Alcoholic beverage composition containing Bacillus coagulans

Information

  • Patent Grant
  • 11332702
  • Patent Number
    11,332,702
  • Date Filed
    Thursday, September 20, 2018
    5 years ago
  • Date Issued
    Tuesday, May 17, 2022
    2 years ago
Abstract
A probiotic-alcoholic beverage composition comprising Bacillus coagulans is disclosed herein wherein the said spore or vegetative cell of Bacillus coagulans exhibited high recovery, tolerability, compatibility and viability of spores and vegetative cells after brewing. Methods for brewing an alcoholic beverage composition comprising Bacillus coagulans wherein said spore or bacterium is added during pre-fermentation, during fermentation and post fermentation stages are also disclosed.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a PCT filing claiming priority from Indian provisional patent application number IN201741033477 filed on Sep. 21, 2017.


FIELD OF INVENTION

The invention in general relates to probiotics. More specifically the invention relates to alcoholic beverage compositions comprising probiotic bacterium Bacillus coagulans and the method of brewing said alcoholic beverage.


DESCRIPTION OF PRIOR ART

Probiotics offer a wide range of health benefits. They are administered as a dietary supplement for the effective management of various diseases like gastrointestinal infections, inflammatory bowel disease, acute and chronic diarrhoea, constipation, abnormal intestinal fermentation, dysbiosis, functional abdominal pain, lactose intolerance, allergies, urogenital infections, cystic fibrosis, metabolic disorders, various cancers, reduction of antibiotic side effects, in oral health such as prevention of dental caries, periodontal diseases and oral malodour, maintenance of a good intestinal environment and balancing the intestinal flora by reducing harmful bacteria (Goldin BR (1998) Health benefits of probiotics, The British Journal of Nutrition 80(4):S203-7; Singh et al., (2013) Role of probiotics in health and disease: a review, JPMA. The Journal of the Pakistan Medical Association, 63(2):253-25).


Consuming alcohol on the pretext of socializing, relaxing and enjoying is on the rise, even with the knowledge that consuming excess alcohol has side effects on the health. Alcohol affects the gut by disturbing intestinal absorption of nutrients including several important vitamins. Studies also report that alcohol significantly modulates the mucosal immune system of the gut (Bode et al., (2003) Effect of alcohol consumption on the gut, Best Practice & Research Clinical Gastroenterology; 17(4):575-592). Alcohol consumption also modifies the gut microflora thereby neutralizing the beneficial effects, the gut microbes provide to the overall health (Bob Roehr, 2016, Drinking Causes Gut Microbe Imbalance Linked to Liver Disease, The Scientific American, scientificamerican.com/article/drinking-causes-gut-microbe-imbalance-linked-to-liver-disease/, accessed 10 Sep. 2018).


There have been many efforts on reversing the effect of alcohol on the gut microflora. Probiotic supplementation has been found to be effective in restoring bowel flora and improving live enzymes in alcohol induced liver damage and hepatotoxicity (Kirpich et al. (2008) Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study, Alcohol; 42(8):675-682). A Beer, with probiotics present within was also developed to ward off the harmful effects on beer consumption in the gut flora (SG 10201702468S, PROBIOTIC SOUR BEER). However, developing a alcoholic drink with live probiotics is a difficult task since the presence of acidic conditions hinder the growth and survival of the probiotics. The property of the probiotic, in sustaining the harmful conditions also plays a major role in developing an alcoholic beverage containing probiotics. There still exists an unmet industrial need to find a suitable probiotic strain for the development of an alcoholic beverage containing probiotics. The present invention solves the above problem by disclosing an alcoholic beverage composition containing Bacillus coagulans, with increased recovery, tolerability, compatibility and viability of spores and vegetative cells of probiotic bacteria Bacillus coagulans and the method of brewing the same.


It is the principle objective of the invention to disclose an alcoholic beverage composition containing probiotic bacteria Bacillus coagulans.


It is another objective of the invention to disclose a method of brewing an alcoholic beverage composition containing probiotic bacteria Bacillus coagulans.


The present invention solves the above objective and provides further related advantages.


SUMMARY OF THE INVENTION

The present invention discloses an alcoholic beverage composition comprising Bacillus coagulans in the form of spores or bacterium wherein said spore or bacterium exhibit high recovery, tolerability, compatibility and viability of spores and vegetative cells after brewing. The invention also discloses a method of brewing an alcoholic beverage composition comprising Bacillus coagulans wherein said spore or bacterium is added prior to fermentation, during fermentation and post fermentation.


Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying images, which illustrate, by way of example, the principle of the invention.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of malting while brewing the beverage.



FIG. 1b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of malting while brewing the beverage.



FIG. 2a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of Hops addition while brewing the beverage.



FIG. 2b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of Hops addition while brewing the beverage.



FIG. 3a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of fermentation while brewing the beverage.



FIG. 3b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of fermentation while brewing the beverage.



FIG. 4a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of secondary fermentation while brewing the beverage.



FIG. 4b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of secondary fermentation while brewing the beverage.



FIG. 5a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of carbonation while brewing the beverage.



FIG. 5b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of carbonation while brewing the beverage.



FIG. 6a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of packing and pasteurization while brewing the beverage.



FIG. 6b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage, added during the step of packing and pasteurization while brewing the beverage.



FIG. 7a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage at 25° C., added during the step of packing and pasteurization followed by carbonation while brewing the beverage.



FIG. 7b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage at 25° C., added during the step of packing and pasteurization followed by carbonation while brewing the beverage.



FIG. 5a is the graphical representation showing the stability of probiotic bacteria Bacillus coagulans in alcoholic beverage at 40° C., added during the step of packing and pasteurization followed by carbonation while brewing the beverage.



FIG. 8b is the graphical representation showing percentage viability of probiotic bacteria Bacillus coagulans in alcoholic beverage at 40° C., added during the step of packing and pasteurization followed by carbonation while brewing the beverage.



FIG. 9 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the stage of malting.



FIG. 10 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the stage of hops addition.



FIG. 11 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans during the fermentation stage.



FIG. 12 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans during the secondary fermentation stage.



FIG. 13 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the step of carbonation.



FIG. 14 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the step of packing and pasteurization.



FIG. 15 is a flow chart describing the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the step of packing and pasteurization.





DESCRIPTION OF PREFERRED EMBODIMENTS

In a most preferred embodiment, the invention discloses an alcoholic beverage composition comprising Bacillus coagulans in the form of spores or bacterium wherein said spore or bacterium exhibit high recovery, tolerability, compatibility and viability of spores and vegetative cells after brewing. In a related embodiment, the alcoholic beverage is fermented and distilled. In another related embodiment, the alcoholic beverage is carbonated and non-carbonated.


In yet another related embodiment, the fermented alcoholic beverage is selected from the group consisting of, but not limited to, Beer, Ale, Barleywine, Bitter ale, Brown ale, Cask ale, Mild ale, Old ale, Pale ale, Scotch ale, Porter, Stout, Stock ale, Fruit beer, Beer, Lager, Pale lager, Bock, Maerzen/Oktoberfest Beer, Pilsener, Schwarzbier, Sahti, Small beer, Wheat beer, Witbier, Cauim, Chicha, Cider, Perry, Plum jerkum, Desi daru, Huangjiu, Icariine Liquor, Kasiri, Kilju, Kumis, Mead, Nihamanchi, Palm wine, Parakari, Pulque, Sakurá, Sake, Sonti, Tepache, Tiswin, Tonto, Wine, Fortified wine, Port, Madeira, Marsala, Sherry, Vermouth Vinsanto, Fruit wine, Table wine, Sangria, Sparkling wine, Champagne.


In another related embodiment, the distilled alcoholic beverage is selected from the group consisting of, but not limited to, Spirits, Absinthe, Akvavit, Applejack, Arak, Arrack, Awamori, Baijiu, Boroviçka, Brandy, Armagnac, Cognac. Fruit brandy, Eau-de-vie (French), Schnapps—Obstwasser (German), Damassine, Himbeergeist, Kirsch, Poire Williams, Williamine, Cachaça, Gin, Damson gin, Sloe gin, Horilka, Kaoliang, Maotai, Metaxa, Mezcal, Neutral grain spirit, Ogogoro, Ouzo, Palinka, Pisco, Poitin, Rakt, Rakia, Slivovitz, Rum, Shochu, Singani, Soju, Tequila, Tuic{hacek over (a)}, Vodka, Whisky, Bourbon whiskey, Canadian whisky, Irish whiskey, Japanese whisky, ManX Spirit, Rye whiskey, Scotch whisky, Tennessee whiskey, Liqueurs


The another embodiment the alcohol content of the beverage composition is between 1% to 43%.


In an embodiment the Bacillus coagulans strain is preferably Bacillus coagulans MTCC 5856, and strains derived from Bacillus coagulans ATCC 31248 and Bacillus coagulans ATCC 7050. In another related aspect, the Bacillus coagulans live spores/vegetative cells are present in the alcoholic beverages at a concentration of 1×106 to 1×1012 cfu.


In another preferred embodiment, the composition containing alcoholic beverage and Bacillus coagulans is used for therapeutic management of diseases selected from the group consisting of, but not limited to, like gastrointestinal infections, inflammatory bowel disease, acute and chronic diarrhoea, constipation, abnormal intestinal fermentation, dysbiosis, functional abdominal pain, lactose intolerance, allergies, urogenital infections, cystic fibrosis, metabolic disorders, various cancers, reduction of antibiotic side effects, in oral health such as prevention of dental caries, periodontal diseases and oral malodour, maintenance of a good intestinal environment and balancing the intestinal flora by reducing harmful bacteria.


In another preferred embodiment, the invention discloses a method of brewing alcoholic beverage with Bacillus coagulans, said method comprising steps of

    • a) Malting
    • b) Mashing
    • c) Filtration
    • d) Kettle boiling
    • e) Hops addition
    • f) Cooling
    • g) Fermentation with yeast
    • h) Ageing and clarification
    • i) Secondary fermentation
    • j) Carbonation/No carbonation
    • k) Pasteurization and Packing


In a related aspect, the Bacillus coagulans spores/vegetative cells are added during pre-fermentation, fermentation and post fermentation stages. In another related aspect, the Bacillus coagulans spores/vegetative cells are added during pre-fermentation stage at step a). In another related aspect, the Bacillus coagulans spores/vegetative cells are added during pre-fermentation stage at step e). In another related aspect, the Bacillus coagulans spores/vegetative cells are added during fermentation stage at step g). In another related aspect, the Bacillus coagulans spores/vegetative cells are added during secondary fermentation stage at step i). In another related aspect, the Bacillus coagulans spores/vegetative cells are added during post fermentation stage at step j). In another related aspect, the Bacillus coagulans spores/vegetative cells are added during post fermentation stage at step k).


In yet another related aspect, the alcoholic beverage is pasteurized at 60° C. after step i), followed by carbonation/no carbonation step after the addition of Bacillus coagulans spores.


In another related aspect, the Bacillus coagulans spores/vegetative cells exhibited increased viability and stability throughout the fermentation process.


The specific examples included herein below illustrate the aforesaid most preferred embodiments of the present invention


Example 1: Alcoholic Beverage Composition Containing Probiotic Bacteria Bacillus coagulans

Methods: Beer samples were procured from local market manufactured by Kingfisher and whisky from McDowell's No. 1. The alcohol content in the Mild lager, Lager, and strong Beer was 3.345%, 3.48% and 4.81% respectively. In whisky the alcohol content was 42.8%. Bacillus coagulans MTCC 5856 (Commercially sold as LactoSpore®—from Sabinsa Corporation, NJ, USA) was added to the Beer (Mild lager, Lager, and strong Beer) and Whisky. Beer samples were carbonated and packed in 120 ml container and subjected for stability studies as per the guidelines of International Council for Harmonisation (ICH guidelines Q1A (R2) (ICH 2003). Description of the samples was done based on Visual and organoleptic methods. Specific gravity and pH was determined as per the United State Pharmacopoeia chapter USP<841> and <791> respectively. Other Aerobic micro-organism count was tested as per modified USP <61> method. Yeasts and molds count, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella spp. were tested as per USP method chapter <61> and <62>. Enterobacteriaceae test as per USP chapter <2021> and Coliforms as per BAM, Chapter 4 was performed.


Table 1 and Table 2 discloses the Recovery and Tolerability of Bacillus coagulans MTCC 5856 spores in alcoholic beverages determined by standard pour plate method.









TABLE 1







Recovery and Tolerability of Bacillus coagulans MTCC 5856 spores in


alcoholic beverages determined by standard pour plate method.












Beer (strong lager)
Beer (Mild lager) with
Beer (lager) with B.
Whisky with B.



with B. coagulans

B. coagulans MTCC


coagulans MTCC


coagulans MTCC




MTCC 5856
5856
5856
5856
















Log10
Viability
Log10
Viability
Log10
Viability
Log10
Viability


Time
CFU/serving
(%)
CFU/serving
(%)
CFU/serving
(%)
CFU/serving
(%)


















Expected
9.544
100
9.544
100
9.544
100
9.544
100


Recovery

















Non-carbonated















After 24 h
8.992
94.22
8.968
93.97
8.851
92.75
9.041
94.73









Carbonated















After 24 h
8.877
93.01
8.895
93.21
8.884
93.09
ND
ND





Serving size for Beer is 650 ml and for Whisky it is 100 ml.


ND, Not Done













TABLE 2







Recovery and Tolerability of Bacillus coagulans MTCC 5856 spores in


alcoholic beverages determined by Flow Cytometry method












Beer (strong lager)
Beer (Mild lager) with
Beer (lager) with B.
Whisky with B.



with B. coagulans

B. coagulans MTCC


coagulans MTCC


coagulans MTCC




MTCC 5856
5856
5856
5856
















Log10
Viability
Log10
Viability
Log10
Viability
Log10
Viability


Time
CFU/serving
(%)
CFU/serving
(%)
CFU/serving
(%)
CFU/serving
(%)


















Expected
9.544
100
9.544
100
9.544
100
9.544
100


Recovery

















Non-carbonated















After 24 h
9.389
98.37
8.845
92.67
8.792
92.12
8.698
91.13









Carbonated















After 24 h
8.845
92.67
8.812
92.33
9.133
95.69
ND
ND





Serving size for Beer is 650 ml and for Whisky it is 100 ml.


ND, Not Done






Stability Studies at Room temperature (25±2° C., 60%±5% Relative humidity) and accelerated conditions (40±20 C, 65%±5% Relative humidity) were also performed in to determine the stability of the probiotic composition in different alcoholic beverages. The tables 3-10 describe the stability studies of the alcoholic beverage containing probiotic bacteria Bacillus coagulans MTCC 5856.









TABLE 3







Probiotic-Mild Lager BEER stability studies at 40 ± 2° C., 65% ± 5%


Relative humidity.











Period of Testing (month)














S. No.
Tests performed
Initial
1
2
3
6
Limit





1.
Description
Complies
Complies
Complies
Complies
Complies
Pale









brown









liquid


2.
Specific gravity
1.0082
1.0083
1.0084
1.0081
1.0085
Record


3.
pH
3.86
3.84
3.81
3.82
3.79
Record


4.
Alcohol content
3.34%
3.31%
3.39%
3.37%
3.38%
Record



by GC








5.
Other Aerobic
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
Record



micro-organism









count








6.
Yeasts and molds
Complies
Complies
Complies
Complies
Complies
NMT100



count





cfu/g


7.
Enterobacteriaceae
Complies
Complies
Complies
Complies
Complies
NMT100









cfu/g


8.
Coliforms
Complies
Complies
Complies
Complies
Complies
NMT10









cfu/g


9.
Pathogens
Complies
Complies
Complies
Complies
Complies
Absent



(Escherichia coli,





in 10 g




Staphylococcus











aureus,











Pseudomonas











aeruginosa,











Salmonella spp.)

















TABLE 4







Probiotic-Lager BEER stability studies at 40 ± 2° C., 65% ± 5%


Relative humidity.











Period of Testing (month)














S. No.
Tests performed
Initial
1
2
3
6
Limit





1.
Description
Complies
Complies
Complies
Complies
Complies
Pale









brown









liquid


2.
Specific gravity
1.0072
1.0073
1.0074
1.0071
1.0075
Record


3.
pH
3.93
3.91
3.89
3.88
3.86
Record


4.
Alcohol content
3.48%
3.42%
3.41%
3.49%
3.44%
Record



by GC








5.
Other Aerobic
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml



micro-organism









count








6.
Yeasts and molds
Complies
Complies
Complies
Compiles
Complies
NMT100



count





cfu/g


7.
Enterobacteriacea
Complies
Compiles
Compiles
Compiles
Complies
NMT100









cfu/g


8.
Conforms
Complies
Complies
Complies
Complies
Complies
NMT10









cfu/g


9.
Pathogens
Complies
Complies
Complies
Complies
Complies
Absent



(Escherichia coli,





in 10 g




Staphylococcus











aureus,











Pseudomonas











aeruginosa,











Salmonella spp.)

















TABLE 5







Probiotic-Strong Lager BEER stability studies at 40 ± 2° C., 65% ± 5%


Relative humidity.











Period of Testing (month)














S. No.
Tests performed
Initial
1
2
3
6
Limit





1.
Description
Complies
Complies
Complies
Complies
Complies
Pale









brown









liquid


2.
Specific gravity
1.0071
1.0069
1.0072
1.0073
1.0074
Record


3.
pH
3.91
3.89
3.88
3.86
3.85
Record


4.
Alcohol content
4.81%
4.85%
4.89%
4.82%
4.79%
Record



by GC








5.
Other Aerobic
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
Record



micro-organism









count








6.
Yeasts and molds
Complies
Complies
Complies
Complies
Complies
NMT100



count





cfu/g


7.
Enterobacteriaceae
Complies
Complies
Complies
Complies
Complies
NMT100









cfu/g


8.
Coliforms
Complies
Complies
Complies
Complies
Complies
NMT10









cfu/g


9.
Pathogens
Complies
Complies
Complies
Complies
Complies
Absent



(Escherichia coli,





in 10 g




Staphylococcus











aureus,











Pseudomonas











aeruginosa,











Salmonella spp.)

















TABLE 6







Probiotic-Whisky stability studies at 40 ± 2° C., 65% ± 5% Relative


humidity.











Period of Testing (month)














S. No.
Tests performed
Initial
1
2
3
6
Limit





1.
Description
Complies
Complies
Complies
Complies
Complies
Pale









brown









liquid


2.
Specific gravity
0.9452
0.9425
0.9450
0.9451
0.9451
Record


3.
pH
6.21
5.79
5.62
5.51

Record


4.
Alcohol content by
42.8%
42.88%
42.58%
42.17%
42.67%
Record



GC








5.
Other Aerobic
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
<100 cfu/ml
Record



micro-organism









count








6.
Yeasts and molds
Complies
Complies
Complies
Complies
Complies
NMT100



count





cfu/g


7.
Enterobacteriaceae
Complies
Complies
Complies
Complies
Complies
NMT100









cfu/g


8.
Coliforms
Complies
Complies
Complies
Complies
Complies
NMT10









cfu/g


9.
Pathogens
Complies
Complies
Complies
Complies
Complies
Absent in



(Escherichia coli,





10 g




Staphylococcus











aureus,











Pseudomonas











aeruginosa,











Salmonella spp,)

















TABLE 7







Probiotic-Mild Lager BEER stability studies at 25 ± 2° C., 60% ± 5%


Relative humidity.









S.

Period of Testing (month)












No.
Tests performed
Initial
3
6
Limit





1.
Description
Complies
Complies
Complies
Pale brown







liquid


2.
Specific gravity
  1.0081
  1.0083
  1.0086
Record


3.
pH
  3.86
  3.85
  3.74
Record


4.
Alcohol content
  3.34%
  3.37%
  3.38%
Record



by GC






5.
Other Aerobic
<100
<100
<100
Record



micro-
cfu/ml
cfu/ml
cfu/ml




organism count






6.
Yeasts and
Complies
Complies
Complies
NMT100



molds count



cfu/g


7.

Enterobacteriaceae

Complies
Complies
Complies
NMT100







cfu/g


8.
Coliforms
Complies
Complies
Complies
 NMT10







cfu/g


9.
Pathogens
Complies
Complies
Complies
Absent in



(Escherichia



10 g




coli,









Staphylococcus









aureus,









Pseudomonas









aeruginosa,









Salmonella








spp.)
















TABLE 8







Probiotic-Lager BEER stability studies at 25 ± 2° C., 60% ± 5%


Relative humidity.









S.

Period of Testing (month)












No.
Tests performed
Initial
1
6
Limit





1.
Description
Complies
Complies
Complies
Pale brown







liquid


2.
Specific gravity
  1.0073
  1.0071
  1.0074
Record


3.
pH
  3.93
  3.95
  3.82
Record


4
Alcohol content
  3.48%
  3.45%
  3.47%
Record



by GC






5.
Other Aerobic
<100
<100
<100
Record



micro-
cfu/ml
cfu/ml
cfu/ml




organism count






6.
Yeasts and
Complies
Complies
Complies
NMT100



molds count



cfu/g


7.

Enterobacteriaceae

Complies
Complies
Complies
NMT100







cfu/g


8.
Coliforms
Complies
Complies
Complies
 NMT10







cfu/g


9.
Pathogens
Complies
Complies
Complies
Absent



(Escherichia



in 10 g




coli,









Staphylococcus









aureus,









Pseudomonas









aeruginosa,









Salmonella








spp.)
















TABLE 9







Probiotic-Strong Lager BEER stability studies at 25 ± 2° C.,


60% ± 5% Relative humidity.









S.

Period of Testing (month)












No.
Tests performed
Initial
3
6
Limit





1.
Description
Complies
Complies
Complies
Pale brown







liquid


2.
Specific gravity
  1.0075
  1.0064
  1.0077
Record


3.
pH
  3.91
  3.85
  3.81
Record


4.
Alcohol
  4.81%
  4.87%
  4.75%
Record



content by GC






5.
Other Aerobic
<100
<100
<100
Record



micro-
cfu/ml
cfu/ml
cfu/ml




organism count






6.
Yeasts and
Complies
Complies
Complies
NMT100



molds count



cfu/g


7.

Enterobacteriaceae

Complies
Complies
Complies
NMT100







cfu/g


8.
Coliforms
Complies
Complies
Complies
NMT10







cfu/g


9.
Pathogens
Complies
Complies
Complies
Absent



(Escherichia



in 10 g




coli,









Staphylococcus









aureus,









Pseudomonas









aeruginosa,









Salmonella








spp.)
















TABLE 10







Probiotic-Whisky (Batch: FT/WHL/02) stability studies at 25 ± 2° C.,


60% ± 5% Relative humidity.









S.

Period of Testing (month)












No.
Tests performed
Initial
3
6
Limit





1.
Description
Complies
Complies
Complies
Pale brown







liquid


2.
Specific gravity
  0.9453
  0.9455
  0.9457
Record


3.
pH
  6.21
  5.57
  5.48
Record


4.
Alcohol content
 42.8%
 42.27%
 42.84%
Record



by GC






5.
Other Aerobic
<100
<100
<100
Record



micro-
cfu/ml
cfu/ml
cfu/ml




organism count






6.
Yeasts and
Complies
Complies
Complies
NMT100



molds count



cfu/ml


7.

Enterobacteriaceae

Complies
Complies
Complies
NMT100







cfu/ml


8.
Coliforms
Complies
Complies
Complies
NMT10







cfu/ml


9.
Pathogens
Complies
Complies
Complies
Absent



(Escherichia



in 10 g




coli,









Staphylococcus









aureus,









Pseudomonas









aeruginosa,









Salmonella








spp.)









Results of the stability studies of alcoholic beverages (beer and whisky) suggested that inclusion of probiotic strain B. coagulans MTCC 5856 did not affect the Specific gravity, pH and Alcohol content suggesting its compatibility and stability when stored at room temperature (25±2° C., 60%±5% Relative humidity) and accelerated conditions (40±2° C., 65%±5% Relative humidity).


Further, there was no significant change in the microbial parameter was observed suggesting that probiotic alcoholic beverage did not alter the microbial profile.


Example 2: Methods of Brewing Alcoholic Beverage with Probiotic

The different methods for brewing alcoholic beverage by adding probiotic bacterial Bacillus coagulans is disclosed herewith.


Method 1: Addition of Bacillus coagulans in Pre-Fermentation Stage


The flow chart in FIG. 9 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the stage of malting


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability (FIG. 1a) and viability (FIG. 1b) when added at the stage of malting.


Method 2: Addition of Bacillus coagulans in Pre-Fermentation Stage at the Stage of Hops Addition


The flow chart in FIG. 10 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the stage of hops addition


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability (FIG. 2a) and viability (FIG. 2b) when added at the stage of Hops addition


Method 3: Addition of Bacillus coagulans During Fermentation


The flow chart in FIG. 1 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans during the fermentation stage


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability (FIG. 3a) and viability (FIG. 3b) when added during the fermentation stage.


Method 4: Addition of Bacillus coagulans During Secondary Fermentation


The flow chart in FIG. 12 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans during the secondary fermentation stage


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability (FIG. 4a) and viability (FIG. 4b) when added during the secondary fermentation stage.


Method 5: Addition of Bacillus coagulans During Post Fermentation Stage at the Step of Carbonation


The flow chart in FIG. 13 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the step of carbonation


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability (FIG. 5a) and viability (FIG. 5b) when added during the post fermentation stage of carbonation.


Method 6: Addition of Bacillus coagulans During Post Fermentation Stage at the Step of Packing and Pasteurization


The flow chart in FIG. 14 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the step of packing and pasteurization


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability (FIG. 6a) and viability (FIG. 6b) when added during the post fermentation stage of packing and pasteurization.


Method 7: Addition of Bacillus coagulans During Post Fermentation Stage


The flow chart in FIG. 15 describes the method of brewing alcoholic beverage by the addition of Bacillus coagulans at the step of packing and pasteurization


The stability and viability of Bacillus coagulans spore/vegetative cells were tested. The results indicated that Bacillus coagulans showed increased stability at 25° C. (FIG. 7a) and 40° C. (FIG. 8a) and viability at 25° C. (FIG. 7b) and 40° C. (FIG. 8b) when added during the post fermentation stage.


The above results indicate that the Bacillus coagulans is stable and viable during the entire fermentation process and is the first go-to-probiotic to be added along with alcoholic beverages.


The deposit of biological material Bacillus coagulans SBC37-0l bearing accession number MTCC 5856, mentioned in the instant application has been made on 19 Sep. 2013 at Microbial Type Culture Collection & Gene Bank (MTCC), CSTR-Institute of Microbial Technology, Sector 39-A, Chandigarh—160036, India.


While the invention has been described with reference to a preferred embodiment, it is to be clearly understood by those skilled in the art that the invention is not limited thereto. Rather, the scope of the invention is to be interpreted only in conjunction with the appended claims.

Claims
  • 1. An alcoholic beverage composition comprising probiotic bacteria Bacillus coagulans MTCC 5856 in the form of spores wherein said spores exhibit high recovery, tolerability, compatibility and viability after brewing.
  • 2. The alcoholic beverage composition comprising Bacillus coagulans MTCC 5856 as in claim 1, wherein the alcoholic beverage is selected from the group consisting of Beer, and whisky.
  • 3. The composition of claim 1, wherein the alcohol content is between 1% to 43%.
  • 4. The composition of claim 1, wherein the Bacillus coagulans live spores are present in the alcoholic beverages at a concentration of 1×106 to 1×1012.
Priority Claims (1)
Number Date Country Kind
201741033477 Sep 2017 IN national
US Referenced Citations (5)
Number Name Date Kind
4251632 Chen Feb 1981 A
8568743 Farmer Oct 2013 B2
9579352 Majeed Feb 2017 B2
10287641 Olofsson May 2019 B2
10306908 Segawa Jun 2019 B2
Foreign Referenced Citations (1)
Number Date Country
2018182512 Oct 2018 WO
Non-Patent Literature Citations (12)
Entry
Rizk et al. “The Use of Ethanol for the Selective Isolation of Bacillus Strains Originating from Spores”. Zentralbl. Mikrobiol. 144 (1989), 123-128.
Guidelines for the evaluation of probiotics in food, Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, Apr. 30 and May 1, 2002, section 3.1.
Indian Council of Medical Research/Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi), ICMR-DBT Guidelines for Evaluation of Probiotics in Food, 2011), Section 2, Subsection 2.3).
Singh et al., (2013) Role of probiotics in health and disease: a review, JPMA, The Journal of the Pakistan Medical Association, 63(2):253-25).
Bode et al.,(2003) Effect of alcohol consumption on the gut, Best Practice & Research Clinical Gastroenterology; 17(4):575-592).
Bob Roehr et al. 2016, Drinking Causes Gut Microbe Imbalance Linked to Liver Disease, The Scientific American, https://www.scientificamerican.com/article/drinking-causes-gut-microbe-imbalance-linked-to-liver-disease/.
Kirpich et al. (2008) Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study; Alcohol; 42(8):675-682).
Mannu et al. (2003) International Journal of Food Microbiology 88 (2003) 291-304.
Guidelines for the evaluation of probiotics in food, Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, Apr. 30 and May 1, 2002.
Indian Council of Medical Research/Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi), ICMR-DBT Guidelines for Evaluation of Probiotics in Food, 2011).
ProDURA® Bacillus coagulans Demonstrates Superior Heat Resistance, Dr. Jayne Stratton, Research Professor at the University of Nebraska's Food Processing Center, Feb. 2013. https://earthnutri.com/pages/produra%C2%AE.
Philippe Marteau, Evidence of Probiotic Strain Specificity Makes Extrapolation of Results Impossible From a Strain to Another, Even From the Same Species, Annals of Gastroenterology & Hepatology, 2011.
Related Publications (1)
Number Date Country
20190085277 A1 Mar 2019 US