Kotter et al. “Algebraic soft-decision decoding of Reed-Solomon codes; IEEE, International Symposium on Information Theory, pp 61, Jun. 30, 2000”.* |
D. Augot and L, Pecquet, “A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 46, pp. 2605-2614, Nov. 2000. |
L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, Mar. 1974. |
E.R. Berlekamp, “Bounded distance +1 soft-decision Reed-Solomon decoding,” IEEE Trans. Inform. Theory, vol. 42, pp. 704-721, May 1996. |
D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform. Theory, vol. 18, pp. 170-182, Jan. 1972. |
A.B. Cooper, III, “Soft-decision decoding of Reed-Solomon codes,” pp. 108-124, in S.B. Wicker and V.K. Bhargava, Editors, Reed-Solomon Codes and their Applications, New York: IEEE Press, 1994. |
G.D. Forney, Jr., “Generalized minimum distance decoding,” IEEE Trans. Inform. Theory, vol. 12, pp. 125-131, Apr. 1966. |
M.P.C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inform. Theory, vol. 41, pp. 1379-1396, Sep. 1995; also correction, vol. 42, p. 328, Jan. 1996. |
V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 1755-1764, Sep. 1999. |
V. Guruswami and M. Sudan, “On representations of algebraic-geometric codes for list decoding,” IEEE Trans. Inform. Theory, submitted for publication, Apr. 1999. |
R. Kötter, “Fast generalized minimum distance decoding of algebraic geometric and Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 721-738, May 1996. |
J.L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inform. Theory, vol. 15, pp. 122-127, Jan. 1969. |
R.R. Nielsen and T. Hoholdt, “Decoding Reed-Solomon codes beyond half the minimum distance,” preprint, 1998; see also http://www.student.dtu.dk/˜p938546. |
R.R. Nielsen, “Decoding concatenated codes with Sudan's algorithm,” IEEE Trans. Inform. Theory, submitted for publication, May 2000. |
V. Olshevsky and A. Shokrollahi, “A displacement structure approach to efficient decoding of Reed-Solomon and algebraic-geometric codes,” in Proceedings 31th ACM Symp. Theory of Computing (STOC), pp. 235-244, Atlanta, GA., May 1999. |
X-W. Wu and P.H. Siegel, “Efficient list decoding of algebraic-geometric codes beyond the error correction bound,” IEEE Trans. Inform. Theory, submitted May 2000. |
S. Ray-Chaudhuri and A.H. Chan, “Bit-level parallel decoding of Reed-Solomon codes,” in Proc. 31th Allerton Conf. Comm., Contr., and Computing, Monticello, IL., Sep. 1993. |
R.M. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes beyond half the minimum distance,” IEEE Trans. Inform. Theory, vol. 46, pp. 246-258, Jan. 2000. |
M.A. Shokrollahi and H. Wasserman, “List decoding of algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 432-437, Mar. 1999. |
U. Sorger, “A new Reed-Solomon decoding algorithm based on Newton's interpolation,” IEEE Trans. Inform. Theory, vol. 39, pp. 358-365, Mar. 1993. |
M. Sudan, “Decoding of Reed-Solomon codes beyond the error correction bound,” J. Complexity, vol. 12, pp. 180-193, 1997. |
A. Vardy and Y. Be′ery, “Bit-level soft-decision decoding of Reed-Solomon codes,” IEEE Trans. Commun., vol. 39, pp. 440-445, Mar. 1991. |