Aldehyde-amine formulations and method for making and using same

Information

  • Patent Grant
  • 8093431
  • Patent Number
    8,093,431
  • Date Filed
    Monday, February 2, 2009
    15 years ago
  • Date Issued
    Tuesday, January 10, 2012
    12 years ago
Abstract
A novel method for producing amine-aldehyde sulfur scavenging compositions are disclosed, where the method comprises contacting an amine containing component and a aldehyde containing component in the presence of an alcohol at an amine to aldehyde ratio of between about 0.8 and 0.45 for a reaction time and at a reaction temperatures sufficient to produce an amine-aldehyde adduct product having a specific gravity between about 3% and 7% less than the specific gravity of a mixture of starting materials.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of this invention relates to a novel and dependable process for preparing effective aldehyde-amine products, e.g., certain embodiments being formaldehyde-amine products, usable as noxious sulfur scavengers.


More particularly, embodiments of this invention relates to a novel and dependable process for preparing effective aldehyde-amine products, e.g., certain embodiments being formaldehyde-amine products, usable as noxious sulfur scavengers, where the process efficiently produces aldehyde-amine adduct products that do not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, in the case of formaldehyde-amine adducts, are substantially or completely formaldehyde free (no detectable formaldehyde), are cost effective, and are non-foaming. The lack of solids reduces the plugging of production equipment or the plugging of pipe lines, which is not only undesirable, but can also be hazardous.


2. Description of the Related Art


In prior art, stepwise addition of formaldehyde to desired moles of amine has been taught in U.S. Pat. No. 5,030,762 and references cited therein. Sterically hindered amines have also been employed in U.S. Pat. No. 4,112,052. Aldehyde adducts of polymers like polyacylamide are described in U.S. Pat. No. 4,230,608; polyimines in U.S. Pat. No. 5,128,049, direct use of trithianes are additional examples of alternative teachings available in prior art.


Even though many aldehyde-amine and formaldehyde-amine adducts have been disclosed, many of these adducts form solids or gels, especially when exposed to fluids or gases containing noxious sulfur containing species, contain free formaldehyde or generate free formaldehyde upon exposure to fluids or gases containing noxious sulfur containing species, when formaldehyde is the aldehyde, form foams, and are cost ineffective. Thus, there is a need in the art for an effective process for preparing commercially effective aldehyde-amine adduct products that are formaldehyde free, when formaldehyde is the aldehyde, efficient, non-foaming, and non-solid forming and/or gel forming.


SUMMARY OF THE INVENTION

Embodiments of this invention provides a new process for the preparation of aldehyde-amine adduct products that is reproducible, producing a unique and effective aldehyde-amine products. The method utilizes an amine to aldehyde ratio of approximately 1:2 (or 0.5) reacted in the presence of an alcohol at a temperature and for a time sufficient to produce an aldehyde-amine product having a specific gravity so that the product has a scavenging activity greater than a scavenging activity of a composition prepared using a higher or lower amine to formaldehyde ratio. In certain embodiment, the ratio is between about 0.8 and about 0.45. In certain embodiments, the scavenging activity at least one fold higher than a product prepared with a higher or lower amine to aldehyde ratio.


Embodiments of this invention provides a new process for the preparation of formaldehyde-amine adduct products that is reproducible, producing a unique and effective formylated product. The method utilizes an amine to formaldehyde ratio of approximately 1:2 in the presence of an alcohol at a temperature and for a time sufficient to achieve a desired specific gravity, where the formylated products have scavenging activities nearly threefold higher than compositions prepared using a higher amine to formaldehyde ratio. i.e., ratios greater than about 0.5. In certain embodiment, the ratio is between about 0.8 and about 0.45.


Embodiments of this invention provides a formaldehyde-amine adduct or formylated product prepared by the reaction of an amine and formaldehyde at a ratio of about 1:2 in the presence of an alcohol at a temperature and for a time sufficient to achieve a desired specific gravity. In certain embodiment, the ratio is between about 0.8 and about 0.45.


Embodiments of this invention provides a method for reducing noxious sulfur containing fluids or gases comprising adding an effective aldehyde-amine adduct product, certain embodiments a formaldehyde-amine adduct product, prepared by the reaction of an amine and formaldehyde at a ratio of about 1:2 in the presence of an alcohol at a temperature and for a time sufficient to produce a product having a specific gravity and characterized by having a higher scavenging activity compared to a product produced with a higher or lower amine to aldehyde ratio to the fluid or gases, where the effective amount is sufficient to reduce the amount of noxious sulfur containing components in the fluid or gas. In certain embodiment, the ratio is between about 0.8 and about 0.45. Usage is dependent on operation conditions (e.g., crude composition, level of H2S, temperature, flow rate or the like); however, about 3.5 moles of the gas is completely removed per liter of the adduct under laboratory screening conditions.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to the following detailed description together with the appended illustrative drawings in which like elements are numbered the same:



FIGS. 1A-F depict GC/MS chromatograms of formylated product prepared at different mole ratios and different temperatures.



FIGS. 2A-D depict GC/MS chromatograms of formylated product prepared at different reaction times.



FIG. 3 depicts a plot of specific gravity versus reaction time.



FIGS. 4A-F depict GC/MS chromatograms of aliquots of the formylated product of FIG. 3 taken at specific reaction times.



FIG. 5 depicts a plot of sulfur (H2S) scavenging versus time.





DETAILED DESCRIPTION OF THE INVENTION

The inventors have found that formulations of aldehyde-amine adducts can be prepared with optimal sour gas scavenging capacity. The inventors have also found a reproducible process for manufacturing the formulations. The inventors have also found that specific gravity can be used to control the manufacturing process. The inventors have also found that the addition of alcohols during the amine-formaldehyde reaction mixtures give rise to alcoholic adducts which cooperate in the scavenging propensity of the formulations of this invention. The products are characterized in that the specific gravity of the product be between 3% and 7% less than the specific gravity of the true mixture of starting materials and that the reaction time is less than about 12 hours. In certain embodiments, the products are characterized in that the specific gravity of the product be between 4% and 6% less than the specific gravity of the true mixture starting materials. Additionally, the adducts are characterized by having a number ofpeaks in their GC/MS chromatogram between about 16 minutes and about 31 minutes. In other embodiments, the adducts are characterized by a sharp peak and trailing shoulder in its GC/MS chromatogram appearing at between about 21 minutes and about 31 minutes for a dibutyl amine/formaldehyde product. The process efficiently produces aldehyde-amine adduct products that do not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, in the case of formaldehyde-amine adducts, are substantially or completely formaldehyde free (no detectable formaldehyde), are cost effective, and are non-foaming. The lack of solids reduces the plugging of production equipment or the plugging of pipe lines, which is not only undesirable, but can also be hazardous. The term substantially means that the amount of detectable formaldehyde is below the acceptable levels set by governmental agencies.


A new process for the preparation of aldehyde-amine adduct products has been developed. The process is reproducible, producing a unique and effective formulation. Surprisingly, an amine to aldehyde ratio of approximately 1:2 was established as optimal. In prior art teaching, alcohol has been added as a reaction solvent and/or to help stabilize reaction product. However, alcohol present during the amine-aldehyde reaction was found to result in the formation of highly effective adduct formulations. Scavenging capacity test results were surprisingly impressive with activities in certain embodiments nearly threefold those of prior art or current commercial formulations. Thus, adduct products produced with greater amine to aldehyde ratios >0.5 or lower amine to aldehyde ratios <0.5 give inferior products. In certain embodiment, the inventors have found amine to aldehyde ratios between about 0.8 and about 0.45. In other embodiments, the inventors have found amine to aldehyde ratios between about 0.75 and 0.45. The process efficiently produces aldehyde-amine adduct products that do not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, in the case of formaldehyde-amine adducts, are substantially or completely formaldehyde free (no detectable formaldehyde), are cost effective, and are non-foaming. The lack of solids reduces the plugging of production equipment or the plugging of pipe lines, which is not only undesirable, but can also be hazardous. In certain embodiments, the reaction time is between about 5 and about 12 hours. In other embodiments, the reaction time is between about 8 and about 12 hours. In other embodiments, the reaction time is between about 9 and about 12 hours. In other embodiments, the reaction time is between about 9.5 and 12 hours.


Embodiments of this invention broadly relates to a new process for the preparation of formaldehyde-amine adduct products that is reproducible, producing a unique and effective formulation, using an amine to aldehyde (e.g., formaldehyde) ratio of approximately 1:2 in the presence of an alcohol at a temperature and for a time sufficient to achieve a desired specific gravity, where the formulation has a higher scavenging activity than compositions prepared with higher or lower ratios. In certain embodiments, the formulations of this invention can be nearly threefold higher than compositions prepared using a higher or lower amine to formaldehyde ratios. In certain embodiment, the inventors have found amine to aldehyde ratios between about 0.8 and about 0.45. In other embodiments, the inventors have found amine to aldehyde ratios between about 0.75 and 0.45. The process efficiently produces aldehyde-amine adduct products that do not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, in the case of formaldehyde-amine adducts, are substantially or completely formaldehyde free (no detectable formaldehyde), are cost effective, and are non-foaming.


Embodiments of this invention also broadly relates to a formaldehyde-amine adduct product prepared by the reaction of an amine and formaldehyde at a ratio of about 1:2 in the presence of an alcohol at a temperature and for a time sufficient to achieve a desired specific gravity, where the formulation has a higher scavenging activity than compositions prepared with higher or lower ratios. In certain embodiment, the inventors have found amine to aldehyde ratios between about 0.8 and about 0.45. In other embodiments, the inventors have found amine to aldehyde ratios between about 0.75 and 0.45. The aldehyde-amine adduct products do not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, in the case of formaldehyde-amine adducts, are substantially or completely formaldehyde free (no detectable formaldehyde), are cost effective, and are non-foaming.


Embodiments of this invention also broadly relates to a method for reducing noxious sulfur containing of fluids or gases comprising adding an effective a formaldehyde-amine adduct product prepared by the reaction of an amine and formaldehyde at a ratio of about 1:2 in the presence of an alcohol at a temperature and for a time sufficient to achieve a desired specific gravity, where the formulation has a higher scavenging activity than compositions prepared with higher or lower ratios, to the fluid or gases, where the effective amount is sufficient to reduce the amount of noxious sulfur containing components in the fluid or gas. In certain embodiment, the inventors have found amine to aldehyde ratios between about 0.8 and about 0.45. In other embodiments, the inventors have found amine to aldehyde ratios between about 0.75 and 0.45. The aldehyde-amine adduct products do not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, in the case of formaldehyde-amine adducts, are substantially or completely formaldehyde free (no detectable formaldehyde), are cost effective, and are non-foaming.


Result & Discussion


I. Chemistry


I.1. Reagents


In the current practice, for an amine: formaldehyde adduct product, an amine to formaldehyde molar equivalent ratio of 1:1.33 (0.75:1) is used to prepare a formylated N,N-dibutylamine (DBA) product. This product is currently sold as Sulfa Clear 8849 or WFT 9809 available from Weatherford International of Houston, Tex., USA. Table 1 tabulates data on two current formulations of this formylated N,N-dibutylamine (DBA) product. Paraformaldehyde is the formaldehyde (FM) source used in these formylation process examples.









TABLE 1







Reagents and Equivalents













Quantity



Molar


Description
(lb)
FW
Moles
Mol Eq.
Ratio










Formula 1












N,N-Dibutyl amine
68.02
129
0.527
0.383
0.751


Paraformaldehyde
21.06
30
0.702
0.510
1


n-Butyl alcohol
10.92
74
0.148
0.107



100

1.377
1.000







Formula 2












N,N-Dibutyl amine, bulk
76.36
129
0.592

0.751


Paraformaldehyde
23.64
30
0.788

1



100

1.380


n-Butyl alcohol
12.26
74
0.166



112.26

1.546









Starting with the current reagent formula as set forth in Table 1, the inventors varied the DBA to FM ratio and varied the reaction temperature in the presence or absence of n-butanol (BT) to determine whether a repeatable method and a reproducible product could be designed to overcome the problems associated with the current product and its manufacturing.


I.1.a. N,N-Dibutylamine to Paraformaldehyde Ratio


N,N-Dibutylamine (DBA) to paraformaldehyde (FM) molar ratios of 1:1, 1:2, 1:2.5, 1:3,2:1, 1.5:2 were studied in preparations of formylated adducts and tested for H2S scavenging capacity. The scavenging capacity for each formulation (in terms of breakthrough time in minutes) of resultant reaction products were tested and the results are tabulated in Table2 including initial observations.









TABLE 2







Formylation with Various Molar Ratios of Reagents










[DBA]1
[FM]2
Effectiveness,



Mol
Mol
Min3
Comment












Control
57
Commercial Product.










2
1
40



1
1
75


1
2
112 
Efficiency is 100%. Standard





formulation


1
2
86
n-Butanol added ONLY after





formylation


1
2.5
Not Applicable
Significant amount of unreacted





FM seen


1
3
Not Applicable
Significant amount of unreacted





FM seen


2
1
52
Reacted at reflux, HT





(high temperature)






1[DBA]: Concentration of N,N-dibutylamine, DBA.




2[FM]: Concentration of formaldehyde, FM.




3Corrected







From the results tabulated in Table 2, a DBA to FM ratio of 1:2 produced a formulation with the highest effective H2S scavenging capacity. Next, process conditions were optimized to reproducibly produce products with the same and/or better scavenging capacity or effectiveness than found in current products or products prepared with different amine-aldehyde mole ratios.


I.1.b. Reaction with and without n-Butanol


The inventors also found that adding an alcohol such as n-butanol at the onset of reaction rather than after the reaction produced products having scavenging capacities higher than products prepared in the absence of alcohol. In the former, a breakthrough time of 112 minutes was achieved; whereas in the latter, a breakthrough time of 86 minutes was achieved as tabulated in Table 2. In addition to acting as an adduct stabilizing solvent, in prior art, addition of alcohol is known to yield ether-amine adducts. However, the beneficial effect of such amine derivatives has not been taught to the best of our knowledge. Therefore, in certain embodiments, an alcohol such as n-butanol is present during the reaction to yield adducts that are believed to include amine-aldehyde (e.g., amine-formaldehyde) adducts and amine-aldehyde-alcohol (e.g., amine-formaldehyde-alcohol) adducts.


I.2. Temperature


The amine-aldehyde reaction is known to be temperature dependent, but is not the only variable to effect resulting product composition and properties. For instance, choice of catalyst was also found to have an effect on product composition and properties. Catalysts can be acids or bases. The inventors have found that the nature and concentration of catalyst have been explored in preparing target molecules or fortuitously found to produce unique derivatives. Linear or cyclic (Calixarenes) products of phenol-formaldehyde reactions are representative of cases well know in the art. As depicted in Table 2, the inventors have found that derivatives formed in high temperature reactions (e.g., 4 h reflux) is more active (52 min) than derivatives formed at lower temperature (e.g., 40 min, ˜86° C.). Still, reaction temperature is beneficial to some point. However, when the temperature is raised too high, derivatives had poorer performance.


I.3. Suitable Reagents


Suitable sources of formaldehyde include, without limitation, 37% formaldehyde in water, paraformaldehyde, formaldehyde donors, or mixtures or combinations thereof.


Suitable alcohols include, without limitation, linear or branched alcohols having from one to 20 carbon atoms, where one or more carbon atoms can be replaced by one or more hetero atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur or mixture or combinations thereof and where one or more of the hydrogen atoms can be replaced by one or more single valence atoms selected from the group consisting of fluorine, chlorine, bromine, iodine or mixtures or combinations thereof. The oxygen replacements can be in the form of ether moieties; the nitrogen replacements can be in the form of tertiary amine or amide moieties.


Suitable amine for use in this invention include, without limitation, primary amines, secondary amines or mixtures or combinations thereof. Exemplary amines include, without limitation, R1R2NH, where R1 and R2 are hydrogen atoms or carbyl groups, where R1 and R2 cannot both be hydrogen. The carbyl groups are groups having between 1 and 20 carbon atoms where one or more carbon atoms can be replaced by one or more hetero atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur or mixture or combinations thereof and where one or more of the hydrogen atoms can be replaced by one or more single valence atoms selected from the group consisting of fluorine, chlorine, bromine, iodine or mixtures or combinations thereof. The oxygen replacements can be in the form of ether moieties; the nitrogen replacements can be in the form of tertiary amine or amide moieties.


Noxious sulfur species include, without limitation, all sulfur containing compounds that cause gas or oil to be sour. Exemplary examples including hydrogen sulfide (H2S), low molecular weight thiols (RSH, where R is a carbyl groups having between 1 and about 6 carbon atoms or equivalents thereof). Sulfur scavengers react with these sulfur species to form high molecular weight sulfur containing compounds having reduced volatility and reduced harmful properties toward metals and other downstream equipment, e.g., pipelines, separators, strippers, refinery equipment, etc.


II. Process Development


Understanding reaction progress and when to halt reaction is of considerable economic importance and the ability to reproducibly manufacture a product is equally important. To gain insight into the progression of formylation of N,N-dibutylamine (DBA), a representative example of an amine-aldehyde adduct sulfur scavenger, the process was monitored and a quality control method was developed on the basis of changes observed in physical properties during the reaction.


II.1. Reaction Progress


Upon the realization that different formylated products are obtainable overtime and at different reaction temperatures, attempts were made to monitor reaction progress using chromatography. A GC/MS method was chosen for the analysis of liquid formylation products. Referring now to FIGS. 1A-F, GC/MS chromatograms of: (a) a commercial sample designated Sulfa Clear 8849 FIG. 1A, (b) a 1 to 1 amine to formaldehyde ratio product designated I FIG. 1B, (c)a 2 to 1 amine to formaldehyde ratio product designated II FIG. 1C, (d) a 2 to 1 amine to formaldehyde ratio product prepared at high temperature designated III FIG. 1D, (e) a 1 to 2 amine to formaldehyde product, the standard formulation, designated IV FIG. 1E, and (f) a 1 to 2 amine to formaldehyde ratio product prepared without n-butanol designated V FIG. 1F. These product formulations are included in Table 2. It is apparent from the chromatograms that the product distribution changes with changes in reactant ratio, with changes in temperature and in the presence or absence of alcohol.


Using the chromatogram as a reference, aliquots of various reactions at scheduled times were probed. Consequently, optimum temperature, reaction time and target formulation were established for a 1 to 2 amine to formaldehyde product. Referring to FIGS. 2A-D, GC/MS chromatograms of: (a) the standard formulation run for 7.5 hours FIG. 2A, (b) the standard formulation run for 9.5 hours FIG. 2B, (c) the standard formulation run for 11.5 hours FIG. 2C, and (d)the standard formulation run for 13.5 hours FIG. 2D. The time chromatograms show that at time of about 11.5 hours appears optimal. The range for optimal product is fairly tightly established between about 9.5 hours and about 12 hours, with times of 13.5 hours being detrimental to final product properties.


Albeit, running a GC/MS in the course of a reaction process for the prime purpose of proper reaction termination point is risky. The risk here is associated with transformation of a desirable formulation into an undesirable formulation (referred to as “excessive transformation” as shown in FIG. 2A).


II.2. Quality Control


In order to minimize the risk of losing a reaction batch because of “excessive reaction” (FIG. 2A), a shorter and dependable alternative means of monitoring reaction progress including quality of resultant formylated product was developed to replace or supplement the use of GC/MS. Specific gravities of the products tabulated in Table 2 were found to be appreciably different. Specific gravity (SG) appeared to be product specific regardless of reaction time and to some extent regardless of average reaction temperature.


II.3. Specific Gravity


Specific gravity was tested as a product quality control metric by measuring the specific gravity of aliquots withdrawn from the reaction at time intervals between 30 min or 1 h after all the paraformaldehyde had dissolved or the optimal reaction temperature of between about 86° C. and about 96° C. (about 170° F. and about 200° F.) was attained. The resulting measured specific gravities are tabulated in Table 3.









TABLE 3







Formulations and Corresponding Specific Gravity Values











[DBA]1
[FM]2

Effectiveness,



Mol
Mol
Sample ID
Min
Specific Gravity













Control
Sulfa Clear 8849
57
0.806











1
1
I
75
0.824


2
1
II
40
0.806


2
1
III
86
0.796


1
2
IV
112
0.829






1[DBA]: Concentration of N,N-Dibutylamine, DBA.




2[FM]: Concentration of Formaldehyde, FM.




3Corrected







Then, a reaction of the 1:2 ratio formaldehyde product was carried out, with aliquots of the reaction at different reaction times were withdrawn and their corresponding specific gravity (SG) and GC/MS chromatograms were recorded. The specific gravity data are tabulated in Table 4 and graphed in FIG. 3. Representative chromatograms for selected entries of the aliquots tabulated in Table 4 are shown in FIGS. 4A-F as compared to the standard product IV as shown in FIG. 1E.









TABLE 4







Specific Gravity versus Reaction Time












Sample ID
Time (min)
Specific Gravity
SG/QC
















1
60
0.87049
0.8705



2
70
0.86929
0.8693



3
100
0.86546
0.8655



4
133
0.86207
0.8621



5
165
0.86026
0.8603



6
194
0.85835 (FIG. 4A)
0.8584



7
220
0.85648 (FIG. 4B)
0.8565



8
254
0.85283 (FIG. 4C)
0.8528



9
285
0.85021 (FIG. 4D)
0.8502



10 
290
0.84885 (FIG. 4E)
0.8489



11 

0.84993 (FIG. 4F)
0.8489



IV

0.8290 (FIG. 1E)
0.8290










SG and sulfur scavenging effectiveness data for pilot plant runs and the timed run 1 compared to the top performing formulation VI and the standard formulation IV are tabulated in Table 5). The data demonstrated conclusively that specific gravity is a dependable method for following the reaction and for quality control of resultant product.


In light of the 100% efficiency of the standard formula, IV, a SG of between 0.8280 and 0.8600 is a metric for producing product embodiments with generally optimized scavenging activities. The inventors have found that SG is an ideal primary QC standard or measure, while in certain embodiments, MS/GC represents a secondary QC measure, where the desirable products show a primary sharp peak with a trailing shoulder at about 26 minutes in the MS/CG chromatogram.









TABLE 5







Specific Gravities and Corresponding H2S Scavenging


Capacity of Formulations











Sample ID
Effectiveness, Min1
Specific Gravity







IV
112
0.8290



11
137
0.8488



VI
147
0.8477



SA08060810
127
0.8456



SA08060811
135
0.8432








1Corrected








IV. Pilot Plant Glass Reactor Unit Process


To a 55 gallon reactor, add paraformaldehyde (76.71 lb), N,N-dibutyl amine (166 lb) and n-butanol (29.74 lb). Upon agitation, initial reaction temperature reached about 65° C. Then, reaction temperature was gradually raised to 90° C. and maintained at a temperature between about 90° C. and about 92° C. with intermittent cooling/heating as needed. Pressure was also maintained under 50 psi by venting reactor to scrubber. Samples were collected at 30 min interval and corresponding specific gravity (SG) and density determined. Reaction was stopped when SG of adduct measured 0.8422 and 1.3 times more effective scavenging capacity than the standard, IV (see lot samples SA09080804 and SA09080805 in FIG. 5). Of importance is the ability of the adducts to completely remove the noxious gas as evidenced by the flat trend exhibited by the samples as depicted in FIG. 5 and yet with neither the formation of solids nor foams.


All references cited herein are incorporated by reference. Although the invention has been disclosed with reference to its preferred embodiments, from reading this description those of skill in the art may appreciate changes and modification that may be made which do not depart from the scope and spirit of the invention as described above and claimed hereafter.

Claims
  • 1. A method for preparing amine-aldehyde adduct products comprising: contacting an amine containing component and an aldehyde containing component in the presence of an alcohol at an amine to aldehyde ratio of between about 0.8 and 0.45 for a reaction time and at a reaction temperatures sufficient to produce an amine-aldehyde adduct product having a specific gravity between about 3% and 7% less than the specific gravity of a mixture of starting materials, where the amine comprises compounds of the general formula R1R2NH, where R1 and R2 are hydrogen atoms or carbyl groups, where R1 and R2 groups are not both a hydrogen atom and the carbyl groups have between 1 and 20 carbon atoms where one or more carbon atoms can be replaced by one or more hetero atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur or mixture or combinations thereof and where one or more of the hydrogen atoms can be replaced by one or more single valence atoms selected from the group consisting of fluorine, chlorine, bromine, iodine or mixtures or combinations thereof and the alcohol comprises a linear or branched alcohol having from one to 20 carbon atoms, where one or more carbon atoms can be replaced by one or more hetero atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur or mixture or combinations thereof and where one or more of the hydrogen atoms can be replaced by one or more single valence atoms selected from the group consisting of fluorine, chlorine, bromine, iodine or mixtures or combinations thereof.
  • 2. The method of claim 1, wherein the specific gravity between about 4% and 6% less than the specific gravity of the mixture of starting materials.
  • 3. The method of claim 1, wherein the reaction time is between about 5 hours and about 12 hours.
  • 4. The method of claim 1, wherein the reaction time is between about 9.5 hours and about 12 hours.
  • 5. The method of claim 1, wherein the reaction temperature is between about 85° C. and about 95° C.
  • 6. The method of claim 1, wherein the time is between about 5 hours and about 12 hours and the reaction temperature is between about 85° C. and about 95° C.
  • 7. The method of claim 1, wherein the time is between about 9.5 hours and about 12 hours and the reaction temperature is between about 85° C. and about 95° C.
  • 8. The method of claim 1, wherein the product has a pH between about 6.2 and about 9.0.
  • 9. The method of claim 1, wherein the aldehyde comprises formaldehyde.
  • 10. The method of claim 9, wherein the reaction time is less than 13.5 hours.
  • 11. The method of claim 9, wherein the amine comprises dibutyl amine.
  • 12. The method of claim 11, wherein the specific gravity of the product is between 0.828 and 0.860.
  • 13. The method of claim 11, wherein the reaction time is less than 13.5 hours, provided the specific gravity is between 0.828 and 0.860 and the reaction temperature is between about 85° C. and about 95° C.
  • 14. The method of claim 1, the product does not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, and in the case of formaldehyde-amine, adduct products, the products have no detectable formaldehyde and are non-foaming.
  • 15. The method of claim 1, wherein the product has a sulfur scavenging activity at least one fold greater than a composition prepared with an amine to aldehyde ratio greater than or less than the ratio between about 0.8 and about 0.45.
  • 16. The method of claim 1, wherein the ratio is about 0.5.
  • 17. The method of claim 16, wherein the product has a sulfur scavenging activity at least one fold greater than a composition prepared with an amine to aldehyde ratio greater than or less than the ratio of about 0.5.
  • 18. An amine-aldehyde adduct composition comprising a reaction product of an amine containing component and an aldehyde containing component prepared in the presence of an alcohol at an amine to aldehyde ratio of between about 0.8 and 0.45 for a reaction time and at a reaction temperatures sufficient to produce an amine-aldehyde adduct product having a specific gravity between about 3% and 7% less than the specific gravity of a true mixture of starting materials, where the amine comprises compounds of the general formula R1R2NH, where R1 and R2 are hydrogen atoms or carbyl groups, where R1 and R2 group are not both a hydrogen atom and the carbyl groups have between 1 and 20 carbon atoms where one or more carbon atoms can be replaced by one or more hetero atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur or mixture or combinations thereof and where one or more of the hydrogen atoms can be replaced by one or more single valence atoms selected from the group consisting of fluorine, chlorine, bromine, iodine or mixtures or combinations thereof and the alcohol comprises a linear or branched alcohol having from one to 20 carbon atoms, where one or more carbon atoms can be replaced by one or more hetero atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur or mixture or combinations thereof and where one or more of the hydrogen atoms can be replaced by one or more single valence atoms selected from the group consisting of fluorine, chlorine, bromine, iodine or mixtures or combinations thereof.
  • 19. The composition of claim 18, wherein the specific gravity between about 4% and 6% less than the specific gravity of the mixture of starting materials.
  • 20. The composition of claim 18, wherein the reaction time is between about 5 hours and about 12 hours.
  • 21. The composition of claim 18, wherein the reaction time is between about 9.5 hours and about 12 hours.
  • 22. The composition of claim 18, wherein the reaction temperature is between about 85° C. and about 95° C.
  • 23. The composition of claim 18, wherein the neat composition has a pH between about 6.2 and about 9.0.
  • 24. The method of claim 1, wherein the aldehyde comprises formaldehyde.
  • 25. The method of claim 9, wherein the amine comprises dibutyl amine.
  • 26. The method of claim 25, wherein the specific gravity of the product is between 0.828 and 0.860.
  • 27. The method of claim 25, wherein the reaction time is less than 13.5 hours, provided the specific gravity is between 0.828 and 0.860 and the reaction temperature is between about 85° C. and about 95° C.
  • 28. The composition of claim 18, the product does not form solids or gels upon exposure to fluids or gases containing noxious sulfur species, and in the case of formaldehyde-amine, adduct products, the products have no detectable formaldehyde and are non-foaming.
  • 29. The composition of claim 18, wherein the composition has a sulfur scavenging activity at least one fold greater than a composition prepared with an amine to aldehyde ratio greater than or less than the ratio between about 0.8 and about 0.45.
  • 30. The composition of claim 18, wherein the ratio is about 0.5.
  • 31. The composition of claim 18, wherein the composition has a sulfur scavenging activity at least one fold greater than a composition prepared with an amine to aldehyde ratio greater than or less than the ratio of about 0.5.
US Referenced Citations (155)
Number Name Date Kind
2196042 Timpson Apr 1940 A
2390153 Kern Dec 1945 A
3059909 Wise Oct 1962 A
3163219 Wyant et al. Dec 1964 A
3301723 Chrisp Jan 1967 A
3301848 Halleck Jan 1967 A
3303896 Tillotson et al. Feb 1967 A
3317430 Priestley et al. May 1967 A
3565176 Wittenwyler Feb 1971 A
3856921 Shrier et al. Dec 1974 A
3888312 Tiner et al. Jun 1975 A
3933205 Kiel Jan 1976 A
3937283 Blauer et al. Feb 1976 A
3960736 Free et al. Jun 1976 A
3965982 Medlin Jun 1976 A
3990978 Hill Nov 1976 A
4007792 Meister Feb 1977 A
4052159 Fuerst et al. Oct 1977 A
4067389 Savins Jan 1978 A
4108782 Thompson Aug 1978 A
4112050 Sartori et al. Sep 1978 A
4112051 Sartori et al. Sep 1978 A
4112052 Sartori et al. Sep 1978 A
4113631 Thompson Sep 1978 A
4378845 Medlin et al. Apr 1983 A
4461716 Barbarin et al. Jul 1984 A
4479041 Fenwick et al. Oct 1984 A
4506734 Nolte Mar 1985 A
4514309 Wadhwa Apr 1985 A
4541935 Constien et al. Sep 1985 A
4549608 Stowe et al. Oct 1985 A
4561985 Glass, Jr. Dec 1985 A
4623021 Stowe Nov 1986 A
4654266 Kachnik Mar 1987 A
4657081 Hodge Apr 1987 A
4660643 Perkins Apr 1987 A
4683068 Kucera Jul 1987 A
4686052 Baranet et al. Aug 1987 A
4695389 Kubala Sep 1987 A
4705113 Perkins Nov 1987 A
4714115 Uhri Dec 1987 A
4718490 Uhri Jan 1988 A
4724905 Uhri Feb 1988 A
4725372 Teot et al. Feb 1988 A
4739834 Peiffer et al. Apr 1988 A
4741401 Walles et al. May 1988 A
4748011 Baize May 1988 A
4779680 Sydansk Oct 1988 A
4795574 Syrinek et al. Jan 1989 A
4817717 Jennings, Jr. et al. Apr 1989 A
4830106 Uhri May 1989 A
4846277 Khalil et al. Jul 1989 A
4848468 Hazlett et al. Jul 1989 A
4852650 Jennings, Jr. et al. Aug 1989 A
4869322 Vogt, Jr. et al. Sep 1989 A
4892147 Jennings, Jr. et al. Jan 1990 A
4926940 Stromswold May 1990 A
4938286 Jennings, Jr. Jul 1990 A
4978512 Dillon Dec 1990 A
5005645 Jennings, Jr. et al. Apr 1991 A
5024276 Borchardt Jun 1991 A
5030762 Brake Jul 1991 A
5067556 Fudono et al. Nov 1991 A
5074359 Schmidt Dec 1991 A
5074991 Weers Dec 1991 A
5082579 Dawson Jan 1992 A
5106518 Cooney et al. Apr 1992 A
5110486 Manalastas et al. May 1992 A
5169411 Weers Dec 1992 A
5224546 Smith et al. Jul 1993 A
5228510 Jennings, Jr. et al. Jul 1993 A
5246073 Sandiford et al. Sep 1993 A
5259455 Nimerick et al. Nov 1993 A
5330005 Card et al. Jul 1994 A
5342530 Aften et al. Aug 1994 A
5347004 Rivers et al. Sep 1994 A
5363919 Jennings, Jr. Nov 1994 A
5402846 Jennings, Jr. et al. Apr 1995 A
5411091 Jennings, Jr. May 1995 A
5424284 Patel et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5462721 Pounds et al. Oct 1995 A
5465792 Dawson et al. Nov 1995 A
5472049 Chaffe et al. Dec 1995 A
5482116 El-Rabaa et al. Jan 1996 A
5488083 Kinsey, III et al. Jan 1996 A
5497831 Hainey et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5551516 Norman et al. Sep 1996 A
5624886 Dawson et al. Apr 1997 A
5635458 Lee et al. Jun 1997 A
5649596 Jones et al. Jul 1997 A
5669447 Walker et al. Sep 1997 A
5674377 Sullivan, III et al. Oct 1997 A
5688478 Pounds et al. Nov 1997 A
5693837 Smith et al. Dec 1997 A
5711396 Joerg et al. Jan 1998 A
5722490 Ebinger Mar 1998 A
5744024 Sullivan, III et al. Apr 1998 A
5755286 Ebinger May 1998 A
5775425 Weaver et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5806597 Tjon-Joe-Pin et al. Sep 1998 A
5807812 Smith et al. Sep 1998 A
5833000 Weaver et al. Nov 1998 A
5853048 Weaver et al. Dec 1998 A
5871049 Weaver et al. Feb 1999 A
5877127 Card et al. Mar 1999 A
5908073 Nguyen et al. Jun 1999 A
5908814 Patel et al. Jun 1999 A
5964295 Brown et al. Oct 1999 A
5979557 Card et al. Nov 1999 A
5980845 Cherry Nov 1999 A
6016871 Burts, Jr. Jan 2000 A
6035936 Whalen Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6054417 Graham et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6060436 Snyder et al. May 2000 A
6069118 Hinkel et al. May 2000 A
6123394 Jeffrey Sep 2000 A
6133205 Jones Oct 2000 A
6147034 Jones et al. Nov 2000 A
6162449 Maier et al. Dec 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6228812 Dawson et al. May 2001 B1
6247543 Patel et al. Jun 2001 B1
6267938 Warrender et al. Jul 2001 B1
6283212 Hinkel et al. Sep 2001 B1
6291405 Lee et al. Sep 2001 B1
6330916 Rickards et al. Dec 2001 B1
6725931 Nguyen et al. Apr 2004 B2
6756345 Pakulski et al. Jun 2004 B2
6793018 Dawson et al. Sep 2004 B2
6832650 Nguyen et al. Dec 2004 B2
6875728 Gupta et al. Apr 2005 B2
7140433 Gatlin et al. Nov 2006 B2
7268100 Kippie et al. Sep 2007 B2
7350579 Gatlin et al. Apr 2008 B2
20020049256 Bergeron, Jr. Apr 2002 A1
20020165308 Kinniard et al. Nov 2002 A1
20030220204 Baran, Jr. et al. Nov 2003 A1
20050045330 Nguyen et al. Mar 2005 A1
20050092489 Welton et al. May 2005 A1
20050137114 Gatlin et al. Jun 2005 A1
20050153846 Gatlin Jul 2005 A1
20050250666 Gatlin et al. Nov 2005 A1
20060194700 Gatlin et al. Aug 2006 A1
20070032693 Gatlin et al. Feb 2007 A1
20070129257 Kippie et al. Jun 2007 A1
20070131425 Gatlin et al. Jun 2007 A1
20070173413 Lukocs et al. Jul 2007 A1
20070173414 Wilson, Jr. Jul 2007 A1
20080039345 Kippie et al. Feb 2008 A1
Foreign Referenced Citations (13)
Number Date Country
2007965 Aug 1990 CA
2125513 Jan 1995 CA
4027300 Mar 1992 DE
0730018 Sep 1996 EP
775376 May 1957 GB
816337 Jul 1959 GB
1073338 Jun 1967 GB
08151422 Jun 1996 JP
10001461 Jan 1998 JP
10110115 Apr 1998 JP
2005194148 Jul 2005 JP
WO 9819774 May 1998 WO
WO 9856497 Dec 1998 WO
Related Publications (1)
Number Date Country
20100197968 A1 Aug 2010 US