The present invention relates to an aligning apparatus that aligns conveyed paper sheets, and also relates to an enclosing and sealing apparatus that encloses and seals contents aligned by the alignment apparatus.
In order to stably execute post-processing such as staple processing on conveyed paper sheets after image forming, a sheet post-processing apparatus includes an aligning unit which executes sheet alignment as a preceding process so as to correct sheet positions according to a content of post-processing (see Patent Literature 1 below for more detail).
An enclosing and sealing apparatus interfolds an envelope paper sheet to make an envelope, thereafter encloses and seals a content in the envelope to produce a sealed matter. The enclosing and sealing apparatus executes aligning processing which aligns the center of the position of the content with the center of the position of the envelope in the conveying direction with an aligning unit, so as to precisely enclose the content in the envelope when enclosing the content in the envelope, which is similar to the above mentioned apparatus.
However, the sheet post-processing apparatus disclosed in Patent Literature 1 changes a content of the aligning operation according to sizes of the paper sheets so as to increase its processing speed. The sheet post-processing apparatus executes the aligning operation of all of the conveyed paper sheets regardless its number and size. Thus, even if the aligning operation is not necessary, the aligning operation is always executed, thus degrading the productivity and also causing problems of noise and power consumption due to the unnecessary aligning operation.
When making envelopes by folding envelope paper sheets, the folded part of the envelope paper sheet is commonly bonded with pressure sensitive adhesive. The press-bonding area of the envelope causes a smaller storage volume for the content than that of the ready-made envelopes. Thus, the aligning process of the content is executed. However, the apparatuses of this kind always execute the aligning operation even when the envelope has a sufficient margin in its width size for a width of the content. Accordingly, this degrades the productivity and also causes problems of noise and power consumption due to the unnecessary aligning operation.
With the aforesaid problems understood, the present invention was conceived and one of its objectives is to provide an aligning apparatus and an enclosing and sealing apparatus including the aligning apparatus that reduces the unnecessary aligning operation, thereby ensuring the improving the productivity.
In order to solve the above-described problems, according to a first aspect of the invention, we provide an aligning apparatus including an aligning unit that aligns both side edges of conveyed paper sheets. The aligning apparatus includes a controller. The controller compares a difference value with a predetermined threshold value for use in an aligning operation execution determination, and controls not to execute an aligning operation if the difference value exceeds the threshold value. The difference value is calculated by subtracting sheet size information of the paper sheet from envelope size information of an envelope to enclose the paper sheet to be aligned.
According to a second aspect of the invention, the aligning apparatus according to the first aspect is disposed at a preceding stage of enclosing and sealing unit which encloses and seals the paper sheet in the envelope. The controller controls the enclosing and sealing unit not to execute a position adjustment of the envelope and the paper sheets to match one another when the controller determines that the aligning operation of the paper sheet is not executed.
According to a third aspect of the invention, in the aligning apparatus according to the first or the second aspect, the aligning unit includes a pair of aligning plates to align the paper sheets. The controller executes control of the aligning plates to move to a sheet receiving position that has a same size as an opening of the envelope based on the envelope size information when the controller determines that the aligning operation of the paper sheet is not executed.
According to a fourth aspect of the invention, we provide an enclosing and sealing apparatus for conveying an envelope and content, and enclosing and sealing the content in the envelope. The enclosing and sealing apparatus includes: a memory that stores aligning position data based on edge data of a preliminary conveyed plurality of envelopes; the aligning unit according to the first aspect that aligns the content and executes a position adjustment; a controller that controls the aligning unit to adjust the position of the content to the envelope based on the aligning position data of the envelope stored in the memory.
According to a fifth aspect of the invention, in the enclosing and sealing apparatus according to the fourth aspect, the edge data includes an amount of deviation and a variation of a position of side edge portions of the envelope in a widthwise direction perpendicular to a conveying direction. The controller compares a size difference of the envelope to be used and the content in the widthwise direction with the amount of deviation and variation of the edge data. The controller controls the aligning unit to adjust a position of the content in the widthwise direction by the amount of deviation if the amount of deviation exceeds the size difference and the variation is smaller than the size difference. The controller does not control the aligning unit if the amount of deviation and the variation are smaller than the size difference.
According to a sixth aspectof the invention, in the enclosing and sealing apparatus according to the fourth aspect or the fifth aspect, the enclosing and sealing apparatus further includes a sensor that detects a side edge portion of the envelope in the widthwise direction perpendicular to the conveying direction to detect edge data. The enclosing and sealing apparatus preliminary conveys a plurality of envelopes and obtains data of the position of the side edge portion of the envelope with the sensor, thereby generating the aligning position data, and storing the aligning position data in the memory.
According to a seventh aspect of the invention, in the enclosing and sealing apparatus according to the sixth aspect, the aligning position data stored in the memory is reset in association with a change of an enclosed envelope making condition in the enclosing and sealing apparatus. The aligning position data is newly obtained in association with an operation of the enclosing and sealing apparatus based on a new enclosed envelope making condition, and stored in the memory.
With the aligning apparatus according to the first aspect of the present invention, in the enclosing and sealing processing for enclosing and sealing the paper sheets to be the contents in the envelope, when the difference value calculated by subtracting the width of the paper sheet from the width of the envelope exceeds the threshold value for use in the aligning operation execution determination, the aligning operation can be skipped. This improves the productivity by shortening the time for making the enclosed envelope processing, and reduces the electric power and the noise at the aligning operation.
With the aligning apparatus according to the second aspect of the present invention, when it is determined that the aligning operation of the paper sheet is not executed, the positioning of the envelope to the position of the paper sheet is not executed. This further improves the productivity by shortening the processing time in addition to the skip of the aligning operation.
With the aligning apparatus according to the third aspect of the present invention, when it is determined that the aligning operation of the paper sheet is not executed, the position of the aligning plate is controlled to move to the sheet receiving position which has the same size as the opening of the envelope. Thus, the paper sheet does not deviate outside of the width of the opening of the envelope. The paper sheet is received at the position where the paper sheet is surely enclosed, thus conveyed to the enclosing and sealing unit at the subsequent stage.
With the enclosing and sealing apparatus according to the fourth aspect of the present invention, the side edge portion of the conveyed envelope is detected, and the aligning position data is generated from the obtained edge data and stored in the memory. When making the envelope, the control unit controls the aligning unit using the aligning position data of the envelope stored in the memory. The content is appropriately aligned, and its position in the widthwise direction is adjusted to the envelope as necessary. Accordingly, the content is enclosed in the envelope immediately after the folding, thus reducing the unnecessary operation compared with the conventional art. This shortens the processing time to achieve high efficiency.
With the enclosing and sealing apparatus according to the fifth aspect of the present invention, the controller compares the size difference between the envelope to be used and the content in the each widthwise direction with an amount of deviation and variation of the edge data. Only when it is determined that the alignment and the position adjustment by the aligning unit are possible and necessary, the aligning unit is controlled to execute appropriate position adjustment of the content and the envelope. When the adjustment is not necessary to enclose the content in the envelope without any trouble, the aligning unit is not controlled. This reduces the unnecessary operation compared with the conventional art, thus ensuring the shorten processing time and high efficiency.
With the enclosing and sealing apparatus according to the sixth aspect of the present invention, for the envelope making job using the specified size of envelope and content, the side edge portions of, for example, the number of initially conveyed envelopes are detected with the sensor to output the plural pieces of edge data. The aligning position data is generated from these edge data pieces and stored in the memory. These data pieces are used for controlling the aligning unit so as to ensure the shorten processing time and the high-efficiency.
With the enclosing and sealing apparatus according to the seventh aspect of the present invention, when the envelope making job using the specified size of envelope and content is completed, or the enclosed envelope making condition is changed in association with the specifying of the new job, the aligning position data used for the completed job or the foregoing job is erased. The new aligning position data for the new job is obtained and stored in the memory. This ensures the efficient execution of jobs with the variant enclosed envelope-making condition with the short processing time one after another.
Embodiments of the present invention will be described in detail below by referring to the accompanying drawings. The present invention will not be limited to the embodiment described below. Any other configurations, embodiments, its technical operations, and so on embodied by one of ordinary skill in the art are within the scope of the present invention. The first embodiment and the second embodiment will be described by referring to the drawings that differ from each other. Though figures of the each embodiment partially include common reference signs, elements and parts designated by these reference signs indicate parts in figures of the corresponding embodiment.
First, an enclosing and sealing apparatus according to the present invention will be described.
As shown in
The print apparatus 10 is an apparatus that prints on the envelopes and the contents as paper sheets and discharges them. The print apparatus 10 includes a plurality of paper feed trays (P1 to P4), a looped conveying path 12, print means 13, a first discharge path 14, a second discharge path 15, and a switchback path 16 inside or on side faces of its casing. The plurality of paper feed trays (P1 to P4) which can store multiple kinds of paper sheets (sheets of paper to be contents and envelope paper sheets). The conveying path 12 conveys the paper sheets from the introductory path 11. The print means 13 includes four ink jet heads C, K, M, and Y which each eject each color of inks including cyan (C), black (K), magenta (M), and yellow (Y). The first discharge path 14 ejects the paper sheet to the enclosing and sealing apparatus 20. The second discharge path 15 discharges the paper sheets out of the loop. The switchback path 16 receives the paper sheet conveyed from the conveying path 12 and thereafter reverses into the conveying path 12, thus turning the paper sheet upside down.
The enclosing and sealing apparatus 20 is an apparatus that receives the envelope paper sheet and the paper sheets to be the contents sent from the first discharge path 14 of the print apparatus 10, and encloses and seals the contents in the envelope paper sheet. The enclosing and sealing apparatus 20 includes a first conveying route 21, a second conveying route 22, first folding means 23, second folding means 24, the enclosing and sealing means 25, water adding means 26, a pressure bonding roller 27, a discharge rack 28, and a discharge conveying unit 29. The first conveying route 21 is a guiding path to run obliquely downward from the first discharge path 14 of the print apparatus 10 so as to convey the envelope paper sheet to the first folding means. The second conveying route 22 is a guiding path to run obliquely downward from the preceding stage so as to convey the paper sheet as the content to the second folding means 24. The first folding means 23 (including a main folding roller A′, a paper sheet conveying roller D′, and a first folding roller B′) is disposed at the end of the first conveying route 21 and folds the envelope paper sheet so as to form the envelope form. The second folding means 24 (including a main folding roller A, a first folding roller B, a second folding roller C, and a paper sheet conveying roller D) is disposed at the end of the second conveying route 22 so as to fold the paper sheet. The enclosing and sealing means 25 (including a main folding roller A″, a paper sheet conveying roller D″, a first and a second folding roller B″ and C″) is disposed at the meeting point of the first conveying route 21 and the second the conveying route 22. The enclosing and sealing means 25 is a third folding means to further fold the envelope paper sheet as necessary. The enclosing and sealing means 25 executes enclosing processing for aligning the content with the folded envelope paper sheet. The enclosing and sealing means 25 further folds so as to enclose the content in the envelope, and executes sealing processing for sealing the envelope. The water adding means 26 is a bonding means to apply water to rewettable paste on the envelope paper sheet to bring out adhesively, thus bonding the envelope paper sheet to form the envelope. The pressure bonding roller 27 vertically sandwiches applied places of the pressure sensitive adhesive on the content enclosed envelope, thus pressing to execute the pressure bonding. The discharge rack 28 is disposed on the top face of the casing and sequentially stacks the enclosed envelopes. The enclosed envelopes, the enclosing and sealing of which are completed, are sent through a sending up path running obliquely upward from the pressure bonding roller 27. The discharge conveying unit 29 conveys the enclosed envelope to the discharge rack 28.
The print apparatus 10 includes a memory 30 and a controller 40. The memory 30, which is common to the print apparatus 10 and the enclosing and sealing apparatus 20, stores necessary drive control information or the like to execute drive controls of each of units which constitute the enclosing and sealing apparatus 100. The controller 40, which is common to the print apparatus 10 and the enclosing and sealing apparatus 20, stores necessary drive information to drive the enclosing and sealing apparatus 100, and various control information regarding the making of the enclosed envelopes.
The aligning apparatus 1 according to the present invention is disposed between the second conveying route 22 and the second folding means 24 at the subsequent stage as shown in the drawing. The aligning apparatus 1 executes an aligning operation to align the position of the paper sheet with the alignment reference prior to the folding processing of the paper sheet after the image forming by the print apparatus 10.
Next, the aligning apparatus according to the present invention will be described by referring to
In this application, moving positions of the aligning unit 4 according to the sheet alignment are assumed to be “standby position” and “sheet receiving position” as follows. The standby position is assumed to be a position to stand by from the end of print job to the start of print job. The sheet receiving position is assumed to be a position for the aligning unit 4 to have a distance between themselves corresponding to a appropriate width position (paper sheet width or envelope width) as necessary after the start of the print job. The width position is based on sheet size information indicative of the paper sheet used for the executing print job.
As shown in
The paper sheet conveying unit 2 includes a pair of carrying-in rollers 2a, a pair of conveying rollers 2b, and a pair of discharging rollers 2c. The pair of carrying-in rollers 2a includes the drive roller and the driven roller. The pair of carrying-in rollers 2a carries in the paper sheets from the print apparatus 10. The pair of conveying rollers 2b also includes the drive roller and the driven roller. The pair of conveying rollers 2b conveys the paper sheets to the downstream direction. The pair of discharging rollers 2c also includes the drive roller and the driven roller. The pair of discharging rollers 2c convey to the second folding means 24, which executes the sheet folding process as the post-process in a predetermined timing. The pair of discharging rollers 2c also executes skew correction of the paper sheets. The pairs of rollers 2a to 2c are each rotatable along the widthwise direction of the paper sheet.
As shown in
The placing unit 3 includes an approximately flat surface along the second conveying route 22 so as to temporarily reserve the paper sheets, which are brought in by the pair of carrying-in rollers 2a. The placing unit 3 includes a guide groove on its mounting surface that limits a sliding direction of the aligning unit 4 in a sheet widthwise direction perpendicular to the conveying direction when aligning the sheets.
The aligning unit 4 includes a pair of aligning plates 4a including plate members which slides in the sheet widthwise direction so as to contact both side ends of the paper sheets, thus aligning the paper sheet with the alignment reference. The aligning unit 4 is slidably disposed upright along a guide groove of the placing unit 3 at both outsides of the widthwise direction of the paper sheet conveyed by the placing unit 3. The aligning unit 4 relatively moves the aligning plates 4a back and forth so as to broaden or narrow the width which is a distance between aligning plates 4a based on the aligning operation execution signal from the controller 7. This, which is so-called the aligning operation, limits the paper sheet in the widthwise direction and aligns the paper sheet with the alignment reference. The aligning unit 4 does not executes the aligning operation and put the aligning plates 4a in a stand by state based on the aligning operation non-execution signal from the controller 7.
Additionally, the aligning unit 4 moves from the standby position to the predetermined sheet receiving position in response to an input of the sheet receiving position movement signal from the controller 7 when the aligning unit 4 inputs the aligning operation non-execution signal. Thus, the aligning unit 4 receives the conveyed paper sheet without executing the aligning operation. The sheet receiving position is optionally adjustable according to the content of the post-processing at the subsequent stage, which is adjustable to, for example, the width of an opening of the envelope for enclosing the content. This prevents operation failure in the post-processing.
The tip regulating unit 5 includes a plate shaped member. The tip regulating unit 5 is disposed movably in a direction perpendicular to the mounting surface between the pair of conveying rollers 2b and the pair of discharge rollers 2c. The tip regulating unit 5 extends toward the mounting surface side of the placing unit 3 so as to regulate the front edge of the conveyed paper sheet based on a regulation execution signal from the controller 7 when carrying in the paper sheet. The tip regulating unit 5 retracts toward the back side of the placing unit 3 after the aligning operation. As shown in
The memory 6 includes semiconductor memories such as magnetic, optical memory medium, ROM, and RAM. The memory 6 stores drive control programs for each unit of the aligning apparatus 1. The memory 6 stores a table for use in the aligning operation execution determination. The table includes the difference values, the threshold values for use in the aligning operation execution determination, and their associated comparison results. The threshold values are calculated by subtracting sheet size information of the paper sheet from envelope size information. The threshold values for use in the aligning operation execution determination are used in determination of the necessity of the aligning operation.
Here, the table for use in the aligning operation execution determination will be described. The table includes exemplary types of envelopes and paper sheets usable in the enclosing and sealing apparatus 100. This should not be construed in a limiting sense.
First, relation between width dimensions of various types of envelopes and paper sheets will be described. The types of envelopes include “Western-style 0 envelope”, “Western-style 5 envelope”, “Rectangular 2 envelope”, “Rectangular 3 envelope”, “C5 envelope”, “#10 envelope”, and “#9 envelope”. The paper sheets to be the contents include “A4 sheet”, “B5 sheet”, and “legal or letter size sheet”.
The tables for use in the aligning operation execution determination are stored as shown in
In the table for use in the aligning operation execution determination in this example, when the difference value which is calculated by subtracting the width b of the paper sheet from the width a of the envelopes is equal to or less than 3 mm, it is determined that the paper sheet is not enclosable.
The controller 7 is a microcomputer that includes, for example, CPU, ROM, and RAM and executes various control processing and arithmetic processing. The controller 7 executes drive control of each unit of the aligning apparatus 1. The controller 7 determines whether both side edges of the paper sheet as aligned objects are within the range for executing the post-processing at the subsequent stage in the aligning apparatus 1. The controller 7 controls execution or non-execution of the aligning operation, that is, execution or non-execution of aligning the envelope with a position of the paper sheet based on the determination result. In other words, in this embodiment, the execution or non-execution of the aligning operation, that is, the execution or non-execution of aligning the envelope with a position of the paper sheet is controlled. This is based on whether the difference values between the width of the envelopes and the width of the paper sheets exceeds the threshold value for use in the aligning operation execution determination. The controller 7 executes the control of the skew correction of the paper sheet, the control of the tip regulating unit 5, and so on according to the number of the paper sheets to be the contents.
Here, it is described below in detail with examples 1 to 4 that the control of the controller 7, based on the number of the paper sheets to be the contents and the difference values between the widths of the envelope and the widths of the paper sheet.
In example 1, the contents are plural, and the difference between the widths a of the envelopes and the widths b of the paper sheets are equal to or less than the threshold value for use in the aligning operation execution determination (a−b≦threshold value). The controller 7 calculates the difference values by subtracting the widths b of the paper sheets from the widths a of the envelopes based on the envelope size information and the sheet size information from the print apparatus 10. The controller 7 collates the difference value and the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination which are stored in the memory 6.
If the result shows that the difference value, which is calculated by subtracting the width b of the paper sheet from the widths a of the envelopes, is equal to or less than the threshold value for use in the aligning operation execution determination and the controller 7 determines that the aligning operation is necessary, the controller 7 outputs the aligning operation execution signal for executing the aligning operation to the aligning unit 4. The controller 7 outputs the regulation execution signal to the tip regulating unit 5 because the paper sheets are plural, and the front edge of the paper sheets need alignment. The controller 7 further outputs the positioning operation execution signal for executing the positioning operation of the envelope position to the enclosing and sealing means 25 because the width of the envelope does not have a large margin for the width of the paper sheet.
In example 2, the content is single, and the difference between the widths a of the envelopes and the widths b of the paper sheets are equal to or less than the threshold value for use in the aligning operation execution determination (a−b≦the threshold value). The controller 7 calculates the difference values by subtracting the widths b of the paper sheets from the widths a of the envelopes based on the envelope size information and the sheet size information from the print apparatus 10. The controller 7 collates the difference value and the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination which are stored in the memory 6.
If the result shows that the difference value, which is calculated by subtracting the width b of the paper sheet from the widths a of the envelopes, is equal to or less than the threshold value for use in the aligning operation execution determination and the controller 7 determines that the aligning operation is necessary, the controller 7 outputs the aligning operation execution signal for executing the aligning operation to the aligning unit 4. The controller 7 outputs the regulation non-execution signal to the tip regulating unit 5 because the paper sheet is single, and the front edge of the paper sheet does not need alignment. The controller 7 also outputs the skew correction execution signal for executing the skew correction to the paper sheet conveying unit 2. The controller 7 further outputs the positioning operation execution signal for executing the positioning operation of the envelope the position to the enclosing and sealing means 25 because the width of the envelope does not have a large margin for the width of the paper sheet.
In example 2, though the aligning operation in the sheet widthwise direction is not necessary in nature because the paper sheet as the content is single, the aligning operation is executed to align the paper sheet with the alignment reference because the width of the envelope does not have a large margin for the width of the paper sheet.
In example 3, the contents are plural, and the difference between the widths a of the envelopes and the widths b of the paper sheets exceeds the threshold value for use in the aligning operation execution determination (a−b>threshold value). The controller 7 calculates the difference values by subtracting the widths b of the paper sheets from the widths a of the envelopes based on the envelope size information and the sheet size information from the print apparatus 10. The controller 7 collates the difference value and the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination which are stored in the memory 6.
If the result shows the difference value, which is calculated by subtracting the width b of the paper sheet from the widths a of the envelopes, exceeds the threshold value for use in the aligning operation execution determination and the controller 7 determines that the aligning operation is not necessary, the controller 7 outputs the aligning operation non-execution signal for non-execution of the aligning operation to the aligning unit 4. The controller 7 outputs the regulation execution signal to the tip regulating unit 5 because the paper sheets are plural, and the front edge of the paper sheet need alignment. The controller 7 further outputs the positioning operation non-execution signal for non-execution of the positioning operation of the envelope to the enclosing and sealing means 25 because the width of the envelope has a large margin for the width of the paper sheet.
In example 4, the content is single, and the difference between the widths a of the envelopes and the widths b of the paper sheets exceeds the threshold value for use in the aligning operation execution determination (a−b>threshold value). The controller 7 calculates the difference values by subtracting the widths b of the paper sheets from the widths a of the envelopes based on the envelope size information and the sheet size information from the print apparatus 10. The controller 7 collates the difference value and the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination which are stored in the memory 6.
If the result shows that the difference value, which is calculated by subtracting the width b of the paper sheet from the widths a of the envelopes, exceeds the threshold value for use in the aligning operation execution determination and the controller 7 determines that the aligning operation is not necessary, the controller 7 outputs the aligning operation non-execution signal for skipping the aligning operation to the aligning unit 4. The controller 7 outputs the regulation non-execution signal to the tip regulating unit 5 because the paper sheet is single, and the alignment in the sheet widthwise direction and the front edge of the paper sheet do not need alignment. The controller 7 also outputs the skew correction execution signal for executing the skew correction to the paper sheet conveying unit 2. The controller 7 further outputs the positioning operation non-execution signal for non-execution of the positioning operation of the envelope to the enclosing and sealing means 25 because the width of the envelope has a large margin for the width of the paper sheet.
As shown in examples 3 and 4, the controller 7 may output the sheet receiving position movement signal to the aligning unit 4 for the aligning unit 4 to move to the sheet receiving position when outputting the aligning operation non-execution signal to the aligning unit 4. This reduces the variation to some extent in the sheet placing position of the paper sheet which has the far smaller width than the width of the envelope, thus preventing enclosing failure.
Next, a set of the processing operation in the aligning apparatus 1 according to this example will be described. Here, this is described with exemplary system configuration in which a user PC outputs the print job to the enclosing and sealing apparatus 100 for making the enclosed envelope. Each of the processing operations of the above described examples 1 to 4 will be described. Here, setting of the print job will be described with an exemplary processing in which the setting is made at the PC. Setting method of the print job is not limited to this, and the setting may be made at a control panel on the enclosing and sealing apparatus 100.
The processing operation of example 1 as described above is as follows. First, the user selects a desired envelope and a desired paper sheet and sets the content of the print job such as the number of the enclosed envelope at the PC, thus outputting it to the enclosing and sealing apparatus 100. When the print job is initiated, the difference values between the width of the envelope and the width of the paper sheet is calculated from the envelope size information and the sheet size information based on the set print job. The calculated difference value is compared with the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination stored in the memory 6.
At that time, the difference value, which is calculated as a difference between the width of the envelope and the width of the paper sheet, is determined to be equal to or less than the threshold value for use in the aligning operation execution determination. The aligning operation execution signal is output for the aligning unit 4 to execute the aligning operation. The regulation execution signal is output to the tip regulating unit 5 so as to regulate the front edge of the conveyed paper sheets, and the positioning operation execution signal for positioning operation of the envelope with the position of the paper sheet is output to the enclosing and sealing means 25. Then, the predetermined number of paper sheets are aligned and thereafter conveyed to the second folding means 24 at the subsequent stage.
The processing operation of example 2 as described above is as follows. First, the user selects a desired envelope and a desired paper sheet and sets the content of the print job such as the number of the enclosed envelope at the PC, thus outputting it to the enclosing and sealing apparatus 100. When the print job is initiated, the difference value between the width of the envelope and the width of the paper sheet is calculated from the envelope size information and the sheet size information based on the set print job. The calculated difference value is compared with the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination stored in the memory 6.
At that time, the difference value, which is calculated as a difference between the width of the envelope and the width of the paper sheet, is determined to be equal to or less than the threshold value for use in the aligning operation execution determination. The aligning operation execution signal is output for the aligning unit 4 to execute the aligning operation. The regulation non-execution signal is output to the tip regulating unit 5 so as not to regulate the front edge of the conveyed paper sheets, and the skew correction execution signal is output to the paper sheet conveying unit 2 for the pair of conveying rollers 2b and the pair of discharging rollers 2c to execute the skew correction. The positioning operation execution signal for positioning operation of the envelope with the position of the paper sheet is output to the enclosing and sealing means 25. Then, the conveyed paper sheets are conveyed to the second folding means 24 at the subsequent stage.
The processing operation of example 3 as described above is as follows. First, the user selects a desired envelope and a desired paper sheet and sets the content of the print job such as the number of the enclosed envelope at the PC, thus outputting it to the enclosing and sealing apparatus 100. When the print job is initiated, the difference values between the width of the envelope and the width of the paper sheet is calculated from the envelope size information and the sheet size information based on the set print job. The calculated difference value is compared with the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination stored in the memory 6.
At that time, the difference value, which is calculated as a difference between the width of the envelope and the width of the paper sheet, is determined to exceed the threshold value for use in the aligning operation execution determination. The aligning operation non-execution signal is output for the aligning unit 4 not to execute the aligning operation. The regulation execution signal is output to the tip regulating unit 5 so as to regulate the front edge of the conveyed paper sheets, and the positioning operation non-execution signal for skipping the position alignment of the envelope with the position of the paper sheet is output to the enclosing and sealing means 25. Then, the predetermined number of paper sheets are aligned and thereafter conveyed to the second folding means 24 at the subsequent stage.
The processing operation of example 4 as described above is as follows. First, the user selects a desired envelope and a desired paper sheet and sets the content of the print job such as the number of the enclosed envelope at the PC, thus outputting it to the enclosing and sealing apparatus 100. When the print job is initiated, the difference value between the width of the envelope and the width of the paper sheet is calculated from the envelope size information and the sheet size information based on the set print job. The calculated difference value is compared with the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination stored in the memory 6.
At that time, the difference value, which is calculated as a difference between the width of the envelope and the width of the paper sheet, is determined to exceed the threshold value for use in the aligning operation execution determination. The aligning operation non-execution signal is output for the aligning unit 4 not to execute the aligning operation. The regulation non-execution signal is output to the tip regulating unit 5 so as not to regulate the front edge of the conveyed paper sheets, and the skew correction execution signal is output to the paper sheet conveying unit 2 for the pair of conveying rollers 2b and the pair of discharging rollers 2c to execute the skew correction. The positioning operation non-execution signal for non-execution of the positioning operation of the envelope to the position of the paper sheet is output to the enclosing and sealing means 25. Then, the conveyed paper sheets are conveyed to the second folding means 24 at the subsequent stage.
As described above, the aligning apparatus 1 calculates the difference value between the width of the envelope and the width of the paper sheet from the envelope size information and the sheet size information based on the set print job. The aligning apparatus 1 also compares the calculated difference value with the table corresponding to the predetermined threshold value for use in the aligning operation execution determination among the tables for use in the aligning operation execution determination stored in the memory 6. When it is determined that the difference value, which is calculated as the difference between the width of the envelope and the width of the paper sheet, is determined to exceed the threshold value for use in the aligning operation execution determination, the aligning operation non-execution signal is output for the aligning unit 4 not to execute the aligning operation.
This eliminates the execution of the unnecessary aligning operation based on the information of the width of the envelope and the width of the paper sheet, thus improving productivity.
The calculated difference value is compared with the table for use in the aligning operation execution determination corresponding to the threshold value for use in the aligning operation execution determination stored in the memory 6. When it is determined that the difference value, which is calculated as the difference between the width of the envelope and the width of the paper sheet, is equal to or less than the value for use in the aligning operation execution determination, the positioning operation non-execution signal is output to the enclosing and sealing means 25. The positioning operation non-execution signal is for non-execution of the positioning operation of the envelope position to the paper sheet. This reduces the drive sound of drive means (actuator) of the pair of conveying rollers when aligning the position and the electric power for driving of the apparatus.
Furthermore, when it is determined that the aligning operation of the paper sheet is not executed, the position of the aligning plate is controlled to move to the sheet receiving position which has the same size as the opening of the envelope. This avoids deviation of the paper sheet outside of the width of the opening of the envelope, thus receiving, at the position to unfailingly enclose, the paper sheet and conveying to the enclosing and sealing unit at the subsequent stage.
When the content to be enclosed in the envelope is a single paper sheet, the regulation non-execution signal is output to the tip regulating unit 5 for skipping the regulation of the front edge of the conveyed paper sheet, thus executing the skew correction by the pair of discharging rollers 2c only. This reduces the consumption of the electric power for the apparatus drive and improves productivity.
In the embodiment, this apparatus is mounted on the enclosing and sealing apparatus 100 which includes the ink jet type print apparatus 10 and the enclosing and sealing apparatus 20, which executes forming processing (folding processing or press-bonding processing, etc.) on the envelope paper sheet to make the envelope, enclosing the content in the envelope, and sealing. This should not be construed in a limiting sense. For example, the print apparatus 10 may be various types of image forming apparatuses (stencil printing apparatus, copy machine, or laser printer, etc.) which can print on the content and the envelope paper sheet, or a paper sheet conveying apparatus which conveys the printed contents and envelope paper sheets to the enclosing and sealing apparatus 20. The enclosing and sealing apparatus 20 may execute print processing on the ready-made envelope, enclosing processing of the content in the envelope, and sealing processing only.
In the above description, the aligning apparatus 1 in this example is mounted on the enclosing and sealing apparatus 100. The enclosing processing is executed after the aligning operation of the paper sheets which are conveyed from the print apparatus 10. This should not be construed in a limiting sense. The aligning apparatus 1 may be disposed at the preceding stage of the sheet post-processing apparatus which executes post-processing such as staple processing and punching processing. In this kind of configuration, the aligning operation may be set to non-execution as long as the both side edges (width dimension) of the paper sheets are within a range for the post-processing.
This embodiment includes the aligning apparatus according to the first embodiment. This embodiment relates to enclosing and sealing apparatuses that automatically enclose the content in the envelope and, in particular town enclosing and sealing apparatus that adjusts the position as necessary using the measured position data of the envelope when the aligning apparatus executes the aligning operation of the content. This can increase the speed of operation to shorten the processing time, thus ensuring high efficiency.
When a front office of a company or a retailer, etc. makes DM (direct mail), it may order a printing company to print on the paper sheets to be enclosed, and it print-addresses on the envelopes by itself with its printer. In this way, the paper sheets and the envelopes maybe printed with different print means. In this case, generally, the printed sheets are enclosed and sealed in the envelope by hand work or a desktop enclosing and sealing apparatus that has comparatively simple constitution. Though apparatuses which continuously and automatically process from the printing to the enclosing and sealing exist, they are expensive and requires area for its installation. Thus, it is difficult to purchase by users who makes DM with low frequency.
Patent Literature Japanese Unexamined Patent Application Publication No. Hei 7-52596 (Patent Literature 2) discloses an enclosing and sealing apparatus that includes sheet folding means for folding sheets to be enclosed in the envelope, which may be used as a desktop enclosing and sealing apparatus. This apparatus includes: an automatic paper feeding device which automatically feeds the top sheet of a sheet bundle to the sheet folding means; and manual paper feed means which feeds manually-fed sheets to the sheet folding means. This apparatus can selectively operate in automatic paper feeding mode, manual paper feed mode, and mixed mode in which the automatic paper feeding device and the manual paper feed means concurrently feed.
If the desktop enclosing and sealing apparatus disclosed in Patent Literature 2 is used for making one-to-one direct mail in which the contents of printing on the enclosed paper sheets vary in each envelope, the loaded order of the paper sheets to be enclosed on the paper sheet feeding rack and the loaded order of the envelope on the envelope feeding rack are required to match. However, when the envelopes are printed in house and the contents are printed by an outside third party, the paper sheets and the envelopes are made by different means at different places. This may cause differences such as a difference in the output orders and a difference of mixed interleaf sheets. The loading in a feeding rack of the desktop enclosing and sealing apparatus requires sufficient confirmation to prevent failure in the enclosure. Also, manual enclosing operation requires man-hour for the prevention of the enclosing failure and may cause long time processing.
The applicant had been studying hard to solve this problem and succeeded in the development of an enclosing and sealing apparatus that prints on envelopes (or envelope paper sheets to be envelopes) and a paper sheet as contents, and automatically encloses and seals the content in the envelope to make the enclosed envelope. The applicant filed Japanese Patent Application No. 2010-209546 on Sep. 17, 2010 for the result. This enclosing and sealing apparatus has less incidence of enclosing failure such as failure of enclosure itself or enclosing wrong content with simple and compact constitution. This enclosing and sealing apparatus allows the user alone to efficiently make the enclosed envelopes, and this is especially appropriate for making one to one direct mail, etc.
However, the applicant had been studying to improve the enclosing and sealing apparatus, for which the patent application was filed. The applicant has acknowledged a new problem to be solved in the enclosing and sealing apparatus, that is, the efficient automatic apparatus that automatically folds paper sheets as contents as necessary and encloses it in the envelope. In order to smoothly enclose contents in envelopes, it is necessary that the center lines of the envelopes and the contents, which are parallel to the conveying direction, are matched as much as possible. The enclosing and sealing apparatus requires too much time due to its complex operation procedure, thus causing a problem which makes it difficult to increase the speed of operation to shorten the processing time.
With the control method of the enclosing and sealing apparatus shown in
With the control method of the enclosing and sealing apparatus shown in
Accordingly, the enclosing and sealing apparatus for which the applicant filed patent application is an efficient automatic apparatus that automatically encloses and seals the content sheet 30 in the envelope paper sheet 100. However, in the positioning for enclosing the content in the envelope, all of the envelopes are once moved to the most deviated position without any exception when aligning. Thereafter, the folded envelopes are moved in the widthwise direction again according to the actual position of the envelope just before enclosing, for positioning. Thus, the operation process is complex and takes too much time, thus causing a problem to make it difficult to increase the speed of operation to shorten the processing time.
This embodiment is conceived with the aforesaid problems understood and one of its objectives is to provide an enclosing and sealing apparatus that automatically encloses and seals the content in which the positioning is executed as necessary efficiently using measured positions of envelopes, thus increasing the speed of operation to ensure the short processing time and high efficiency.
The enclosing and sealing apparatus according to the second embodiment of the present invention will be described below. The enclosing and sealing apparatus continuously prints on papers to be envelopes by folding and paper sheets to be contents with respect to each enclosed envelope to be made in the most appropriate order for high efficiency in time. The paper sheets to be envelopes by folding and the paper sheets to be contents are each conveyed in the different conveying paths and folded as necessary. The paper sheets to be envelopes by folding and the paper sheets to be contents are met at the end, and the contents are enclosed in the envelopes. Finally, the enclosed envelope, the flaps of which are closed and sealed, are discharged on the apparatus.
The enclosing and sealing apparatus, as detailed later, determines whether the aligning operation of the content with the envelope is executed or not. The enclosing and sealing apparatus determines based on the measured positions of the envelope and its variation to the size differences between the envelope to enclose and the content. The enclosing and sealing apparatus executes the aligning operation only when it is necessary, thus minimizing the operation so as to ensure the speedy and secure enclosing and sealing operation.
The enclosing and sealing apparatus, whole constitution of which is shown in
As shown in
The paper sheets fed from the feeding racks P are sent from an introductory route to a looped conveying path 5 and conveyed there. Print means, which are spaced apart at a predetermined interval along the lower part of looped conveying path 5 and face downward, form images. In this example, four ink jet apparatuses C, K, M, and Y are disposed for ejecting each color of inks including cyan, black, magenta, and yellow as print means.
A first exit route 6 is bifurcated from this looped conveying path 5. The first exit route 6 is disposed next to the print means in its downstream. The first exit route 6 discharges the paper sheets in the horizontal direction. A second exit route 7 is bifurcated from the upper part of the looped conveying path 5. The second exit route 7 discharges the paper sheets outside of the loop. Furthermore, a switchback route 8 is bifurcated from between the second exit route 7 and the introductory route from the feeding racks P. The switchback route 8 receives the paper sheets conveyed from the conveying path 5 and thereafter reverses them to the conveying path 5, thus turning the paper sheets upside down on the conveying path 5. With this switchback route 8, the paper sheets are conveyed on the conveying path 5 twice with turning the paper sheet upside down on, and the ink jet apparatus C, K, M, and Y print color images on both sides of the paper sheets.
As shown in
The first exit route 6 of the printing unit 2 horizontally extends and projects outside of the casing 4, thereby introduced into the casing 9 of the enclosing and sealing unit 3 next to the casing 4. In the casing 9, the exit route 6 bifurcates into the second conveying route 20 and the first conveying route 10 which each run obliquely downward.
As shown in
A first conveying route 10 includes a path 11 at its former part which is a guiding path to convey the envelope paper sheet 100 to the first folding means. A second conveying route 20 includes a route 21 at its former part which is a guiding path to convey the content sheet 30 to the second folding means. Changeover of the first and the second conveying routes 10 and 20 is executed by a changeover flap (not shown) at the bifurcation point of the first conveying route 10 and the second conveying route 20 on the first exit route 6.
The sensor S1 is disposed at the terminal end of the route 11 at the former part of the first conveying route 10. As shown in
The first folding means is disposed at the terminal end of the route 11 in the downstream of the sensor S1. The first folding means is available for folding the envelope paper sheet 100 to form the envelope form. This first folding means includes a rotatable main folding roller A′, a paper sheet conveying roller D′, and a first folding roller B′. The paper sheet conveying roller D′ and a first folding roller B′ rotate in contact with the main folding roller A′. These rollers are made of rubber, and lengths of these rollers in the axial direction are longer than the width of the envelope paper sheet 100. A route 51 is disposed beyond the main folding roller A′ and the paper sheet conveying roller D′. The route 51 includes a striking portion for the paper sheet at the front edge.
The first conveying route 10 includes a route 13 as its latter part, which horizontally runs from between the main folding roller A′ and the first folding roller B′ of the first folding means of the first conveying route 10. The terminal end of the route 13 at the latter part is introduced into the enclosing and sealing means, which is described later.
The folding means allows passage of the threefold type envelope paper sheet 100 (shown in
Next, the second conveying route 20, which is bifurcated from the exit route 6, is disposed below the first conveying route 10. The second conveying route 20 includes the route 21 at its former part that sends downward the paper sheets horizontally sent from the exit route 6 of the printing unit 2.
The aligning means Z1 is first disposed at the halfway of the route 21. As shown in
As shown in
The second conveying route 20 includes a route 26 at its latter part that runs obliquely upward from between the main folding roller A and the second folding roller C of the second folding means of the second conveying route 20. The route 26 at the latter part meets the route 13 at the latter part of the first conveying route 10 at the enclosing and sealing means.
When the second folding means at the second conveying route 20 folds the content sheet 30, the content sheet 30 is conveyed with the main folding roller A and the paper sheet conveying roller D to the route 52, thus striking the content sheet 30 against the striking portion at the terminal end to slack it. The slack portion of the paper sheet is sandwiched between the main folding roller A and the paper sheet conveying roller B, thus conveyed and folded once. The content sheet 30 is further conveyed along the route 53 and struck against the striking portion at the terminal end to slack it. The slack portion is sandwiched between the main folding roller A and the paper sheet conveying roller C and conveyed, thus conveyed to make the second folding. Accordingly, the content sheet 30 is folded twice and sent to the enclosing and sealing means through the route 26 at the latter part.
As shown in
As shown in
This enclosing and sealing means functions as third folding means for folding the envelope paper sheet 100 as necessary. The enclosing and sealing means also functions as enclosing means for enclosing the content in the envelope by matching the content sheet 30 with the folded envelope paper sheet 100, and folds them so as to enfold the content sheet 30 in the envelope. The enclosing and sealing means includes sealing means for sealing this envelope.
First, the enclosing and sealing means includes a rotatable main folding roller A″, a paper sheet conveying roller D″, a first folding rollers B″, and a second folding rollers C″, which rotate in contact with the main folding roller A″ as the third folding means. These rollers are made of rubber, and their lengths in the axial direction are larger than the width of the envelope paper sheet 100. The envelope paper sheet 100 to be folded twice passes the first folding means (main folding roller A′ and first folding roller B′, etc.) without being folded, thereafter sent to the main folding roller A″, etc. of the third folding means. The envelope paper sheet 100 to be folded twice is folded with the content 30 enclosed.
A route 46 is disposed below these rollers along the conveying direction of the main folding roller A″ and the paper sheet conveying roller D″ of the enclosing and sealing means. The route 46 is disposed along the vertical direction. The route 46 includes a striking portion for the paper sheet at the lower end.
A route 59 is disposed rightward of these rollers along the conveying direction of the main folding roller A″ and the paper sheet conveying roller B″ of the enclosing and sealing means. The route 59 includes a striking portion for the paper sheet at the front edge. At before and downward of the striking portion of the route 59, water adding means 60 is disposed as adhesivity providing means. The water adding means 60 applies water to rewettable paste 107 on the envelope paper sheet 100, which will be described later, thus bringing out adhesivity. This bonds the envelope paper sheet 100 with rewettable paste 107, which will be described later, to form the envelope.
A route 47 is disposed between the main folding roller A″ and the second folding roller C″ of the enclosing and sealing means. The route 47 runs obliquely upward. This route 47 includes a conveying roller (not shown) and a press-bonding rollers 80 along the conveying direction of the envelope. The press-bonding rollers 80 is sealing means which makes a part of the enclosing and sealing means. As shown in
As shown in
The enclosed envelope, which is sealed and completed, is discharged to the discharge tray 48 on the top face of the casing 9 through the route 47.
As shown in
The shape and constitution of the envelope paper sheet 100 used in this embodiment will be described by referring to
As shown in
As shown in
As shown in
Next, the aligning operation of the envelope paper sheet 100 and the content sheet 30 in the enclosing and sealing apparatus and its control will be described by referring to
As shown in
As shown in
At the initiation of the job, the sensor S1 detects the edge of an initial plurality of the envelope paper sheets 100 in the job and send the plurality of amounts of deviation to the controller 91. The controller 91 calculates an representing amount of deviation as a median or a mean value from the plurality of amounts of deviation. The controller 91 also calculates a variation from the plurality of amounts of deviation. The calculated “an amount of deviation” and “variation” are sent to a comparison determining unit 93, which will be described later.
The user provides the envelope forming information from input means 92 to the controller 91 for each one job for a predetermined plurality of enclosed envelopes. The envelope forming information specifies types of the envelope paper sheet 100 and the content sheet 30. Since the sizes of envelopes are stipulated in Postal Acts, the type of the envelope paper sheet 100 is normally limited to types stipulated in the standard. However, there is no limitation on the content. The paper sheet stipulated in the standard can be specified. When the paper sheet in an optional shape is desired to specify, its sizes (width and length) can be specified at the input means 92 with numeric values.
As shown in
The details will be described later. In the positioning control of the envelope paper sheet 100 and the content sheet 30, the size difference in the widthwise direction between the envelope paper sheet 100 and the content sheet 30 is important data. The table for the data of this size difference is required to determine the necessity of the positioning control. As shown in
As shown in
First, when both of the variation and the amount of deviation are smaller than the size difference, the aligning means Z1 does not execute the aligning operation. Even if the content sheet 30 is enclosed in the envelope paper sheet 100 without the aligning operation, the content sheet 30 is enclosed at the position sufficiently apart from the bond range 110 (indicated with oblique lines in such as
For example, assuming the interior width of the envelope paper sheet 100 is 220 mm and the width of the content sheet 30 is 210 mm. In this case, the size difference is 5 mm at one side. Here, when the median of amounts of deviation of the envelope paper sheet 100 is 2 mm, and “variation” is the range of ±2 mm (range of ±2 mm from 2 mm of median), it is not necessary to move the content sheet 100 in the job.
Next, when the amount of deviation exceeds the size difference, and the variation is smaller than the size difference, the aligning means Z1 executes the aligning operation. The content sheet 30 is moved in the opposite direction by the amount of deviation of the envelope paper sheet 100, then the variation is within the range of the size difference. Thus, it is possible to correct the position to enclose.
For example, assuming the described size difference is 5 mm at one side. The median of amounts of deviation of the envelope paper sheet 100 exceeds 5 mm (for example 6 mm), and the variation is within the range of ±2.5 mm. In this case, the content sheet 30 is moved in the opposite direction of the deviation of the envelope paper sheet 100 by the amount of deviation (for example, the described 6 mm) of the envelope paper sheet 100. Thus, it is possible to align the position to enclose. In this case, the comparison determining unit 93 stores the median of amounts of deviation from the controller 91 as the aligning position data in the memory M2. This job can be controlled with the aligning position data stored in the memory M2.
Next, when the variation exceeds the size difference, the aligning operation by the aligning means Z1 alone is not executed. In this case, as described in [Solution to Problem], the aligning means Z1 preliminary moves the content sheet 30 by the predicted maximum value (maximum deviation), thereafter the position of the folded content sheet 30 is adjusted by the positioning means Z2 based on the edge position of the envelope paper sheet 100 measured by the sensor S1. A part which is framed by dashed lines in
In the example in which the described size difference is 5 mm at one side, regardless of the median of amounts of deviation of the envelope paper sheet 100, the position of the content sheet 30 is adjusted for the each envelope paper sheet 100 in this job as long as the variation exceeds the range of ±2.5 mm (such as ±5 mm).
As described above, this enclosing and sealing apparatus detects the edge of the initial plurality (for example 10) of envelope paper sheets 100 so as to obtain the plural pieces of edge data (an amount of deviation), for each one job for making a predetermined plurality of enclosed envelopes from the predetermined types of envelope paper sheet 100 and the content sheet 30. The enclosing and sealing apparatus calculates the median and the variation of amounts of deviation of the envelope paper sheet 100 in the job at the control means 90. With this data and the size difference between the width of the envelope paper sheet 100 to be used for this job and the width of the content sheet 30, the control means 90 determines whether the control by the aligning means Z1 is executed or not. If the control means 90 determines that the control by the aligning means Z1 is executed, the necessary aligning position data is generated and save in the memory M2. Once the necessary aligning position data is saved in the memory M2, it is not necessary to detect the envelope paper sheet 100 with the sensor S1. In this job, the aligning means Z1 is just driven with the obtained aligning position data so as to align the content sheets 30 and adjust its position to the envelope paper sheet 100, thus quickly and unfailingly enclosing to make the enclosed envelope at high speed.
In this embodiment, the necessary aligning position data for each the job is saved in the memory M2 and used for the control. When the job is completed or the next job is specified and the envelope forming information is provided to the apparatus, the previous aligning position data stored in the memory M2 may be reset. Then, the new aligning position data may be generated in association with the operation of the enclosing and sealing apparatus according to a new enclosed envelope making condition and stored in the memory M2.
In this embodiment, since the sensor S2 is disposed at the exit route 6, which is the entrance of the enclosing and sealing unit 3, this sensor S2 may be used instead of the sensor S1. In this case, the edge position of the envelope paper sheet 100 can be obtained early. It is possible to send the edge data to the control means 90 every time the envelope paper sheet 100 is conveyed so as to move the content sheet 30 to adjust its position to the envelope paper sheet 100 by the amount of deviation without storing the data in the memory. However, the position of the sensor S2 which detects the edge position is disposed far from the enclosing and sealing means in upstream. Thus, if the position of the envelope paper sheet 100 in the widthwise direction further deviates in the conveyance after the obtainment of the edge data, the additional deviation may degrade the accuracy of the edge data of the envelope.
In the described second embodiment, the sensor S1 at the side of the enclosing and sealing unit 3 obtains the edge data of the plurality of envelope paper sheets 100. The control means 90 generates the aligning position data based on the edge data and the size difference between the envelope paper sheet 100 and the content sheet 30. However, the sensor which detects the edge of the envelope paper sheet 100 may be disposed at the side of the printing unit 2. The data of the size difference between the envelope paper sheet 100 and the content sheet 30, which is necessary to generate the aligning position data, may be provided from the control means dedicated for the printing unit 2.
The enclosing and sealing unit 3 of the enclosing and sealing apparatus 1 according to the described second embodiment is an exemplary configuration. The conveying paths of the envelope paper sheet 100 and the content sheet 30 in the enclosing and sealing unit are not necessarily independent paths, the conveying paths may be entirely or partially common and the both paper sheets may be conveyed at the different timing.
The enclosing and sealing apparatus 1 according to the described second embodiment includes the printing unit 2. However, the printing unit is not essential for the enclosing and sealing apparatus according to the present invention. In the case where the printing unit is provided, the printing unit is not limited to an apparatus integrated with the enclosing and sealing unit, and the printing unit may be existing image forming apparatus. That is, an ordinary image forming apparatus installed in a business office or the like may be used as the printing unit 2 in this embodiment, and the enclosing and sealing unit 3 may be coupled to make the enclosing and sealing apparatus 1 according to the present invention. Thus, one existing image forming apparatus may be used for printing the envelope paper sheet 100 and the content sheet 30, thus reducing installation cost for an automatic enclosing and sealing apparatus. The image forming apparatus may be an ink jet apparatus as described in the embodiment, and other types of image forming means may be used. This is applicable in any principle of image formation.
Although the enclosing and sealing apparatus 1 according to the described second embodiment folds the envelope paper sheets 100 to make the envelopes, this should not be construed in a limiting sense. Completed envelopes may also be used.
In the described second embodiment, paper sheets are used as the envelope paper sheet 100 and the content sheet 30. However, this should not be construed in a limiting sense. For example, a rolled paper sheet may be used by cutting it into a required length every time it is used.
The first embodiment (
The second embodiment (
{Patent Literature 1} Japanese Unexamined Patent Application Publication No. 2001-348153.
{Patent Literature 2} Japanese Unexamined Patent Application Publication No. Hei 7-52596
Number | Date | Country | Kind |
---|---|---|---|
2011-036092 | Feb 2011 | JP | national |
2011-047864 | Mar 2011 | JP | national |