The invention relates to the installation of building siding, and more particularly to insulation board and processes related to installing the insulation.
Houses in America often have their exterior walls clad with siding to protect the predominately wooden construction from the elements. Vinyl siding has become particularly popular over the last several decades as it is inexpensive, relatively easy to clean and relatively durable. However, in recent years, fiber cement siding has begun to replace vinyl siding. Fiber cement is a product made of sand, cement and cellulose. As a siding material, fiber cement has advantages over both wood and vinyl in that it is rot resistant, termite resistant and non-combustible. Because of these properties fiber cement siding has become widely used in bush fire regions of Australia, and is now becoming a material of choice for new construction in the United States also. Fiber cement siding can also be painted and can be made to look like wood. Its one significant disadvantage is that the fiber cement planks used in the siding are relatively heavy and need to be placed one at a time. Any method of making their alignment easier is, therefore, of great practical utility.
On the other hand vinyl and other types of building siding remain common and insulation at the times of high energy costs has become an important consideration. Therefore, there is a need of insulation practical to use with vinyl and other types of building sidings as well as fiber cement siding.
The system and method of this invention provide both increased thermal insulation and significantly simple installation of the insulation. Furthermore the invention provides an alignment of the fiber cement planks when fiber cement siding is used. The simplified insulation does not compromise the thermal insulation but makes the system more affordable and time saving.
The relevant patent literature involving siding alignment and insulation products and processes include:
U.S. Patent Publication Number 2009/0019814 is directed to a panelized cladding system including a plurality of battens securable to a building structure, each batten having a structure engaging surface and an integrally formed finish ready panel supporting surface. Fiber cement cladding panels are secured to or through the battens such that the finish ready panel supporting surface of each batten forms an external recessed surface of an expressed joint formed thereon.
U.S. Pat. No. 6,418,610 relates to a method for using a support backer board system and siding. The support backer board system comprises at least a first layer. The first layer is made from a material selected from the group consisting of alkenyl aromatic polymers, polyolefins, polyethylene terephthalate, polyesters, and combinations thereof. The board system is thermoformed into a desired shape with the desired shape being generally contoured to the selected siding. The siding is attached to the board system so as to provide support thereto. In one process, the siding may be vinyl.
U.S. Pat. No. 8,091,313 discloses an apparatus and method for a drainage system of an exterior wall of a building comprising insulation having a rear face for contact with the exterior wall of the building and a drainage plane positioned on the rear face for removal of water from the exterior wall.
CA 2,742,046 discloses an insulation system for securing cladding to the exterior surface of a building. An insulated panel has a front face and a rear face. Joining elements are defined in horizontal edges of the panel for connecting adjacent panels to each other. A horizontal attachment member, such as a nailing hem, is mounted to the rear face of the panel for attaching the insulated panel to the exterior surface. Receiving members are present on the front face of the panel, and can be located in receiving channels. The receiving member is generally made from a material that is better at retaining fasteners, such as nails, than the material of the insulated panel itself.
U.S. Pat. No. 7,762,040 discloses a method for installing siding panels to a building including providing a foam backing board having alignment ribs on a front surface and a drainage grid on a back surface and then establishing a reference line at a lower end of the building for aligning a lower edge of a first backing board an tacking thereon. The system includes tabs and slots along vertical edges of the foam backing board to align and secure adjacent backing boards to each other. A siding panel is butted against one of the lower alignment ribs and secured thereto. Another siding panel is butted against and secured to the adjacent alignment rib to form a shadow line between the adjacent siding panels on the building.
U.S. 20100251648, 2011021073, 20110271622, and US20110271624 disclose foam backing panels for use with lap siding and configured for mounting on a building. The foam backing panels comprise a rear face configured to contact the building, a front face configured for attachment to the lap siding, alignment means for aligning the lap siding relative to the building, means for providing a shadow line, opposing vertical side edges, a top face extending between a top edge of the front face and rear face and a bottom face extending between a bottom edge of the front face and rear face.
The existing art does not provide sufficient protection against moisture drainage of building structures, sufficient aeration between the building surface and the insulation, nor a method or means to easily align drainage panels or attach the insulation boards.
Various implements are known in the art, but fail to address all of the problems solved by the invention described herein. One embodiment of this invention is illustrated in the accompanying drawings and will be described in more detail herein below.
The present invention relates to an apparatus that forms an insulating barrier behind building siding. The siding may be of any material, vinyl siding, wood siding, fiber cement siding or any other siding material.
In U.S. patent application Ser. No. 13/029,336 and corresponding provisional application 61/305,255, the contents of both of which are incorporated herein by reference, the inventor provided an easy to install shaped insulation board with a separate two sided water drainage panel. The inventor has now developed the product further, and provides here an insulation board that in it self may act as two sided water drainage panel and simultaneously allows aeration between the board and the building surface.
According to one preferred embodiment the siding is fiber cement siding and the insulation also acts as an installation guide that aids in attaching fiber cement planks or boards that form the siding.
In a preferred embodiment, a rectangular insulating board made of a suitable thermal insulating material has a substantially flat, rectangular back surface including multiple drainage areas for water draining.
The substantially flat back surface of the insulation board has a plurality of molded drainage areas. The drainage areas consist of vertically positioned drainage grooves and ridges and the drainage areas are separated from each other by inner stud ridges that are designed to coincide with the building studs for attachment of the board. The inner stud ridges may also be designed to be higher than the drainage ridges, whereby the system leaves an aeration space between the drainage areas and building surface when the board is attached on the building studs.
The front surface has preferably one or more stud marking areas. The stud marking areas may contain vertically running stud marking grooves that may also act as water drainage channels but also enable easy lining of the boards plus guide attachment to the studs. The stud marking areas may contain other markings for attachment to the studs as well, such a nail spots, letters, numbers, or color codes.
The front surface may be shaped to form a number of flat-faced, protruding horizontal ridges. The protruding ridges are preferably aligned substantially parallel to an edge of the rectangle. A cross-section, taken orthogonal to the alignment of the protruding ridges, has a saw-tooth shape. The front side of the board also includes means to guide attachment to the building studs.
The protruding horizontal ridges are shaped and sized so that the following may be done. A standard-size, fiber cement plank, or board, may be placed face-down on a long face of a protruding ridge of the shaped insulating board. The fiber cement board may be positioned to have its long edge abutting the short face of an adjacent protruding ridge. A second fiber cement board of a similar size may then be placed face-down on a long face of the adjacent protruding ridge. When the second fiber cement board is positioned to have its long edge abut the short face of the next adjacent ridge, the second board may then overlap the first fiber cement board. The overlap is such that the underside face of the overlap of the second board lies flat on the upper face of the first board. The invention of this disclosure also comprises shaped flashing elements that are sandwiched between the insulation board and the fiber cement boards to provide water protection in areas where two insulation boards are abutting either horizontally or vertically. The shaped insulating board is aligned on the wall to a required orientation. The required orientation is preferably the orientation in which the protruding ridges are aligned in the same direction as the desired orientation of the length of the fiber cement board when it is attached.
An aspect of the instant invention in addition to provide a guidance system for installation of the cement boards is to provide an insulation board that allows efficient water drainage and aeration. Furthermore, the instant invention not only provides guidance for installing the cement boards, but provides guidance to easily align the drainage channels and to attach the insulating boards on the building studs.
Once the shaped insulating board is attached to the wall, it may then serve as a guide for positioning the fiber cement board. The fiber cement board may be positioned by abutting its long side against a short edge of one of the protruding ridges, with the fiber cement board's face against the long face of an adjacent protruding ridge. The fiber cement board is then correctly aligned and may be slid along the ridge edge until it is in place for attaching to the wall. The attachment may, for instance, be by means of a fastener such as, but not limited to, nails, screws, bolts or some combination thereof.
Therefore, the present invention succeeds in conferring the following, and others not mentioned, desirable and useful benefits and objectives.
It is an object of the present invention to provide a shaped insulating board for attachment on building studs, having a vertical cross section, a horizontal cross section, a front surface and a substantially flat back surface, wherein the back surface is forming a molded drainage panel, said drainage panel comprising a multitude of drainage areas, each drainage area being formed by vertical drainage ridges and drainage grooves, and each drainage area being separated from each other by an inner stud ridge, said vertical ridges and grooves running from an upper end of the back surface to a lower end of the back surface, and said stud ridges located from each other at distance such that a multiplication of the distance equals to the distance between building studs, whereby each building stud coincides with one stud ridge, and the front surface comprising markings for attachments on building studs, said markings coinciding with stud ridges on the back surface.
It is another object of the present invention to provide fiber cement siding system comprising:
a multitude of fiber cement boards; a shaped insulating board, having a vertical cross section, a horizontal cross section, a shaped front surface and a substantially flat back surface,
the front surface being formed of horizontally aligned ridges having a short face and a long face, the short face of one ridge being joined in an angle to the long face of an adjacent ridge, whereby the vertical cross section has a substantially saw tooth like edge toward the front surface and a flat edge toward the back surface, the front surface further comprising a plurality of stud marking areas, each stud marking area consisting of vertically oriented stud marking grooves running across the horizontally aligned ridges from an upper end of the front surface to a lower end of the front surface, said vertically oriented grooves being separated from each other by an outer stud ridge, and the stud marking areas being separated from each other by clearance ridges, said clearance ridges having a width equaling to a distance between building studs, the back surface having a molded drainage panel, said drainage panel comprising a multitude of drainage areas, each drainage area being formed by vertical drainage ridges and drainage grooves, and each drainage area being separated from each other by an inner stud ridge, said vertical ridges and grooves running from an upper end of the back surface to a lower end of the back surface, and said inner stud ridge coinciding with the outer stud ridge, whereby the horizontal cross section of the insulating board has non grooved stud ridge areas in between of grooved drainage areas, and said non grooved stud ridge areas locate from each other at distance equaling to the distance between building studs; and a multitude of flashing elements, said flashing elements consisting of a first rectangle having a short edge substantially equal in length to the width of the short face of the protruding ridge of the front surface of the shaped insulating board, a second rectangle having a long edge longer than the long face of the protruding ridge of the shaped insulating board, and a short edge having a length substantially equal to a long edge of the first rectangle, and wherein the long edge of the first rectangle forms a substantially contiguous join with the short edge of the second rectangle in an angle matching the angle of the joint of the short and the long face of adjacent protruding ridges of the front side of the shaped insulating board.
It is an object of the present invention to provide a thermal insulation including an efficient drainage system.
It is another object of the present invention to provide thermal insulation with drainage panels that allows proper aeration between the insulation and the building surface.
It is a further object of the present invention to provide a system to align the drainage channels of abutting insulation boards.
Another object of the present invention is to easily enable attachment of the insulation board onto the building studs.
It is an object of the present invention to provide additional thermal insulation to houses.
It is an object of the present invention to prevent water damage to building structures.
It is another object of the present invention to provide a tool for rapid positioning of fiber cement boards.
Yet another object of the present invention is to provide quicker, and therefore less expensive, installation of fiber cement siding.
The preferred embodiments of the present invention will now be described with reference to the drawings. Identical elements in the various figures are identified with the same reference numerals.
Reference will now be made in detail to embodiments of the present invention. Such embodiments are provided by way of explanation of the present invention, which is not intended to be limited thereto. In fact, those of ordinary skill in the art may appreciate upon reading the present specification and viewing the present drawings that various modifications and variations can be made thereto.
Now referring to
Now referring to
Referring now to
According to one embodiment the board may contain one or more diagonally positioned grooves 303 across the inner stud ridge. Such diagonal grooves may connect the drainage grooves that locale on both sides of the inner stud ridge. Such an embodiment would provide improved water drainage.
The cross section of the stud marking grooves 192 and the drainage grooves 310 is preferably V-shaped, but it can also be U-shaped, or partially square shaped.
The shaped insulating board 100 may be made from any suitable thermal insulation that is also sufficiently rigid to support standard-sized fiber cement boards 110 during installation. Suitable materials are insulation such as, but not limited to, polyolefin, polyethylene terephithalate, polyester, alkenyl aromatic polymer, polystyrenic resin and polystyrene, or some combination thereof. Preferably the insulation board is made of polystyrene foam. The board may be up to 2″ (5.08 cm) thick. The size of the boards may vary. According to one preferred embodiment the board is about 4×4 feet (121×121 cm), but any other feasible size is within the scope of the invention.
The shaped insulating board 100 with the optional flat faced protruding ridges, stud markings and drainage areas is preferably shaped by using molding techniques but may be shaped by any method suitable to the material used including hot wire forming techniques such as, but not limited to preformed wire manufacture.
Now referring to
In a preferred embodiment, the shaped flashing element 420 may have a width in a range of 0.5 to 12 inches (1.27 cm to 30.48 cm) and a thickness in a range of less than 0.5 inches (1.28 cm). More preferably, the shaped flashing element 420 may have a width in a range of 1 to 3 inches (2.54 to 7.62 cm) and a thickness in a range of less than 0.125 inches (3.18 mm). According to a preferred embodiment the long edge of the second rectangle 455 is preferably between 5 and 8 inches (12.70 to 20.32 cm), but the length primarily depends on the width of the fiber cement planks.
According to one embodiment of this invention, a water proof sheet may be attached on the building surface 105 before attaching the shaped insulating boards 100. Such water proof sheet may be made of any suitable waterproof or water-resistant for creating a vapor barrier such as, but not limited to, aluminum foil, paper-backed aluminum, polyethylene plastic sheet, a metalized film, or some combination thereof.
Although this invention has been described with a certain degree of particularity, it is to be understood that the present disclosure has been made only by way of illustration and that numerous changes in the details of construction and arrangement of parts may be resorted to without departing from the spirit and the scope of the invention.
This application is Continuation-in-Part of U.S. application Ser. No. 13/029,336 filed Feb. 17, 2011 and claiming priority to U.S. Ser. No. 61/305,255 filed Feb. 17, 2010, the contents of both of which are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1655494 | Cowan | Jan 1928 | A |
2231007 | Vane | Feb 1941 | A |
2264546 | Ochs | Dec 1941 | A |
2264961 | Ward | Dec 1941 | A |
3318056 | Thompson | May 1967 | A |
RE27502 | Martin | Oct 1972 | E |
3826054 | Culpepper, Jr. | Jul 1974 | A |
3998021 | Lewis | Dec 1976 | A |
4320613 | Kaufman | Mar 1982 | A |
5657600 | Mensen | Aug 1997 | A |
5878543 | Mowery | Mar 1999 | A |
6161353 | Negola et al. | Dec 2000 | A |
6263574 | Lubker, II | Jul 2001 | B1 |
6355700 | Uekado | Mar 2002 | B1 |
6418610 | Lubker, II | Jul 2002 | B2 |
6688073 | VanderWerf | Feb 2004 | B2 |
6715240 | Beck | Apr 2004 | B2 |
6990775 | Koester | Jan 2006 | B2 |
7040067 | Mowery | May 2006 | B2 |
7043887 | Van Ootmarsum | May 2006 | B2 |
7127869 | Perry | Oct 2006 | B2 |
7188454 | Mowery | Mar 2007 | B2 |
7836652 | Futterman | Nov 2010 | B2 |
20030074854 | Nordgren et al. | Apr 2003 | A1 |
20060053740 | Wilson et al. | Mar 2006 | A1 |
20060075712 | Gilbert et al. | Apr 2006 | A1 |
20060156668 | Nasvik | Jul 2006 | A1 |
20070011976 | Mowery | Jan 2007 | A1 |
20070175159 | Miniter | Aug 2007 | A1 |
20070186501 | Kuelker | Aug 2007 | A1 |
20070294970 | Marshall et al. | Dec 2007 | A1 |
20080313991 | Chouinard | Dec 2008 | A1 |
20090064599 | Bennett | Mar 2009 | A1 |
20090064606 | Ceria | Mar 2009 | A1 |
20090239430 | Egan et al. | Sep 2009 | A1 |
20100319288 | Morse et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 9900243 | Jan 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20120297697 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61305255 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13029336 | Feb 2011 | US |
Child | 13569834 | US |