Projection of motion pictures in theatres is still primarily done based on film and projection technology little changed since the dawn of motion pictures. However, compared to film, digital media allows for much easier storage of representations of an image. In order to move beyond film-based projection, it would be useful to provide a digital projector which fits general theater requirements.
Furthermore, a Consortium of studios has set forth a standard for future digital projection systems. While this standard is by no means final, it provides a rough guide as to what a system must do—what specifications must be met. Thus, it may be useful to provide a digital projection system which meets the standards of the studio Consortium.
The present invention is illustrated by way of example in the accompanying drawings. The drawings should be understood as illustrative rather than limiting.
A system, method and apparatus is provided for aligning multiple image frames in an LCoS projector. The specific embodiments described in this document represent exemplary instances of the present invention, and are illustrative in nature rather than restrictive.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
High resolution projector designs utilizing multiple LCoS imaging chips require the various LCoS images that make up the entire image to be accurately aligned to achieve an optimum or near-optimum display. This requires each of the images to be exactly the same size on the projection screen, (essentially no magnification variance), located in exactly the same position laterally and vertically, and not rotated with respect to each other (e.g. essentially no registration errors). A display is considered optimum when the projected image from each LCoS chip is aligned within one half pixel tolerance of all the images from the other LCoS chips in the projector, i.e. all images fall within half a pixel of an intended position.
It is not economical to manufacture projectors with the close mechanical tolerances necessary for each projector to achieve and maintain the alignment of each LCoS component image to within the desired projected image tolerances. The desired alignment is achieved by mechanical alignment that overlaps the images on the screen to a given extent, and then electronically moving each image within its own chip until precise alignment with the primary image is achieved. This is accomplished by an optical alignment system and associated electronics and software program that sequentially generates the same test pattern on the screen for each LCoS component image, and which is re-imaged onto the same set of detectors in an image detection system. This system determines the precise location of the component image (frame) from the primary image, and is aligned with the primary image by digitally moving the image within the LCoS chip. During the alignment process each image (frame) location is defined by a bright, high contrast ‘hollow’ rectangular test pattern loaded into each LCoS chip so the outer edges of the projected 4096×2160 pixel image are well defined and in focus on the screen as shown in
Turning specifically to
Placement of the detectors 250 at predetermined locations along the interface between outer band 220 and outer image band 230 allows for determination of whether an image is within outer image band 230 or not. Note that in some embodiments, a screen is not used—rather, detection occurs in a sensor integrated with the projector. In such an instance, screen 210, outer band 220, outer image band 230 and inner image area 240 are portions of a sensor array. In particular, such portions of the system may be defined in relation to positioning of a set of detectors 250 within such a system, and the detectors 250 may be the only detection components present. Moreover, in such a system, detectors 250 need not have the same pixel size in absolute dimensions that one would have on a projector screen—a closer detector with smaller pixels would provide appropriate functionality.
Referring to digital LCoS projectors generally, the primary image in a projector is electronically centered in its LCoS chip. To effectively move the image of each other LCoS chip, the chip has to be larger than the 4096×2160 primary image in an amount determined by the mechanical mounting accuracy of each LCoS chip. For example, if each LCoS chip in the projector is mechanically aligned to within ±0.0047 inches of a correct location relative to the primary, and the chip is 1.200 inches wide, the alignment range is (±0.0047/1.200)×4096 or ±16 pixels. The LCoS chip must then be 4096±16 pixels wide, and 2160±16 pixels high. Thus, one may use an LCoS chip that is 4128 pixels wide by 2192 pixels wide to achieve the desired tolerances. Other tolerances may be achievable, depending on available manufacturing capabilities and LCoS components in various embodiments.
The full image is composed of separate RGB and polarization images, a 3D RGB image includes six separate component images, with each type of image potentially assigned to a specific chip. Each frame can be individually moved within the chip by adjusting the clock counts for the rows and/or columns of each frame. The six frames are optically combined to form a single image by aligning each frame within the 4128×2192 pixel chip. E.g. the first pixel of the primary image is located at chip column location +16 and row location +16. The first pixel of the second chip can be adjusted by ±16 pixels in both columns and rows to exactly overlay the first pixel of the first chip, etc. As a result, the top left corner of each frame can be placed exactly in the same position on the screen (or very nearly so). Rotation and magnification adjustments can be achieved by adjusting clock counts within the image rows or columns. A suggested system for doing this is shown in
Turning more specifically to
Separately, sensor inputs 290 collect information about the projected image, and provide that information to calibration logic 280. This may occur on a continuous basis, on an incidental basis as requested by a system or a user, or it may occur based on affirmative steps for calibration (such as deploying and connecting calibration sensors, for example). Calibration logic 280 interprets data from sensors 290 to determine registration/alignment errors in the projected image, and determines appropriate adjustments to image data for each LCoS chip. Image adjustment logic 275 then uses data from calibration logic 280 to adjust the flow of data from image buffers 285 to LCoS chips 270. Each LCoS chip 270 may have associated adjustment parameters implemented by an associated image adjustment logic module 275. This may, in turn, result in corresponding pixel data going into different pixels depending on which LCoS chip 270 is being provided data to account for registration and alignment errors.
The alignment system may be co-located or integrated with the projector and may contain a number of linear CCD detector arrays positioned as shown in
Turning more specifically to the readout of
If diagonally split silicon detectors are employed the image positioning system (IPS) must first be precisely aligned with the primary image so the signals from each half of the detector are equal. The diagonal detectors do not provide a signal for image focusing and require the primary image of the rectangular test pattern be of a specific size on the detectors. This is best achieved by electronically adjusting the primary image test pattern size, orientation, and location to the detector pattern, rather than permitting a relatively arbitrary image position for the primary image.
After focusing the initial image (frame) on the screen, alignment is achieved by activating primary LCoS chip with the hollow rectangular test pattern and adjusting the image position within an electronic memory to center the image of the projected display in the focal plane of a pre-aligned image sensor. For an image of say 4096 pixels horizontally, the image memory should be about ±16 pixels (pxls) larger, i.e. 4,128 pixels wide, corresponding to ± 1/258 of the image width in some embodiments. For an image chip of 1.2 inches width this corresponds to a mechanical positional tolerance range of ±0.0047 inches.
Image Alignment Functions
Top edge alignment and image rotation: In an embodiment, two CCD sensor arrays are located each nominally ⅛ of the distance in from the image sides so as to cross symmetrically the top edge of the projected image with each sensor array having 128 sensor elements arranged vertically. The sensor optical system magnification is designed so one sensor element corresponds to ¼ pixel. The remaining chips each illuminate the screen in sequence and their images are adjusted vertically and rotated within the electronic memories to match the CCD detector patterns for each chip. That is, images for succeeding LCoS chips are adjusted to match a primary image profile on the detectors in question. This aligns the top edges of each chip image and eliminates rotation between the images, both to within less than one pixel.
Magnification: In one embodiment, a single CCD array is positioned at nominally the midpoint of the image bottom edge so the edge of the projected image crosses about midpoint on the vertically aligned sensor. The magnification of each individual image of each LCoS chip is adjusted within the electronic memory so that each image is of the same magnification to within one pixel of the primary image.
Side edge alignment: In one embodiment, two CCD array sensors are positioned within the alignment system so as to cross the two edges of the projected image horizontally, at about the mid point of the image vertical sides. The images are electronically moved sideways within the memory to align the edges of all images with each other—each image from the various LCoS chips is adjusted to match the primary image.
As all LCoS chips are fabricated from the same mask set the image aspect ratio is expected to be the same for all images and the image magnification need only be adjusted in one axis. However, adjustment along a side can be used to adjust magnification issues if such adjustment is deemed necessary.
The Image Positioning System (IPS) includes a lens and a set of detectors as shown in
The integrated IPS does not view the image on the projection screen and is not useful for automatically focusing the image on the screen. Automatic focusing could be obtained by sampling the light output from the projection lens, but then changing lenses to rescale the projected image would complicate the alignment system as both the image size and focus in the IPS would vary with the lens used. Rather, a separate focusing system (potentially a manual focusing system) may be used instead of a focus system integrated with the alignment (IPS) system.
Turning now to
Each of the three beam splitters separates its portion of the spectrum into two orthogonal polarization components, each of which is directed to an active LCoS (Liquid Crystal on Silicon) image generation plane (chips 135, 140, 150, 155, 165 and 170). Both polarization components are selectively polarization rotated on a pixel by pixel basis by an electrical signal applied to the LCoS display chips, so as to modulate the input light and impart an image onto the throughput light. Polarization modulated light is reflected from each LCoS chip back through the polarizing beam splitters (130, 145 and 160), so that both polarizations exit from the polarizing beam splitter and are re-combined with similarly processed light of the other spectral portions via dichroic mirrors (175 and 180) to form a white image (at projection lens image plane 185) which is focused on a remote screen using a projection lens (190) to provide output light 195.
Application of a voltage to an LCoS chip pixel that is insufficient for 90 degree rotation of the optical polarization results in a smaller rotation of the plane of polarization for a beam reflected from an LCoS chip. On passing back (of the beam) through the polarizing beam splitter the rotated beam is split into two orthogonal polarized components of different intensities that exit the beam splitter in different directions. Thus the intensity of the output beam is reduced in proportion to the degree of polarization rotation (i.e. voltage on the pixel), and the unrotated portion is returned along its entrance path back toward the source.
Although many optical projection systems have been designed, multicolor displays using reflective LCoS image generation chips, one design the inventor is aware of is not well suited to large high brightness displays. The LCoS image generation devices employ a liquid crystal layer sandwiched between a transparent optical surface and a silicon electronic chip which applies a voltage to the liquid crystal layer on a pixel by pixel basis, causing spatially localized polarization rotation of light and thereby enabling an image to be imparted to light input through the transparent surface and reflecting back from the chip surface. The LCoS devices are universally employed in a reflective mode where the reflected light contains the image information.
The above referenced design uses four beam splitting cubes and several color absorption filters. It suffers from a low light efficiency as the input light is first split into two polarizations, each of which is then passed through color filters. This implementation causes half of the polarized light to be absorbed in the color filters. The absorbed light significantly heats the filters, trapping the heat between the polarizing cubes. Consequently this design, although compact, is only compatible with low intensity light, perhaps small fractions of a watt. A large screen multi-media display must be capable of transmitting several hundred watts of light, with potentially tens of watts absorbed in the image generating chips.
In contrast the proposed optical design implementation first separates the input light on a spectral basis, blue, red, then green light, using color separating dichroic mirrors, and each color is then input to its own polarizing beam splitter which directs polarized light to two LCoS image planes, one for each light polarization state. The light is thus spread over six separate LCoS chips. The reflected output images from the three beam splitters each contain both optical polarizations for their respective color, and the colored images are then re-combined using dichroic mirrors. By this means no light is absorbed in color filters and the system is capable of much higher optical power throughput as the dichroic mirrors absorb comparatively little light, and each color path is very efficient with minimal light loss at the LCoS planes. The LCoS image chips are accessible from the rear (the non-image side) and active chip cooling may therefore be employed to maintain each chip within a preferable operating temperature range.
In one embodiment, the blue light is first separated using a blue reflecting, red and green transmitting dichroic mirror. Blue light is separated first as, for a maximum brightness display, it can least tolerate optical power losses, and some red and green light is lost at the blue reflecting dichroic mirror. Next the red light is separated as this is less tolerant to loss than the green portion of the spectrum. Reflection spectra of typical dichroic mirrors are shown in
After passing through their respective LCoS image planes each color is recombined using dichroic mirrors similar to those used in the initial color separation process. It is noted the two re-combining dichroic mirrors are very angle sensitive as rotations will move the image planes out of registration. In an embodiment, the optical path lengths from the optical source to each LCoS image plane is essentially the same to enable essentially the same illumination fill factor and pattern to be obtained for each image plane. Similarly the three output colored images from the LCoS are all essentially equidistant from the projection lens, thereby enabling all images to be projected in focus.
The three images are typically combined in the image plane of the projection lens enabling existing projection lenses to be used. The images from the LCoS image generation chips are relayed to the projection lens image plane using standard relay lens techniques to maximize light throughput. The optical paths are arranged so that a single set of relay optics relays the image from each LCoS chip to the projector lens image plane. The relay optics is configured so the magnification from the LCoS image chips to the output image plane matches the output image plane format.
The basic optical system of projector 100 lies in a plane in some embodiments, which minimizes the number of optical elements, thereby minimizing scattered light and maintaining maximum image contrast. Each beam splitting cube is mounted on the same surface and all optical paths are co-planer. This facilitates fabrication and optical alignment. The co-planar layout also facilitates thermal control of the LCoS image generators as ‘through the support-plate’ airflow in a direction perpendicular to the plane of the optical system is easily configured and keeps the cooling air away from the optical path, reducing the possibility of optical artifacts created by air turbulence.
The LCoS image projector may use existing projection display components such as lamp houses and associated power supplies, and available projection lenses. Both lamp houses and projection lenses are typically close to the image plane in film projectors. The light output from the lamp house is therefore relayed to the LCoS image chips by illumination relay optics with a magnification that matches the lamp output area to the image chip area.
IPS 410 receives what would otherwise be wasted light—light from dichroic mirror 180 which would not go to projection lens 185. The received light is focused by lens 430 and reflects off of mirror 425 to alignment detectors 420. Alignment detectors 420 may then be used to adjust image input data for each of LCoS chips 135, 140, 150, 155, 165 and 170.
The systems described herein may be expected to implement various processes. Examples of an alignment process and a projection process are provided in
Process 500 begins in an embodiment with projection of a test image at module 510. Alternatively, any image expected to provide illumination in parts of the image where calibration is tested may be projected. At module 520, alignment of the image with the desired projection of the image is detected. This may refer to alignment with a reference image, or to alignment with a predetermined standard, for example.
If necessary, at module 530, a shift is made in the test image, based on an indication that the image is out of alignment. Depending on the type of alignment tested in a given process, this may involve “raising” or “lowering” the image (shifting vertically), translating the image to one or another side (shifting horizontally) or rotating the image. Following the shift to the test image, alignment is detected again at module 520. At module 540, a determination is made as to whether the alignment status is now acceptable. If not, the process returns to module 530. If so, the process moves to module 550.
Process 500 may be repeated for each of a set of LCoS chips in some embodiments. Additionally, in some embodiments, process 500 may be repeated for each of a set of different types of alignment, such as rotation, linear translation (horizontal and/or vertical) and magnification. Thus, the alignment process may include a number of different instances of process 500, some of which may be executed in parallel in some embodiments.
In contrast,
The computer system 800 includes a processor 810, which can be a conventional microprocessor such as microprocessors available from Intel or Motorola. Memory 840 is coupled to the processor 810 by a bus 870. Memory 840 can be dynamic random access memory (dram) and can also include static ram (sram). The bus 870 couples the processor 810 to the memory 840, also to non-volatile storage 850, to display controller 830, and to the input/output (I/O) controller 860.
The display controller 830 controls in the conventional manner a display on a display device 835 which can be a cathode ray tube (CRT) or liquid crystal display (LCD). Display controller 830 can, in some embodiments, also control a projector such as those illustrated in
The non-volatile storage 850 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 840 during execution of software in the computer system 800. One of skill in the art will immediately recognize that the terms “machine-readable medium” or “computer-readable medium” includes any type of storage device that is accessible by the processor 810 and also encompasses a carrier wave that encodes a data signal.
The computer system 800 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an input/output (I/O) bus for the peripherals and one that directly connects the processor 810 and the memory 840 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
Network computers are another type of computer system that can be used with the present invention. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 840 for execution by the processor 810. A Web TV system, which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in
In addition, the computer system 800 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of an operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile storage 850 and causes the processor 810 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 850.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention, in some embodiments, also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-roms, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages.
The external communications interface 973 may use a proprietary (a standard developed for such a device but not publicized by its developer), or a publicly available communications standard, and may be used to receive both digital image data and commands from a user. The projector communications interface 976 provides for communication with projector subsystem 980, allowing for control of LCoS chips (not shown) included in projector subsystem 980, for example. Thus, projector communications interface 976 may be implemented with cables coupled to LCoS chips, or with other communications technology (e.g. wires or traces on a printed circuit board) coupled to included LCoS chips. Other components of computer subsystem 960, such as dedicated user input and output modules, may be included, depending on the needs for functionality of a conventional computer system in system 950. Moreover, computer 960 can implement calibration and image translation functions internally, based on feedback from an associated IPS of projector 980. System 950 may be used as an integrated, standalone system—thus allowing for the possibility that each theater may use its own projector with a built-in control system, for example.
It may be useful to provide network services for a projection system.
Access to the internet 1005 is typically provided by internet service providers (ISP), such as the ISPs 1010 and 1015. Users on client systems, such as client computer systems 1030, 1040, 1050, and 1060 obtain access to the internet through the internet service providers, such as ISPs 1010 and 1015. Access to the internet allows users of the client computer systems to exchange information, receive and send e-mails, and view documents, such as documents which have been prepared in the HTML format. These documents are often provided by web servers, such as web server 1020 which is considered to be “on” the internet. Often these web servers are provided by the ISPs, such as ISP 1010, although a computer system can be set up and connected to the internet without that system also being an ISP.
The web server 1020 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the world wide web and is coupled to the internet. Optionally, the web server 1020 can be part of an ISP which provides access to the internet for client systems. The web server 1020 is shown coupled to the server computer system 1025 which itself is coupled to web content 1095, which can be considered a form of a media database. While two computer systems 1020 and 1025 are shown in
Client computer systems 1030, 1040, 1050, and 1060 can each, with the appropriate web browsing software, view HTML pages provided by the web server 1020. The ISP 1010 provides internet connectivity to the client computer system 1030 through the modem interface 1035 which can be considered part of the client computer system 1030. The client computer system can be a personal computer system, a network computer, a web tv system, or other such computer system.
Similarly, the ISP 1015 provides internet connectivity for client systems 1040, 1050, and 1060, although as shown in
Client computer systems 1050 and 1060 are coupled to a LAN 1070 through network interfaces 1055 and 1065, which can be ethernet network or other network interfaces. The LAN 1070 is also coupled to a gateway computer system 1075 which can provide firewall and other internet related services for the local area network. This gateway computer system 1075 is coupled to the ISP 1015 to provide internet connectivity to the client computer systems 1050 and 1060. The gateway computer system 1075 can be a conventional server computer system. Also, the web server system 1020 can be a conventional server computer system.
Alternatively, a server computer system 1080 can be directly coupled to the LAN 1070 through a network interface 1085 to provide files 1090 and other services to the clients 1050, 1060, without the need to connect to the internet through the gateway system 1075.
Ultimately, various embodiments can be implemented. In one embodiment, a system for aligning multiple image frames in an LCoS projector is provided. The system includes a plurality of detectors aligned with a desired projection image of a projector. The plurality of detectors is coupled to the projector. Each detector of the plurality of detectors is aligned with an edge of the desired projection image. The plurality of detectors may be coupled to a screen distant from the projector, or part of a calibration unit associated more directly with the projector. The system may further include calibration logic in the projector. The calibration logic is to receive data from the plurality of detectors and to adjust an image of the projectors responsive to the data from the plurality of detectors.
In some embodiments, an optical component is positioned at an outlet of the projector to receive calibration light from the projector. The calibration light correspond to light provided as an output beam by the projector. The calibration light is separate from the output beam. The optical component is further positioned to provide the calibration light to the plurality of detectors. In some such embodiments, the optical component includes a lens coupled to a mirror.
In some embodiments, the detectors of the plurality of detectors are CCD row elements. Moreover, in some embodiments, the CCD row elements each include 128 CCD sensors. In other embodiments, the detectors of the plurality of detectors are each split silicon light detectors. In some embodiments, the calibration logic is in the projector, and includes a set of delay logic modules coupled to image modulation components of the projector. Moreover, the calibration logic may further include control logic to receive data from the plurality of detectors and to control the delay logic modules responsive to the data from the plurality of detectors.
In another embodiment, a system is provided. The system includes a housing and first, second and third LCoS assemblies coupled to the housing. The system may further include a first beam splitter and a second beam splitter both coupled to the housing. The first beam splitter is arranged to split incoming light between the first LCoS assembly and the second beam splitter. The second beam splitter is arranged to split incoming light between the second LCoS assembly and the third LCoS assembly. The system also includes a first beam recombiner and a second beam recombiner both coupled to the housing. The first beam recombiner is arranged to receive light from the first LCoS assembly and the second LCoS assembly. The second beam recombiner is arranged to receive light from the first beam recombiner and from the third LCoS assembly.
The system further includes a first light source to provide incoming light to the first beam splitter. The system also includes an output optics element coupled to the housing and arranged to receive light from the second beam recombiner and to focus an output light source. Note that the first and second beam recombiners may be dichroic mirrors in some embodiments. The system further includes a plurality of detectors aligned with a desired projection image of a projector. The plurality of detectors is coupled to the projector. Each detector of the plurality of detectors is aligned with an edge of the desired projection image. The system also includes calibration logic. The calibration logic includes a set of delay logic modules coupled to the first, second and third LCoS assemblies. The calibration logic also includes control logic to receive data from the plurality of detectors and to control the delay logic modules responsive to the data from the plurality of detectors.
In some embodiments, the detectors are positioned on a screen. The screen is positioned at a distance from the output optics element to receive an image from the output optics element for viewing by a group of people. In other embodiments, the detectors are coupled to the housing physically in a calibration subsystem proximate to the housing and apart from a screen distant from the housing for receiving images from the housing. Moreover, in some embodiments, the system also includes an optical component positioned at an outlet of the housing to receive calibration light from the second beam recombiner. The calibration light corresponds to light provided by the output optics. The optical component is further positioned to provide the calibration light to the plurality of detectors. In some embodiments, the optical component includes a lens coupled to a mirror. Furthermore, in some embodiments, the detectors of the plurality of detectors are CCD row elements. In other embodiments, the detectors of the plurality of detectors are each split silicon light detectors.
In yet another embodiment, a method is provided. The method includes detecting alignment of a first image. The method also includes providing data indicating alignment of the first image. The method further includes adjusting the first image responsive to the data. The method may further include detecting alignment of a second image. The method may also include providing data indicating alignment of the first image with the second image. The method may further include adjusting the second image responsive to the data. Moreover, detecting alignment may include detecting registration errors, magnification and rotation in some embodiments.
One skilled in the art will appreciate that although specific examples and embodiments of the system and methods have been described for purposes of illustration, various modifications can be made without deviating from present invention. For example, embodiments of the present invention may be applied to many different types of databases, systems and application programs. Moreover, features of one embodiment may be incorporated into other embodiments, even where those features are not described together in a single embodiment within the present document.