This invention relates to solar cells and, more particularly, to solar cells formed using ion implantation.
Ion implantation is a standard technique for introducing conductivity-altering impurities into a workpiece. A desired impurity material is ionized in an ion source, the ions are accelerated to form an ion beam of prescribed energy, and the ion beam is directed at the surface of the workpiece. The energetic ions in the ion beam penetrate into the bulk of the workpiece material and are embedded into the crystalline lattice of the workpiece material to form a region of desired conductivity.
Solar cells are one example of a device that uses silicon workpieces. Any reduced cost to the production of high-performance solar cells or any efficiency improvement to high-performance solar cells would have a positive impact on the implementation of solar cells worldwide. This will enable the wider availability of this clean energy technology.
Solar cells typically consist of a p-n semiconducting junction.
On the back side of the IBC solar cell 205 is an emitter region 215. The doping pattern of the emitter region 215 is alternating p-type and n-type dopant regions in this particular embodiment. The n+ back surface field 204 may be approximately 450 μm in width and doped with phosphorus or other n-type dopants. The p+ emitter 203 may be approximately 1450 μm in width and doped with boron or other p-type dopants. This doping may enable the junction in the IBC solar cell 205 to function or have increased efficiency. This IBC solar cell 205 also includes a passivating layer 212, p-type contact fingers 210, n-type contact fingers 211, and contact holes 213 through the passivating layer 212.
To form the IBC solar cell, at least two patterned doping steps may be required. These patterned doping steps need to be aligned to prevent the p+ emitter 203 and the n+ back surface field 204 from overlapping. In one instance, the alignment needs to be between approximately 5-50 μm. Poor alignment or overlapping may be prevented by leaving a gap between the p+emitter 203 and the n+ back surface field 204, but this may degrade performance of the IBC solar cell depending on the size of the gap. Even when properly aligned, such patterned doping may have large manufacturing costs. For example, photolithography or hard masks (such as an oxide) may be used, but both are expensive and require extra process steps. Furthermore, it may be difficult to construct a shadow mask with long, thin fingers that may be used, for example, with a boron implant. Therefore, there is a need in the art for an improved method of doping solar cells and, more particularly, an improved method of doping IBC solar cells using ion implantation.
According to a first aspect of the invention, a method of manufacturing a workpiece is provided. The method comprises selectively doping a first species into a workpiece to form at least one first doped region. A soft mask is applied to the first doped region. A second species is implanted into the workpiece. The second species forms at least one second doped region and the soft mask blocks a portion of the second species. The soft mask is then removed.
According to a second aspect of the invention, a method of manufacturing a workpiece is provided. The method comprises selectively implanting an n-type species into a workpiece through a mask defining at least one aperture. The mask is disposed a distance from the workpiece. The n-type species forms at least one first implanted region. A soft mask is applied to the first implanted region. A p-type species is implanted into the workpiece. The p-type species forms at least one second implanted region and the soft mask blocks a portion of the p-type species. The soft mask is then removed.
According to a third aspect of the invention, a method of manufacturing a workpiece is provided. The method comprises selectively implanting a p-type species into a workpiece through a mask defining at least one aperture. The mask is disposed a distance from the workpiece. The p-type species forms at least one first implanted region. A soft mask is applied to the first implanted region. An n-type species is implanted into the workpiece. The n-type species forms at least one second implanted region and the soft mask blocks a portion of the n-type species. The soft mask is then removed.
For a better understanding of the present disclosure, reference is made to the accompanying drawings, which are incorporated herein by reference and in which:
The embodiments of this method are described herein in connection with an ion implanter. Beamline ion implanters, plasma doping ion implanters, focused plasma systems, systems that modulate a plasma sheath, or flood ion implanters may be used. However, gaseous diffusion, furnace diffusion, laser doping, other plasma processing tools, or other methods known to those skilled in the art also may be used for the blanket or selective implant or doping steps. While specific n-type and p-type dopants are listed, other n-type or p-type dopants may be used instead and the embodiments herein are not limited solely to the dopants listed. Furthermore, while one particular embodiment of a solar cell is specifically listed, embodiments of this process may be applied to other solar cell designs or even other workpieces such as semiconductor wafers or flat panels. Thus, the invention is not limited to the specific embodiments described below.
In
The soft mask 101 may have a thickness of approximately 1 μm above a surface of the workpiece 100. In other embodiments, the soft mask 101 has a thickness between approximately 100 nm and 50 μm or less than 100 nm above a surface of the workpiece 100. Certain soft mask 101 materials may be unable to print less than 100 nm without losing edge fidelity, but other materials are capable of being printed at such a thickness.
In one particular embodiment, the position of the amorphized n+ back surface fields 204 are optically measured and the soft mask 101 is applied only to the areas of the workpiece 100 that have been implanted to form the n+ back surface fields 204. This measurement may use, for example, a charge-coupled device (CCD) camera or other camera system. A reflective laser system, light emitting diode (LED) reflective system, or IR system also may be used. Images at several locations on the workpiece 100 may be obtained and pattern recognition may be used to locate the n+ back surface field 204 using, for example, the amorphized regions of the workpiece 100 or a fiducial.
In
While a particular embodiment is disclosed in
In
In
In one particular embodiment, the position of the amorphized p+ emitters 203 are optically measured and the soft mask 101 is applied only to the areas of the workpiece 100 that have been implanted to form the p+ emitters 203. This measurement may use, for example, a CCD camera or other camera system. A reflective laser system, LED reflective system, or IR system also may be used. Images at several locations on the workpiece 100 may be obtained and pattern recognition may be used to locate the p+ emitters 203 using, for example, the amorphized regions of the workpiece 100 or a fiducial.
In
The embodiments of
While distinct p+ emitters 203 and n+ back surface fields 204 are illustrated herein, there may be some overlap between the p+ emitters 203 and n+ back surface fields 204. This overlap may be approximately 50 μm in one instance. This can be accomplished by adjusting the dimensions of the apertures 105 in the mask 104, the placement of the soft mask 101, or both.
While implantation is specifically described, certain processes herein may be accomplished using other doping methods. For example, gaseous diffusion or furnace diffusion may be used for certain steps. In another instance, laser doping may be used for the selective doping step instead of ion implantation through a mask. Laser doping may selectively heat a paste applied to the workpiece to form doped regions in a particular pattern. The selective implantation of the species also may use a focused ion beam, which may or may not use a mask similar to the mask 104. Thus, other methods known to those skilled in the art may be used.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Furthermore, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
This application claims priority to the provisional patent application entitled “Aligning Successive Implants with a Soft Mask,” filed Mar. 4, 2010 and assigned U.S. App. No. 61/310,431, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4106954 | de Brebisson et al. | Aug 1978 | A |
4255212 | Chappell et al. | Mar 1981 | A |
5528058 | Pike, Jr. et al. | Jun 1996 | A |
7190458 | Borden et al. | Mar 2007 | B2 |
7727866 | Bateman et al. | Jun 2010 | B2 |
7776727 | Borden | Aug 2010 | B2 |
7820460 | Sullivan et al. | Oct 2010 | B2 |
20040025932 | Husher | Feb 2004 | A1 |
20090227094 | Bateman et al. | Sep 2009 | A1 |
20090227095 | Bateman et al. | Sep 2009 | A1 |
20090308439 | Adibi et al. | Dec 2009 | A1 |
20100154870 | Bateman et al. | Jun 2010 | A1 |
20100184243 | Low et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0875945 | Nov 1998 | EP |
4-115517 | Apr 1992 | JP |
4115517 | Apr 1992 | JP |
2009033134 | Mar 2009 | WO |
2010108151 | Sep 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20110217810 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61310431 | Mar 2010 | US |