This disclosure relates to alarm systems, remote communication devices, and article security methods.
Theft detection electronic systems have been used in numerous applications including for example consumer retail applications to deter theft. Some theft detection electronic systems may operate in environments susceptible to electromagnetic interference emitted from sources other than components of the systems. The interference may degrade the operations of the theft detection electronic systems resulting in unreliable operation including signaling of false alarms. Electromagnetic interference may result from different possible sources including for example cellular or cordless telephones or pagers. The impact of these interference sources may be significant in view of the increasing popularity and usage of these devices, including usage by individuals in areas which are secured.
The present disclosure describes apparatus and methods which provide improved communications.
Embodiments of the disclosure are described below with reference to the following accompanying drawings.
The reader is directed to other copending U.S. patent applications Ser. No. 11/788,053entitled “Alarm Systems, Wireless Alarm Devices, And Article Security Methods”, naming Ian R. Scott, Brian J. Green and Dennis D. Belden, Jr. as inventors, and filed the same day as the present application, and 11/788,235entitled “Alarm Systems, Wireless Alarm Devices, And Article Security Methods”, naming Ian R. Scott, Brian J. Green and Dennis D. Belden, Jr. as inventors, having, and filed the same day as the present application, and the teachings of both of which are incorporated by reference herein.
Referring to
In one exemplary implementation, alarm system 10 may be used to secure a plurality of articles (not shown). In a more specific example, alarm system 10 may be implemented in a consumer retail application to secure a plurality of articles including consumer items offered for sale. In some applications, a plurality of remote communication devices 14 may be used to secure a plurality of respective articles. The remote communication devices 14 may be individually associated with an article, for example, by attaching the remote communication device 14 to the article to be secured in one embodiment.
In one embodiment, alarm system 10 may be implemented to secure the articles which are to be maintained in a given location until authorization is provided to remove the articles from the location. For example, the alarm system 10 may be associated with a room, such as a retail store, and it may be desired to maintain the articles within a defined area (e.g., within the inside of the store) and to generate an alarm if an unauthorized attempt to remove an article from the defined area is detected. One exemplary configuration of alarm system 10 used in a retail article monitoring implementation is Electronic Article Surveillance (EAS). Alarm system 10 may implement different types of EAS monitoring in different embodiments. Examples of different configurations of EAS include AM (Acousto-Magnetic), EM (electro-magnetic), and RF (Radio-Frequency).
Accordingly, in one embodiment, the base communication device 12 may be proximately located to an ingress and egress point 16 of a room. In the exemplary depicted embodiment, base communication device 12 includes a plurality of gates 18 located adjacent the ingress and egress point 16 (e.g., gates 18 may be positioned at opposing sides of a doorway of a retail store). In the described implementation, the gates 18 may emit wireless signals which define the secured area at the ingress and egress point 16 such that remote communication devices 14 pass through the secured area if they are brought into or removed from the defined area corresponding to the interior of the store (e.g., a defined area containing secured articles may be to the right of gates 18 in
Alarm system 10 is configured to generate an alarm responsive to the presence of one of the remote communication devices 14 being detected within a secured area. As described further below, the secured area may correspond to a range of wireless communications of gates 18 of base communication device 12, and in one example mentioned above, the gates 18 may be located adjacent an ingress and egress point 16 of a room containing secured articles. The base communication device 12 may emit wireless signals within and corresponding to the secured area and remote communication devices 14 brought into the secured area receive the wireless signals and may emit alarm signals in response to receiving the wireless signals. Accordingly, the secured area may be defined and used in one embodiment to generate alarms when remote communication devices 14 are adjacent to the ingress and egress point 16 in one configuration (i.e., generating an alarm to indicate a potential theft of an item by the bringing of the article having the remote communication device 14 attached thereto within the communications range of the base communication device 12 corresponding to the secured area).
Referring to
Tag 20 is configured to implement wireless communications with respect to base communication device 12 in the described embodiment. In one construction, tag 20 includes an antenna circuit in the form of a parallel LC resonant circuit configured to resonate responsive to electromagnetic energy emitted by base communication device 12 (e.g., the inductor and capacitor may be connected in parallel between the nodes of R1 and ground in
Base communication device 12 is configured to emit electromagnetic energy for interaction with remote communication devices 14 to implement security operations. Base communication device 12 may omit the electromagnetic energy in the form of a wireless signal which has a different frequency at different moments in time. In one configuration, base communication device 12 emits a carrier frequency (e.g., less than 55 MHz) which may be frequency modulated wherein the carrier sweeps sinusoidally within a frequency range from a lower frequency to an upper frequency. For example, in one possible RF EAS implementation, base communication device 12 may emit a wireless signal in the form of a 8.2 MHz carrier which is FM modulated to sweep within a range between +/−500 kHz of 8.2 MHz at a rate of 60 Hz. In another embodiment, base communication device 12 may omit bursts of electromagnetic energy at different frequencies in the desired band of 8.2 MHz+/−500 kHz. Communications intermediate base and remote communication devices 12 and 14 may occur at other frequencies in other embodiments (e.g., AM EAS arrangements may communicate within a range of 55-58 kHz).
Remote communication devices 14 are individually configured to resonate at a range of frequencies within the modulated frequency range of the carrier signal emitted by the base communication device 12. For example, the LC components of the tag 20 may be tuned to resonate when the tag 20 is located within the secured area (and accordingly receives the electromagnetic energy emitted by the base communication device 12) and the carrier signal corresponds to the resonant frequency of the tag 20. In one embodiment, the resonation may be detected by the base communication device 12 and may trigger the base communication device 12 to generate a human perceptible alarm.
The resonation of tag 20 results in the generation of a reference signal which is communicated to alarm device 22 resident within the remote communication device 14 in one embodiment. The reference signal may include a signature (e.g., pattern of bursts) of alternating current energy corresponding to the carrier frequency of the signal communicated by base communication device 12 and at moments in time wherein the carrier frequency is equal to the resonant frequency of the tag 20. The reference signal may be communicated to conditioning circuitry 30 which may generate a pattern of plural identifiable components (e.g., pulses) individually corresponding to one of the bursts of AC energy. The pulses are received by processing circuitry 32 which may analyze the pulses in an attempt to distinguish pulses corresponding to electromagnetic energy emitted from the base communication device 12 from pulses resulting from electromagnetic of other sources, for example, corresponding to noise or interference. Upon detection of the receipt by device 14 of electromagnetic energy from base communication device 12, processing circuitry 32 may control alarm circuitry 36 to emit a human perceptible alarm.
In one embodiment, processing circuitry 32 is arranged to process data, control data access and storage, issue commands, and control other desired operations of remote communication device 14. Processing circuitry 32 may monitor signals which correspond to communications of base communication device 12. As discussed further below and according to one exemplary embodiment, processing circuitry 32 may analyze a pulse stream generated by conditioning circuitry 30 for pulse length and duty cycle. Processing circuitry 32 may use a discriminating window method which specifies a minimum number of pulses from a detected sequence to be within a set of parameters describing pulse on and off timing. Additional details of one exemplary analysis are described in detail below. Processing circuitry 32 may control the emission of an alarm signal by the remote communication device 14 if predefined parameters are met as discussed further below.
Processing circuitry 32 may comprise circuitry configured to implement desired programming provided by appropriate media in at least one embodiment. For example, the processing circuitry 32 may be implemented as one or more of a processor and/or other structure configured to execute executable instructions including, for example, software and/or firmware instructions, and/or hardware circuitry. Exemplary embodiments of processing circuitry 32 include hardware logic, PGA, FPGA, ASIC, state machines, and/or other structures alone or in combination with a processor. These examples of processing circuitry 32 are for illustration and other configurations are possible.
Storage circuitry 34 is configured to store programming such as executable code or instructions (e.g., software and/or firmware), electronic data, databases, or other digital information and may include processor-usable media. Processor-usable media may be embodied in any computer program product(s) or article of manufacture(s) which can contain, store, or maintain programming, data and/or digital information for use by or in connection with an instruction execution system including processing circuitry in the exemplary embodiment. For example, exemplary processor-usable media may include any one of physical media such as electronic, magnetic, optical, electromagnetic, infrared or semiconductor media. Some more specific examples of processor-usable media include, but are not limited to, a portable magnetic computer diskette, such as a floppy diskette, zip disk, hard drive, random access memory, read only memory, flash memory, cache memory, and/or other configurations capable of storing programming, data, or other digital information.
At least some embodiments or aspects described herein may be implemented using programming stored within appropriate storage circuitry 34 described above and/or communicated via a network or other transmission media and configured to control appropriate processing circuitry. For example, programming may be provided via appropriate media including, for example, embodied within articles of manufacture, embodied within a data signal (e.g., modulated carrier wave, data packets, digital representations, etc.) communicated via an appropriate transmission medium, such as a communication network (e.g., the Internet and/or a private network), wired electrical connection, optical connection and/or electromagnetic energy, for example, via a communications interface, or provided using other appropriate communication structure or medium. Exemplary programming including processor-usable code may be communicated as a data signal embodied in a carrier wave in but one example.
As mentioned above, alarm circuitry 36 may be configured to emit a human perceptible alarm signal (e.g., to notify interested parties of the fact that an article has been moved into a secured area). For example, alarm circuitry 36 may include an audible alarm and/or a visual alarm individually configured to emit human perceptible alarm signals.
Referring to
Amplifier 42 is configured to generate digital signals from the bursts of AC provided by the tag 20 and detector 40 in the illustrated embodiment. Pulse shaper 44 is configured to process the output of the amplifier 42 to assist processing circuitry 32 with detection of identifiable components (e.g., pulses) within the reference signal. Additional details of the components of
Referring to
During operation, output of tag 20 due to resonation with electromagnetic energy is detected by a non-linear device comprising diode D1 in the depicted embodiment. More specifically, coupling capacitor C2 connects signals generated by tag 20 to the detector 40 while allowing for a DC shift which becomes the output signal. Diode D1 conducts in a forward biased direction when the RF signal received by tag 20 is negative thereby clamping the waveform to ground and is non-conducting when the RF signal is positive thereby developing a positive signal corresponding to the instantaneous value of the peak of the RF waveform (e.g., 8.2 MHz) generated by base communication device 12 for half of the wave cycle thereby providing a DC or slowly varying AC waveform that is proportional to the amplitude of the RF signal received by tag 20. The inclusion of a non-linear element D1 in the detector 40 improves the sensitivity of alarm device 22 of remote communication device 14. In one embodiment, the described diode D1 provides a non-linear relationship wherein current through diode D1 is clamped to ground during the negative half cycle and allowed to swing positive during the positive half cycle of received voltage corresponding to input signals received from tag 20 and an output signal is provided to C4 which is therefore proportional to the positive peak value of the received signal. The detected DC component signal is DC coupled and AC blocked by the inductor to C4. C4 holds the value of the detected voltage. Accordingly, in one embodiment, C4 of detector 40 is configured to generate an envelope of the signal and generally resemble a square wave following the macro trend of the RF envelope of signals received from base communication device 12.
In the depicted embodiment, C3 is coupled across the inductor L1 and is selected to provide parallel resonance of the component combination at the band of frequencies that are transmitted by base communication device 12 thereby increasing the AC impedance of the circuit connected to tag 20. The increased impedance reduces loading of tag 20 so that the voltage developed across it is higher thereby improving sensitivity and providing increased reflection by the antenna circuitry of tag 20 of signals to base communication device 12. The provision of detector 40 comprising a non-linear detector through the use of diode D1 generates pulses having an absolute value relation to the signal received by the antenna circuit and applies the pulses to comparator U1 in one embodiment. Detector 40 has a non-linear transfer characteristic in the described embodiment where the input and output of the detector 40 have an absolute value relationship through the use of diode D1 in one embodiment.
The detector 40 described according to one embodiment provides increased sensitivity to wireless communications of base communication device 12 without the use of amplifiers operating at RF frequencies which otherwise may consume significant current and significantly reduce battery life.
The reference signal outputted by detector 40 is converted to a logic level by comparator U1 and associated components R3, R4, and R5 of amplifier 42. The logic level reference signal is provided to pulse shaper 44. D2 of pulse shaper 44 removes noise from the output of the comparator and provides relatively clean pulses for analysis by processing circuitry 32. D2 allows a fast fall time of the detected RF signal and a slower rise time of a prescribed rate as set by R6 and C5 which also operates to provide a degree of noise reduction.
A table of values of an exemplary configuration of conditioning circuitry 30 configured for use with tag 20 comprising a parallel LC resonant circuit having a solenoid wire wound inductor of 9.7 uH and a capacitor of 39 pF is provided as Table A. Other components may be used in other configurations and/or for use with other configurations of tags 20.
Processing circuitry 32 is configured to receive reference signals outputted from pulse shaper 44 and is configured to process the reference signals to discriminate signals having a pattern or cadence corresponding to wireless communications of base communication device 12 from other signals resulting from the reception of electromagnetic energy provided by other sources apart from device 12. Processing circuitry 32 may control the alarm circuitry 36 to generate a human perceptible alarm responsive to the discrimination indicating reception of wireless communications corresponding to base communication device 12.
Processing circuitry 32 may use criteria in an attempt to discriminate received electromagnetic energy. The criteria may be predefined wherein, for example, the criterion is specified prior to reception of the wireless signals to be processed by remote communication device 14. In one possible discrimination embodiment, processing circuitry 32 is configured to monitor for the presence of a plurality of identifiable components within the reference signals outputted by conditioning circuitry 30 and corresponding to communications of the remote communication device 14 with respect to base communication device 12 (e.g., the remote communication device 14 generates the identifiable components responsive to reception of the wireless signal emitted by the base communication device 12). In one embodiment, the processing circuitry 32 is configured to monitor for the presence of the identifiable components in the form of pulses. As described further below, processing circuitry 32 may attempt to match pulses of the reference signal being processed with a predefined pattern of the pulses in one implementation to discriminate communications from the base communication device 12 from interference. The processing circuitry 32 may control the alarm circuitry 36 to emit an alarm if criteria are met, such as identification of a plurality of identifiable components (e.g., pulses) and/or identification of the identifiable components in the form of a predefined pattern. The processing circuitry 32 may have to specify the reception of the identifiable components and/or pattern within a predefined time period in order to provide a positive identification of communications from base communication device 12. One, more or all of the above exemplary criteria may be used in exemplary embodiments to discriminate signals from base communication device 12 from spurious electromagnetic energy received by the remote communication devices 14.
More specifically, in one arrangement, processing circuitry 32 may access values for a plurality of parameters corresponding to the given configuration of the alarm system 10 (e.g., RF, AM, EM discussed above). The processing circuitry 32 may utilize the values of the parameters during monitoring of reference signals received from conditioning circuitry 30 and which specify time-amplitude criteria to discriminate communications from base communication device 12 from interference. The values of the parameters may define characteristics of the identifiable components (e.g., pulses) of the signal and to be identified. In a specific example, the parameters may additionally define a pattern of the identifiable components to be identified to indicate whether the communications are from base communication device 12. The values of the parameters for the different types of systems may be predefined (e.g., defined before the generation of the reference signals to be processed) in one embodiment. For example, the values for the different configurations may be preprogrammed into the remote communication devices 14 prior to use of the devices in the field and the appropriate set of values may be selected corresponding to the type of alarm system 10 being utilized.
Exemplary parameters for the identifiable components and/or patterns of identifiable components may include minimum and maximum pulse width parameters, minimum and maximum pulse gap parameters, maximum valid pulse gap, number of pulses, and success count. The pulse width parameters are used to define the widths of the pulses to be monitored. The pulse gap parameters define the minimum and maximum length of time intermediate adjacent pulses, and the maximum valid pulse gap corresponds to a length of time wherein a timeout occurs if no additional pulse is received after a previous pulse. In one embodiment, the processing circuitry 32 may perform a moving window analysis wherein a given number of correct pulses defined by the success count parameter are attempted to be located within a moving window of pulses defined by the number of pulses parameter. Additional details regarding monitoring of identifiable components in the form of pulses with respect to a predefined pattern of the pulses are described with respect to
Referring to
At a step S10, all counters are reset. Exemplary counters include a pulse_cnt counter corresponding to a number of pulses counted and a success_cnt counter corresponding to a number of pulses counted which meet respective values of the parameters.
At a step S12, a width of a first pulse from pulse shaper circuitry is detected and measured.
At a step S14, a pulse gap after the first pulse is measured.
At a step S16, it is determined whether the gap measured in step S14 exceeds a max_valid_gap parameter. This parameter may correspond to a timeout. If the condition is affirmative, the process returns to step S10 wherein the counters are reset. If the condition is negative, the process proceeds to step S18.
At step S18, pulse timing of a plurality of pulses outputted from the pulse shaper circuitry may be performed. The determined pulse timing may be used to select one of a plurality of sets of values for parameters to be monitored. For example, different sets of values may be predefined and used for different configurations of alarm system 10. In one embodiment, once the pulse timing is determined, the pulse timing may be used to select a respective appropriate set of values. Furthermore, at step S18, the pulse_cnt counter may be incremented corresponding to the pulse detected at step S12.
At a step S20, the width of the pulse detected at step S12 and the following gap are calculated and compared to the set of values for the respective pulse width and gap parameters. If the measurements are negative in view of the parameter values, the process proceeds to a step S24. If the measurements are positive (e.g., matching) in view of the parameter values, the process proceeds to a step S22.
At step S22, the success_cnt counter is incremented indicating detection of a pulse within the values of the parameters.
At a step S24, the subsequent pulse width and gap is measured and the pulse_cnt counter is incremented.
At a step S26, the pulse gap is again compared to the max_valid_gap parameter. If the condition of step S26 is affirmative, the process returns to step S10 indicating a timeout. If the condition of step S26 is negative, the process proceeds to a step S28.
At step S28, the measured pulse width and gap are compared with the selected values of the parameters. If the measurements are negative in view of the parameter values, the process proceeds to a step S32. If the measurements are positive in view of the parameter values, the process proceeds to a step S30.
At step S30, the success_cnt counter is incremented indicating detection of a pulse within the values of the parameters.
At a step S32, it is determined whether a desired number of pulses have been detected. In one example, the process waits until ten pulses have been detected. If the condition of step S32 is negative, the process returns to step S24. If the condition of step S32 is affirmative, the process proceeds to step S34.
At step S34, it is determined whether a desired number of successful pulses have been detected. In the above-described example monitoring ten pulses, the process at step S34 may monitor a condition for the presence of at least five of the ten pulses meeting the criteria specified by the selected values. Other criteria may be used for steps S32 and 34 in other embodiments. If the condition of step S34 is negative, the process returns to step S10 and no alarm is generated by remote communication device 14. If the condition of step S34 is affirmative, the process proceeds to step S36.
At step S36, the process has discriminated electromagnetic energy received via the remote communication device 14 as having been emitted from base communication device 12 from electromagnetic energy resulting from other sources. The discrimination indicates the presence of the remote communication device 14 in a secured area and the processing circuitry 32 can control the emission of an alarm signal.
At least some of the above-described exemplary embodiments provide an advantage of discrimination using the remote communication device 14 of communications of base communication device 12 from other spurious electromagnetic energy which may be emitted from other sources. Further, at least one embodiment of remote communication device 14 provides relatively very low signal strength signal detection, negligible impact to performance of tag 20 with respect to communications with base communication device 12, and relatively low power consumption.
Further, the alarm system 10 may have improved discrimination in the presence of cellular and cordless telephones and other sources of interference which may otherwise preclude reliable detection of signals form base communication device 12 for example in an electronic article surveillance system. Accordingly, the alarm system 10 according to one embodiment may have reduced susceptibility to false alarms caused by interference.
Referring to
In one embodiment, monitoring circuitry 50 reduces false alarms which may exist with certain kinds of spurious electromagnetic interference. The illustrated configuration of monitoring circuitry 50 is arranged to monitor for interference which may have a similar characteristic (e.g., time signature) to wireless communications generated by base communication device 12 (e.g., the signature used to identify communications of device 12) and which may cause a false alarm by remote communication device 14. For example, GSM phones transmit at substantially different frequencies of approximately 850-1900 MHz compared with one embodiment of wireless communications of system 10 at 8.2 MHz. However, transmitted signals of GSM phones may be sufficient to induce currents by radiation that trigger an embodiment of remote communication device 14. The triggering may be due to a similarity of the GSM interference with a possible signature of the wireless communications of base communication device 12.
In exemplary embodiments, monitoring circuitry 50 is tuned to a frequency of spurious electromagnetic energy (e.g., GSM interference) and is not tuned to the frequency band of wireless communications of base communication device 12. For example, in the depicted embodiment, monitoring circuitry 50 is tuned to receive and demodulate spurious electromagnetic energy (e.g., a GSM phone transmission or other high frequency interference signal for example) outside of the frequency band of communications of base communication device 12. In one embodiment, an antenna 52 of monitoring circuitry 50 may be tuned to a frequency band such as 100 MHz-5 GHz in configurations of alarm system 10 which use communications within a band of approximately 8.2 MHz.
An output node 54 of monitoring circuitry 50 may be coupled with processing circuitry 32. Processing circuitry 32 may process signals received from output node 54 with respect to respective signals received from conditioning circuitry 30. Processing circuitry 32 may analyze respective signals from circuitry 30, 50 which correspond to one another in time to determine whether output of conditioning circuitry 30 having an appropriate signature is responsive to communications of base communication device 12 or spurious electromagnetic energy. The output of monitoring circuitry 50 permits processing circuitry 32 to discriminate electrical signals received from conditioning circuitry 30 which result from communications of base communication device 12 from those which result from spurious electromagnetic energy in the illustrated configuration. As described further below, the processing circuitry 32 may perform the discrimination analysis based upon the output of monitoring circuitry 50.
The above described embodiment is configured such that monitoring circuitry 50 detects possible sources of spurious electromagnetic energy which may impact the operations of alarm system 10 yet rejects proper communications of base communication device 12. In an example implementation of alarm system 10 where spurious electromagnetic energy is present which may impact proper operation of alarm system 10, both receivers of conditioning circuitry 32 and monitoring circuitry 50 may indicate the presence of a signal which resembles communications of base communication device 12 (e.g., having a signature corresponding to communications of base communication device 12) but results from the spurious electromagnetic energy. However, during communications of base communication device 12 within a proper frequency band (e.g., 8.2 MHz), only conditioning circuitry 30 generating electrical signals which indicate the presence of the communications of base communication device 12 are generated and while monitoring circuitry 50 does not.
If the output electrical signals of the receivers of conditioning circuitry 30 and monitoring circuitry 50 are both active at a respective moment in time and with a respective time signature which resembles communications of base communication device 12, then the presence of spurious electromagnetic energy is indicated and processing circuitry 32 ignores the potential false alarm condition and does not control the generation of an alarm signal by alarm circuitry 36. If however, the output electrical signal from monitoring circuitry 50 is inactive yet the output electrical signal from conditioning circuitry 30 at the respective moment in time is active with a valid signature, then a potential alarm condition is due to a legitimate communication from base communication device 12 and processing circuitry 32 may control alarm circuitry 36 to emit an alarm signal. Furthermore, if an output electrical signal of the monitoring circuitry 50 is active and the respective output electrical signal of the conditioning circuitry 30 is not active, processing circuitry 32 does not control the emission of an alarm signal in the described embodiment.
Antenna 52 may be implemented as a separate dedicated piece of wire serving as a monopole antenna tuned to a frequency range of spurious electromagnetic energy to be monitored in one configuration. Also, in the depicted embodiment of
Due to the nature of unintentional injection of relatively very high frequencies (e.g., >100 MHz) in some implementations, it may be more straightforward to develop monitoring circuitry 50 that receives relatively very high frequencies yet rejects relatively strong levels of comparatively low 8.2 MHz signals. In some embodiments, it may be more difficult to design a receiver of conditioning circuitry 30 which receives relatively low frequency 8.2 MHz and is not susceptible to the relatively high levels of spurious electromagnetic energy which may be present (e.g., radio frequency energy of a GSM phone).
Referring to
Detector 40 includes D1, R2, C4, amplifier 42 includes comparator U1, and pulse shaper includes D2 in the depicted arrangement of
During operation, output of tag 20 due to resonation with electromagnetic energy is detected by a non-linear device comprising diode D1 in the depicted embodiment. More specifically, coupling capacitor C2 connects signals generated by tag 20 to the detector 40 while allowing for a DC shift which becomes the output signal. Diode D1 conducts in a forward biased direction when the RF signal received by tag 20 is negative thereby clamping the waveform to ground and is non-conducting when the RF signal is positive thereby developing a positive signal corresponding to the instantaneous value of the peak of the RF waveform (e.g., 8.2 MHz) generated by base communication device 12 for half of the wave cycle thereby providing a DC or slowly varying AC waveform that is proportional to the amplitude of the RF signal received by tag 20. The inclusion of a non-linear element D1 in the detector 40 improves the sensitivity of alarm device 22 of remote communication device 14. In one embodiment, the described diode D1 provides a non-linear relationship wherein current through diode D1 is clamped to ground during the negative half cycle and allowed to swing positive during the positive half cycle of received voltage corresponding to input signals received from tag 20 and an output signal is provided to C4 which is therefore proportional to the positive peak value of the received signal. The detected DC component signal is coupled by R2 and AC filtered by R2 and C4. C4 holds the value of the detected voltage. Accordingly, in one embodiment, C4 of detector 40 is configured to generate an envelope of the signal and generally resemble a square wave following the macro trend of the RF envelope of signals received from base communication device 12.
The provision of detector 40 comprising a non-linear detector through the use of diode D1 generates pulses having an absolute value relation to the signal received by the antenna circuit and applies the pulses to comparator U1 in one embodiment. Detector 40 has a non-linear transfer characteristic in the described embodiment where the input and output of the detector 40 have an absolute value relationship through the use of diode D1 in one embodiment.
The detector 40 described according to one embodiment provides increased sensitivity to wireless communications of base communication device 12 without the use of amplifiers operating at RF frequencies which otherwise may consume significant current and significantly reduce battery life.
The reference signal outputted by detector 40 is converted to a logic level by comparator U1 and associated components R3, R4, and R5 of amplifier 42. The logic level reference signal is provided to pulse shaper 44. D2 of pulse shaper 44 removes noise from the output of the comparator and provides relatively clean pulses for analysis by processing circuitry 32. D2 allows a fast fall time of the detected RF signal and a slower rise time of a prescribed rate as set by R6 and C5 which also operates to provide a degree of noise reduction.
A table of values of an exemplary configuration of conditioning circuitry 30 configured for use with tag 20 comprising a parallel LC resonant circuit having a solenoid wire wound inductor of 9.7 uH and a capacitor of 39 pF is provided as Table B. Other components may be used in other configurations and/or for use with other configurations of tags 20.
In compliance with the statute, the disclosure has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the disclosure is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Further, aspects herein have been presented for guidance in construction and/or operation of illustrative embodiments of the disclosure. Applicant(s) hereof consider these described illustrative embodiments to also include, disclose and describe further inventive aspects in addition to those explicitly disclosed. For example, the additional inventive aspects may include less, more and/or alternative features than those described in the illustrative embodiments. In more specific examples, Applicants consider the disclosure to include, disclose and describe methods which include less, more and/or alternative steps than those methods explicitly disclosed as well as apparatus which includes less, more and/or alternative structure than the explicitly disclosed apparatus.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/795,903, filed Apr. 28, 2006, entitled “Alarm Systems, Remote Communication Devices, And Article Security Methods”, and the teachings are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3493955 | Minasy | Feb 1970 | A |
4211995 | Smith | Jul 1980 | A |
4573042 | Boyd et al. | Feb 1986 | A |
4639713 | Kitagawa et al. | Jan 1987 | A |
4686513 | Farrar et al. | Aug 1987 | A |
4698620 | Marshall | Oct 1987 | A |
4746909 | Israel et al. | May 1988 | A |
4800369 | Gomi et al. | Jan 1989 | A |
4851815 | Enkelmann | Jul 1989 | A |
4853692 | Wolk et al. | Aug 1989 | A |
4878045 | Tanaka et al. | Oct 1989 | A |
4881672 | Gustafson | Nov 1989 | A |
4980671 | McCurdy | Dec 1990 | A |
5005125 | Farrar et al. | Apr 1991 | A |
5068643 | Yoshina | Nov 1991 | A |
5072213 | Close | Dec 1991 | A |
5182543 | Siegel et al. | Jan 1993 | A |
5245317 | Chidley et al. | Sep 1993 | A |
5367289 | Baro et al. | Nov 1994 | A |
5570080 | Inoue et al. | Oct 1996 | A |
5589819 | Takeda | Dec 1996 | A |
5610587 | Fujiuchi et al. | Mar 1997 | A |
5640144 | Russo et al. | Jun 1997 | A |
5656998 | Fujiuchi et al. | Aug 1997 | A |
5764147 | Sasagawa et al. | Jun 1998 | A |
5767773 | Fujiuchi et al. | Jun 1998 | A |
5793290 | Eagleson et al. | Aug 1998 | A |
5808548 | Sasagawa et al. | Sep 1998 | A |
5838234 | Roulleaux-Robin | Nov 1998 | A |
5864290 | Toyomi et al. | Jan 1999 | A |
5955951 | Wischerop et al. | Sep 1999 | A |
5982283 | Matsudaira et al. | Nov 1999 | A |
6020819 | Fujiuchi et al. | Feb 2000 | A |
6037879 | Tuttle | Mar 2000 | A |
6043744 | Matsudaira | Mar 2000 | A |
6104285 | Stobbe | Aug 2000 | A |
6118367 | Ishii | Sep 2000 | A |
6137414 | Federman | Oct 2000 | A |
6144299 | Cole | Nov 2000 | A |
6255951 | De La Huerga | Jul 2001 | B1 |
6304181 | Matsudaira | Oct 2001 | B1 |
6339377 | Naka et al. | Jan 2002 | B1 |
6346886 | De La Huerga | Feb 2002 | B1 |
6420971 | Leck et al. | Jul 2002 | B1 |
6433689 | Hovind et al. | Aug 2002 | B1 |
6474117 | Okuno | Nov 2002 | B2 |
6512457 | Irizarry et al. | Jan 2003 | B2 |
6531961 | Matsudaira | Mar 2003 | B2 |
6535130 | Nguyen et al. | Mar 2003 | B2 |
6961000 | Chung | Nov 2005 | B2 |
7102509 | Anders et al. | Sep 2006 | B1 |
Number | Date | Country |
---|---|---|
8279082 | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20080174430 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60795903 | Apr 2006 | US |