Command is used to send configuration information to individual notification appliances
24
that require a second configuration command. The format of the command including the response is given below:
Format: [SYNC(p)] [POLL#(F4)][P] [ADDR][P] [Config#2][P] {3sp} [SYNC(r)]
Response: [ADDR][P]
As shown, the format of the command is similar to the Notification Appliance Configuration Command #1. Only those notification appliances
24
that require a second configuration command will respond to it. The other notification appliances
24
will not respond to this command.
Notification Appliance First Notification Device Group Assignment Command
The Notification Appliance First Notification Device Assignment Command is a Poll used to program application specific group numbers for a first notification device into an individual notification appliance
24
. The first notification device, for example, may include the visible alarm (strobe) of a notification appliance. The format of the command including the response is given below:
Format: [SYNC(p)] [POLL#(E4)][P] [ADDR][P] [Slot#/Grp#2][P] {3sp} [SYNC(r)]
Response: [ADDR][P]
As shown, the Notification Appliance First Notification Device Group Assignment Command begins with a SYNC(p) signal
26
followed by a command signal
30
(“E4”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
and is followed by a Group identification field which is described above under Notification Appliance Group I.D. Query. A 3-bit spacer may be provided after the data field
52
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Notification Appliance Second Notification Device Group Assignment Command
The Notification Appliance Second Notification Device Group Assignment Command is a Poll used to program application specific group numbers for the second notification device into an individual notification appliance
24
, providing the notification appliance has a second notification appliance. The second notification device, for example, may include the audible output of a notification appliance. The format of the command including the response is given below:
Format: [SYNC(p)][P] [POLL#(E3)][P] [ADDR][P] [Slot#/Grp#][P] {3sp} [SYNC(r)]
Response: [ADDR][P]
As shown, the Notification Appliance Second Notification Device Group Assignment Command begins with a SYNC(p) signal
26
followed by a command signal
30
(“E3”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
and is followed by a group identification field, which is described above under Notification Appliance Group I.D. Query. A 3-bit spacer may be provided after the data field
32
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Cluster Service Poll
As described above in the section entitled “Cluster Service Polls,” the Cluster Service Poll is used to solicit general status information from a cluster of 8 consecutive notification appliance addresses. The format of a poll including the response is given below:
Format: [SYNC(p)] [POLL#(OA)][P] [Octet-Addr][P] {3sp} [SYNC(r)]
Response: 8 slots of [cr1,cr0,pad]
As shown, the Cluster Service Poll begins with a SYNC(p) signal
26
followed by a command signal
30
(“0A”) identifying this particular poll. A cluster group address field follows the command signal which is an 8-bit field which identifies a Group of 8 contiguous notification appliances
24
to be cluster polled. A 3-bit spacer may be provided after the cluster group address field. The response includes a Cluster Response field which is a 2 bit response indicating a summary status, also described above. As shown, a parity bit
34
may follow the command signal
30
and cluster group address field
54
.
Actuators On/Off By Group Command
The Actuators On/Off by Group Command is used to address a Notification Appliance Group to modify the On/Off states of their notification devices and indicator.
The format of this command is given below:
Format: [SYNC(p)] [POLL#(D8])[P] [Grp#][P] [P/S State][P] {3sp} [SYNC(r)]
Response: None
As shown, the Actuators On/Off by Group Command begins with a SYNC(p) signal
26
followed by a command signal
30
(“D8”) identifying this particular poll. Command signal
30
is followed by a group number field which is an 8-bit Group identifier where the first 2 bits are hard coded
11
binary, and the next 6 bits have a particular Group number. The group number field is followed by P/S state field which is an 8-bit command word for the notification devices and indicator (i.e., LED) of the notification appliances of the addressed Group. The format of the P/S state field is [P
1
P
1
: P
2
P
2
CCC], where the format is indicative of the following:
P
1
P
1
: 2 bits (00 or 11) given redundant state of the visible appliance
P
2
P
2
: 2 bits (00 or 11) given redundant state of the audible appliance
s: This bit gives state of the LED, or secondary indicator
CCC: 3-bit coding Override, where 111 pattern means no override, other patterns same as Audible Coding Type, as described above.
As indicated, the 3-bit coding override is used to override the current audible settings for the notification appliances
24
with audible notification devices in this Group. In the preferred embodiment of the present invention, this override of coding type configuration is temporary in that it is only a force until the notification appliances in the Group receive an actuators OFF command, whereupon the notification appliances return to their configured, or default, coding type. A 3-bit spacer may be provided after the P/S state field. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
. A SYNC(r) signal
28
follows the 3-bit spacer.
Actuators On/Off by Notification Appliance Command
The Actuators On/Off by Notification Appliance Command is used to address a notification appliance Group to modify the On/Off states of their notification devices and indicator. The format of this command including response is given below:
Format [SYNC(p)][POLL # (E1)][P][ADDR][P][P/S state][P]{3sp}[SYNC(r)]
Response [ADDR][P]
As shown, the Actuators On/Off by Notification Appliance Command begins with a SYNC(p) signal
26
followed by a command signal
30
(“E1”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
and is followed by a P/S state field identical to that described above. A 3-bit spacer may be provided after the P/S state field. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Notification Appliance Reset Command
The Notification Appliance Reset Command is a command to an addressed notification appliance
24
to turn all notification devices, indicators, and control elements OFF, purge all application specific Groups, and return the notification appliance to default configuration. The format of this command including response is given below:
Format [SYNC(p)][POLL#(FE)][P][ADDR][P]{3sp}[SYNC(r)]
Response [ADDR][P]
As shown, the Notification Appliance Reset Command begins with a SYNC(p) signal
26
followed by a command signal
30
(“FE”) identifying this particular poll. The data field
32
includes an address of a particular notification appliance
24
. A 3-bit spacer may be provided after the data field
32
. A SYNC(r) signal
28
follows the 3-bit spacer. The response includes a data field
32
indicating the address of the particular notification appliance
24
. As shown, a parity bit
34
may follow all fields except the SYNC(p) signal
26
and SYNC(r) signal
28
.
Message Field Descriptions
Provided below is a summary of message field descriptions.
[SYNC(p)] 3-bit character consisting of a pulse to 24V of fixed width, followed by a 0 bit and a 1 bit. The sequence is sent by the system controller
14
to flag the beginning of a Poll. The sequence must begin with a data 0 to 24V transition.
[SYNC(r)] 1-bit character consisting of a pulse to 24V of fixed width sent by the system controller
14
to flag the notification appliances to start responding. The rising edge of the pulse is used by devices to resynchronize their timing to that of the controller.
[3 sp] Filler bit interval that allows notification appliance
24
processing in preparation of Poll response.
[P] Odd parity bit
[POLL#] Binary encoded message identifier
[ADDR] 8-bit binary encoded notification appliance. In the preferred embodiment, the addresses range from 01-63.
[Octet-Addr] 8-bit field tells which group of 8 contiguous notification appliances is being addressed for summary polling.
[cr1;cr0] Cluster Response Field, where 2-bit code flags summary status:
00—no response received/Poll in error
01—normal
10—normal with notification device(s)
11—need service/test mode
[Slot#/Grp#] 8-bit group identifier where the first 2 bits designate which sub-group I.D. (1-3) follows, and the next 6 bits have that group number.
[Grp#] 8-bit group identifier where the first 2 bits are hard coded
11
binary, and the next 6 bits have the group number.
[DevType] 8-bit binary encoded notification appliance type I.D. code.
[Stat] 8-bit status word.
[Config#] 8-bit configuration words; meaning of the bits is dependent on notification appliance.
[Checksum#] 8-bit algebraic checksum of the application specific group numbers currently assigned to this notification appliance.
[P/S State] 8-bit command word for appliances and the LED, the format being [P
1
P
1
P
2
P
2
s CCC]
P
1
P
1
: 2 bits (00 or 11) given redundant state of the visible appliance
P
2
P
2
: 2 bits (00 or 11) given redundant state of the audible appliance
s: This bit gives state of the LED, or secondary indicator
CCC: 3-bit coding Override, where 111 pattern means no override, other patterns same as Audible Coding Type, as described above in the section entitled, “Notification Appliance Configuration Query Poll.”
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Claims
- 1. A method for communication in a fire alarm system, comprising:sending a message to a notification appliance, the notification appliance including at least one notification device that alerts a person during a fire alarm condition, said message comprising a first synchronization signal, a command field, a data field, and a second synchronization signal, said second synchronization signal synchronizing and initiating a response from said notification appliance; and at said notification appliance, responding as directed by said command field after said second synchronization signal.
- 2. The method of claim 1, wherein the data field is an address of the notification appliance.
- 3. The method of claim 1, wherein the data field is a time descriptor that resets a timer of the notification appliance to the time of the time descriptor.
- 4. A notification appliance for use in an alarm system, comprising:means for decoding a message comprising a first synchronization signal, a command field, a data field, and a second synchronization signal, the second synchronization signal synchronizing and initiating a response from said notification appliance; means for alerting a person during a fire alarm condition; and means for responding as directed by said command field after said second synchronization signal.
- 5. A notification appliance for use in an alarm system, comprising:at least one notification device that alerts a person during a fire alarm condition; and an electronic circuit that receives a message comprising a first synchronization signal, a command field, a data field, and a second synchronization signal that synchronizes and initiates a response from said notification appliance, said notification appliance responding as directed by said command field after said second synchronization signal.
- 6. A fire alarm system, comprising:a system controller for generating a plurality of multi-bit digital messages that control at least one notification appliance, said notification appliance including at least one notification device that alerts a person during a fire alarm condition; a pair of communication lines connecting said at least one notification appliance to said system controller; and said at least one notification appliance including an electronic circuit that receives a message comprising a first synchronization signal, a command field, a data field, and a second synchronization signal that synchronizes and initiates a response from said notification appliance, said notification appliance responding as directed by said command field after said second synchronization signal.
- 7. A method for communication in a fire alarm system, comprising:providing a plurality of notification appliances in a standby mode of operation wherein said plurality of notification appliances are powered at a first voltage level, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; communicating with said plurality of notification appliances in said standby mode with data pulses relative to said first voltage level; raising said first voltage level to a second voltage level in an active mode of operation; and communicating with said plurality of notification appliance in said active mode by reducing said second voltage level to about said first voltage level and communicating with data pulses relative to said first voltage level.
- 8. The method according to claim 7, wherein said step of communicating in said standby mode and said active mode includes the step of sending a synchronization signal which includes a data pulse extending from said first voltage level to said second voltage level.
- 9. The method according to claim 7, wherein said data pulses relative to said first voltage level extend toward said second voltage level.
- 10. A fire alarm system, comprising:a plurality of notification appliances powered at a first voltage level in a standby mode of operation, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; and a system controller that communicates with the notification appliances in the standby mode with data pulses relative to the first voltage level, the system controller raising the first voltage level to a second voltage level in an active mode of operation and communicating with the notification appliances in the active mode by reducing the second voltage level to about the first voltage level and communicating with data pulses relative to the first voltage level.
- 11. The alarm system of claim 10, further comprising a synchronization signal used to communicate with the notification appliances comprising a data pulse extending from the first voltage level to the second voltage level.
- 12. The alarm system of claim 10, wherein said data pulses relative to the first voltage level extend toward the second voltage level.
- 13. A notification appliance for use in a fire alarm system, comprising:at least one notification device powered at a first voltage level in a standby mode of operation, said notification device alerting a person during a fire alarm condition; and a system controller that communicates with the notification device in the standby mode with data pulses relative to the first voltage level, the system controller raising the first voltage level to a second voltage level in an active mode of operation and communicating with the notification devices in the active mode by reducing the second voltage level to about the first voltage level and communicating with data pulses relative to the first voltage level.
- 14. The notification appliance of claim 13, further comprising a synchronization signal used to communicate with the notification appliances comprising a data pulse extending from the first voltage level to the second voltage level.
- 15. The notification appliance of claim 13, wherein said data pulses relative to the first voltage level extend toward the second voltage level.
- 16. A fire alarm system, comprising:a plurality of notification appliances powered at a first voltage level in a standby mode of operation, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; and means for communicating with the appliances in the standby mode with data pulses relative to the first voltage level; means for raising the first voltage level to a second voltage level in an active mode of operation; and means for communicating with the notification appliances in the active mode by reducing the second voltage level to about the first voltage level and communicating with the data pulses relative to the first voltage level.
- 17. A fire alarm system, comprising:a system controller for generating a plurality of multi-bit digital messages for controlling at least one notification appliance; a pair of communication lines connecting said at least one notification appliance to said system controller; and said at least one notification appliance including: a notification device that alerts a person during a fire alarm condition; a timer used to control timed operation in the notification appliance; and an electronic circuit which decodes a multi-bit time descriptor of a synchronization poll and resets the timer of said notification appliance to the time of the time descriptor.
- 18. The alarm system according to claim 17, wherein said timer controls actuation of a visual alarm of said notification appliance.
- 19. The alarm system according to claim 17, wherein said timer controls actuation of an audible alarm of said notification appliance.
- 20. The alarm system according to claim 17, wherein said timer controls actuation of an audible alarm and a visual alarm of said notification appliance.
- 21. The alarm system according to claim 17, wherein said synchronization poll further comprises a first synchronization signal and a command signal identifying said synchronization poll as said synchronization poll.
- 22. The alarm system according to claim 21, wherein said synchronization poll further comprises a second synchronization signal.
- 23. A notification appliance for use in a fire alarm system, comprising:a timer used to control timed operation in the notification appliance, said notification appliance including at least one notification device that alerts a person during a fire alarm condition; and an electronic circuit which decodes a multi-bit digital message identifying the message as a synchronization poll, the circuit further decoding a multi-bit time descriptor and resetting the timer to the time of the time descriptor.
- 24. The notification appliance according to claim 23, wherein said digital message further comprises a first synchronization signal and a second synchronization signal.
- 25. The alarm system according to claim 23, wherein said timer controls actuation of a visual alarm of said notification appliance.
- 26. The alarm system according to claim 23, wherein said timer controls actuation of an audible alarm of said notification appliance.
- 27. The alarm system according to claim 23, wherein said timer controls actuation of an audible alarm and a visual alarm of said notification appliance.
- 28. A method of communication in a fire alarm system, comprising:generating a plurality of multi-bit digital messages for controlling at least one notification appliance, said notification appliance including at least one notification device that alerts a person during a fire alarm condition; receiving a digital message at a notification appliance; decoding a multi-bit command identifying said digital message as a synchronization poll; decoding a multi-bit time descriptor of said digital message; and resetting a timer of said notification appliance to the time of the time descriptor.
- 29. A notification appliance for use in a fire alarm system, comprising:first means for controlling timed operation in the notification appliance, said notification appliance including at least one notification device that alerts a person during a fire alarm condition; and second means for decoding a multi-bit message identifying the message as a synchronization poll, said second means further decoding a multi-bit time descriptor and resetting the first means to the time of the time descriptor.
- 30. A fire alarm system, comprising:a system controller for generating a plurality of multi-bit messages for controlling at least one notification appliance, said notification appliance having at least a first notification device that alerts a person during a fire alarm condition and a second notification device, each notification device having at least one group number; a pair of communication lines connecting said at least one notification appliance to said system controller; and said notification appliances including an electronic circuit that receives a digital message and decodes a multi-bit command identifying said digital message as a notification appliance group identification query, the circuit further decoding an address field directing said digital message at said notification appliance and decoding a data field directing said digital message at a particular group of said first notification device or said second notification device.
- 31. The alarm system according to claim 30, wherein said digital message further comprises a first synchronization signal and a second synchronization signal.
- 32. The alarm system according to claim 30, wherein said notification appliance responds to the digital message with an identification and group number of the particular group.
- 33. The alarm system according to claim 30, wherein the first notification device comprises a visual alarm and the second notification device comprises and audible alarm.
- 34. A notification appliance for use in a fire alarm system, comprising:a first notification device and a second notification device, each notification device alerting a person during a fire alarm condition; and an electronic circuit that receives a digital message and decodes a multi-bit command identifying said digital message as a notification appliance group identification query, the circuit further decoding an address field directing said digital message at said notification appliance and decoding a field directing said digital message at a particular group of said first notification device or said second notification device.
- 35. The notification appliance according to claim 34, wherein said digital message further comprises a first synchronization signal and a second synchronization signal.
- 36. The notification appliance according to claim 34, wherein said notification appliance responds to the digital message with an identification and group number of the particular group.
- 37. The notification appliance according to claim 34, wherein the first notification device comprises a visual alarm and the second notification device comprises an audible alarm.
- 38. A method of communication in a fire alarm system, comprising:generating a plurality of multi-bit messages for controlling at least one notification appliance, said notification appliance having at least a first notification device and a second notification device for alerting a person during a fire alarm condition, each notification device having at least one group number; receiving a digital message at the notification appliance; decoding a multi-bit command identifying the digital message as a notification appliance group identification query; decoding an address field directing the digital message to the notification appliance; decoding a field directing the digital message at a particular group at said first notification device or said second device; and responding to the digital message with an identification and group number of the particular group.
- 39. A notification appliance for use in a fire alarm system, comprising:at least a first notification device and a second notification device for alerting a person during a fire alarm condition; means for receiving a digital message; and means for decoding: a) multi-bit command identifying said digital message as a notification group identification query; b) an address field directing said digital message at said notification appliance; and c) a field directing said digital message at a particular group of the first notification device or the second notification device.
- 40. The notification appliance of claim 39, further comprising means for responding to the digital message with an identification and group number of the particular group.
- 41. A fire alarm system, comprising:a system controller for generating a plurality of multi-bit messages for controlling at least one notification appliance, said notification appliance having at least a first notification device that alerts a person during a fire alarm condition; a pair of communication lines connecting said at least one notification appliance to said system controller; and said notification appliance including an electronic circuit that receives a digital message and decodes a multi-bit command identifying said digital message as a notification appliance first notification device group assignment command, the circuit further decoding an address field which identifies an address of the appliance, the circuit further decoding a group identification field assigning said first notification device a first particular group number by which the device is addressed in subsequent polls as a group member.
- 42. The alarm system according to claim 41, further comprising assigning said first notification device a second particular group number.
- 43. The alarm system according to claim 41, wherein the notification device comprises a visual alarm.
- 44. The alarm system according to claim 41, wherein the notification device comprises an audible alarm.
- 45. The alarm system according to claim 41, wherein said notification appliance further comprises a second notification device and the circuit further decodes a multi-bit command identifying the digital message as a notification appliance second notification device group command and a group identification field assigning the second notification device a first particular group number by which the second notification device is addressed in subsequent polls as a group number.
- 46. The alarm system according to claim 45, further comprising assigning the second notification device a second particular group number.
- 47. A notification appliance for use in a fire alarm system, comprising:at least one notification device that alerts a person during a fire alarm condition; and an electronic circuit that receives a digital message and decodes a multi-bit command identifying said digital message as a notification appliance first notification device group assignment command, the circuit further decoding an address field which identifies an address of the notification appliance, the circuit further decoding a group identification field assigning said first notification device a first particular group number by which the device is addressed in subsequent polls as a group member.
- 48. The notification appliance according to claim 47, further comprising assigning said first notification device a second particular group number.
- 49. The notification appliance according to claim 47, wherein the notification device comprises a visual alarm.
- 50. The notification appliance according to claim 47, wherein the notification device comprises an audible alarm.
- 51. The notification appliance of claim 47, wherein said notification appliance further comprises a second notification device and the circuit further decodes a multi-bit command identifying the digital message as a notification appliance second notification device group command and a group identification field assigning the second notification device a first particular group number by which the second notification device is addressed in subsequent polls as a group member.
- 52. The notification appliance according to claim 51, further comprising assigning the second notification device a second particular group number.
- 53. A method of communication in a fire alarm system, comprising:generating a plurality of multi-bit messages for controlling at least one notification appliance, said notification appliance having at least a first notification device that alerts a person during a fire alarm condition; receiving a digital message at the notification appliance; decoding an address field which identifies an address of the appliance; decoding a group identification field; and assigning the first notification device a first particular group number by which the device is addressed in subsequent polls as a group member.
- 54. The method of claim 53, further comprising the step of assigning the first notification device a second particular group number.
- 55. The method of claim 53, wherein said notification appliance further comprises a second notification device, further comprising the step of assigning the second notification device a first particular group number by which the second notification device is addressed in subsequent polls as a group member.
- 56. The method of claim 55, further comprising the step of assigning the second notification device a second particular group number.
- 57. A notification appliance for use in a fire alarm system, comprising:at least one notification device that alerts a person during a fire alarm condition; means for receiving a digital message; means for decoding: a) a multi-bit command identifying said digital message as a notification appliance first notification device group assignment command; b) an address field which identifies an address of the notification appliance; and c) a group identification field assigning said first notification device a first particular group number or a second particular group number by which the device is addressed in subsequent polls as a group member.
- 58. The notification device of claim 57, wherein said notification appliance further comprises a second notification device and said decoding means further decodes:a) a multi-bit command identifying said digital message as a notification appliance second notification device group assignment command; and b) a group identification field assigning the second notification device a first particular group number or a second particular group number by which the device is addressed in subsequent polls as a group member.
- 59. A fire alarm system, comprising:a system controller for generating a plurality of multi-bit messages for controlling a plurality of notification appliances; a pair of communication lines connecting said plurality of notification appliance to said system controller; and said notification appliances including an electronic circuit that receives a digital message and decodes a multi-bit command identifying said digital message as a cluster service poll, the circuit further decoding a cluster group address field which addresses a cluster of notification appliances, each individual notification appliance including at least one notification device that alerts a person during a fire alarm condition, each notification appliance of a cluster responding at a designated response time.
- 60. The alarm system according to claim 59, wherein the digital message further comprises a first synchronization signal and a second synchronization signal and said designated response time follows a single second synchronization signal.
- 61. The alarm system according to claim 59, wherein said cluster includes a group of eight notification appliances.
- 62. The alarm system according to claim 59, wherein each of said notification appliances of a cluster responds after a respective synchronization response signal.
- 63. The alarm system according to claim 59, wherein each of said notification appliances responds with a message indicating the status of said notification appliance.
- 64. The alarm system according to claim 63, wherein if said notification appliance responds with an error message, a detailed status query is directed at said notification appliance responding with said error message.
- 65. The alarm system according to claim 59, wherein the notification appliance further comprises an audible alarm.
- 66. The alarm system according to claim 59, wherein the notification appliance further comprises a visual alarm.
- 67. A notification appliance for use in a fire alarm system, comprising:at least one notification device that alerts a person during a fire alarm condition; and an electronic circuit that receives a digital message and decodes a multi-bit command identifying said digital message as a cluster service poll, the circuit further decoding a cluster group address field which addresses a cluster of notification appliances, each individual notification appliance of a cluster responding at a designated response time.
- 68. The notification appliance of claim 67, wherein the digital message further comprises a first synchronization signal and a second synchronization signal and said designated response time follows a single second synchronization signal.
- 69. The notification appliance of claim 67, wherein said cluster includes a group of eight notification appliances.
- 70. The notification appliance of claim 67, wherein each of said notification appliances of a cluster responds after a respective synchronization response signal.
- 71. The notification appliance of claim 67, wherein each of said notification appliances responds with a message indicating the status of said notification appliance.
- 72. The notification appliance of claim 71, wherein if said notification appliance responds with an error message, a detailed status query is directed at said notification appliance responding with said error message.
- 73. The notification appliance of claim 67, further comprising a visual alarm.
- 74. The notification appliance of claim 67, further comprising an audible alarm.
- 75. A method of communication in a fire alarm system, comprising:sending a digital message to a cluster of notification appliances, each notification appliance including at least one notification device that alerts a person during a fire alarm condition; decoding a multi-bit command identifying said first message as cluster service poll; decoding a cluster group address field which addresses a cluster of notification appliances; and receiving a response from each of said cluster of notification appliances at a designated response time.
- 76. The method of communication according to claim 75, further comprising the step of sending a detailed status query to a particular notification appliance if said notification appliance responds to said digital message with an error.
- 77. The method of communication according to claim 75, wherein the digital message further comprises a first synchronization signal and a second synchronization signal, further comprising the step of receiving said response from each of said cluster of notification appliances after a single second synchronization signal.
- 78. The method of communication according to claim 75, further comprising the step of receiving said response from each of said clusters of notification appliances after a respective synchronization response signal.
- 79. The method of communication according to claim 78, wherein said message from each of said clusters of notification appliances includes a message indicating the status of each notification appliance.
- 80. The method of communication according to claim 75, further comprising the step of sending a digital message to a cluster of eight notification appliances.
- 81. A notification appliance for use in a fire alarm system, comprising:means for receiving a digital message; means for alerting a user during a fire alarm condition; and means for decoding: a) a multi-bit command identifying said digital message as a cluster service poll; and b) a cluster group address field which addresses a cluster of notification appliances, each individual notification appliance of a cluster responding at a designated response time.
- 82. A method of initializing a fire alarm system, comprising:sending initial power to a plurality of notification appliances, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; sending a digital message to a cluster of notification appliances; and responding from individual notification appliances of a cluster at designated response times.
- 83. The method of initializing according to claim 82, further comprising the step of comparing the number of notification appliances that respond to said digital message with a predetermined number of notification appliances that should have responded to said digital message.
- 84. A fire alarm system, comprising:a plurality of notification appliances, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; a system controller that communicates with the plurality of notification appliances in a standby mode of operation; and a notification circuit that powers the notification appliances and carries the communications between the system controller and the notification appliances; the notification appliances responding to the system controller with indications of appliance state.
- 85. The system of claim 84, wherein the system controller uses the communications to supervise the notification appliances.
- 86. A method of communication in a fire alarm system, comprising:communicating from a system controller to a plurality of notification appliances in a standby mode of operation, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; providing a notification circuit that powers the notification appliances and carries the communications between the system controller and the notification appliances; and receiving indications of appliance state at the system controller.
- 87. A method for communication in a fire alarm system, comprising:communicating from a system controller to a plurality of notification appliances in a standby mode of operation, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition; and receiving indications of appliance state from the notification appliances.
- 88. A notification appliance for use in a fire alarm system, comprising:at least one notification device that alerts a person during a fire alarm condition; and an electronic circuit that receives communications from a system controller in a standby mode of operation and responds to the system controller with indications of appliance state.
- 89. The system of claim 88, wherein the system controller uses the communications to supervise the notification appliances.
- 90. A control panel for use in a fire alarm system comprising a system controller that communicates with the plurality of notification appliances in a standby mode of operation, at least one notification appliance including at least one notification device that alerts a person during a fire alarm condition, the notification appliances responding to the system controller with indications of appliance state.
- 91. The system of claim 90, wherein the system controller uses the communications to supervise the notification appliances.
- 92. A method for communication in a fire alarm system comprising:sending a message from a control panel to an isolator that is connected between the control panel and a plurality of notification appliances, at least one notification appliance including at least one notification device that alerts a user during a fire alarm condition; and disconnecting, with the isolator, at least one notification appliance while maintaining power to the remaining notification appliances.
- 93. The method of claim 92, wherein the message comprises a first synchronization signal, a command field, a data field, and a second synchronization signal, further comprising:at said isolator, responding as directed by said command field after said synchronization signal.
- 94. A fire alarm system, comprising:a system controller for generating a plurality of multi-bit digital messages for controlling a plurality of notification appliances, at least one notification appliance including at least one notification device that alerts a user during a fire alarm condition; a pair of communication lines connecting the notification appliances to the system controller; and an isolator connected to the communication lines that disconnects one or more notification appliances from the communicating lines while maintaining power to the remaining notification appliances.
- 95. The alarm system of claim 94, wherein the isolator automatically disconnects the one or more notification appliances if the isolator detects a short.
- 96. The alarm system of claim 94, wherein the system controller sends a message to the isolator to cause the isolator to disconnect the one or more notification appliances from the communication lines.
US Referenced Citations (8)