1. Field of the Invention
The invention relates in general to methods and devices for aligning adjacent plates prior to joining them together by welding, brazing, adhesive bonding, or the like.
2. Description of the Prior Art
In the field of welding, a number of clamping devices have been invented to serve the purpose of metal plate alignment. Daubon U.S. Pat. No. 4,513,955 proposes the expedient of an L-shaped member in which a working screw is threaded through one arm to apply pressure on one plate while the other arm is bolted to an angle bracket that is removably tack welded to the other plate. Varga U.S. Pat. No. 3,556,508 proposes a similar expedient except that the L-shaped member is welded to a flat bed and an adjusting screw is threadably mounted in the bed. The flat bed with the permanently mounted L-shaped member is removably tack welded to the plate. These proposed expedients require a specially manufactured flat bed or bracket that has a limited life because of the effects of repeatedly tack welding, breaking, and re-welding it in the same place. Both Varga and Daubon require the use of screws and threaded holes in the same mounting bracket that is consumed by repeated welding in the same spot. The tools for forming threads in holes are typically not immediately available to a welder at the job site where large plates are being welded together. Likewise, the removal and insertion of screws in clamps interrupts the flow of work and slows down the operation. If a small screw is lost it is often not immediately replaceable on a job site.
Conventional practice often comprises just cutting a C-clamp in half to form an L-shaped member much like that shown in Varga. The cut stub is then removably tack welded directly to a plate. Some part of the stub is consumed every time it is tack welded and then broken away from a plate, so the life of the tool is limited. The clamp itself is part of the tool so that when the bed or bracket is tack welded to a plate the clamp may be in the way or it may suffer damage during the welding.
Other prior proposed plate alignment expedients include, for example, Neuhaus, Apparatus for Clamping and Aligning Plates or the Like, U.S. Pat. No. 2,672,839, Howe, Welding Clamps, U.S. Pat. No. 3,342,479; and Minix, Alignment Clamp, U.S. Pat. No. 4,108,346. In general, these other proposed clamping devices are relatively complicated in design, difficult to manipulate, and subject to being easily damaged by the welding operation. In fact, the complicated designs make these devices more costly and time consuming to setup, remove, and maintain. Furthermore, many of these prior devices use a metal rod or a metal strap to feed through a thin gap between the plates to pull in a clamping member behind or underneath the plates to force the alignment. If the two plates are of different thickness, the upper or outer surfaces of the plates will not be brought into perfect alignment by the pulling/pushing force of the clamping member. Under such a situation, there is no way to make the adjustments that are necessary to achieve perfect alignment between the plates. Additionally, after the alignment is achieved and welding is completed, the metal rod or strap with the clamping member has to be removed from behind or underneath the plates. In some occasions, this may be very difficult or even impossible to do, especially where the welded plate is very large and heavy, or it forms part of a closed container. Another inconvenience of these proposed prior art expedients is that the holes left behind after the removal of the metal rods or metal straps have to be welded again to complete the job.
These and other difficulties of the prior art have been overcome according to the present invention.
It is an object of the present invention to provide an alignment clamp and method that are very simple in design so that the manufacturing cost is low, and the cost of use is low. Another object of the invention is to provide an alignment clamp and method, which are very easy to setup before work, easy to remove after work, requires few steps for its use, and is rugged. A further object of the present invention is to provide a clamp and method to align metal plates of uneven or different thickness, or with curved surfaces, by individually adjustable mechanism repeatably usable in multiple setups. Yet another object of the present invention is to enable the clamping and alignment to be done only on one side of the metal or other plates, that is, the exposed upper side or the outer side. No part of the clamping member is behind or underneath the plates so that it has to be removed after the welding or other affixing is completed. The present invention is suitable for welding or other wise joining metal or other plates that are very large and heavy, which form a closed container, ceramic or plastic plates that are adhered or bonded together in other ways, or the like. A still further object of the present invention is to make alignment clamping possible without using a rod, strap or other element to feed through a gap between the two plates. As a result the plates can be joined together without gaps, and there will be no holes left behind to require sealing after the removal of the alignment clamp. Further, it is an objective to provide a simple separate anchor member that is reusable, disposable, and readily available, that can be handled and tack welded or otherwise breakably bonded or adhered to a plate without encumbering the clamp itself, and to which a clamp can be removably mounted without the use of additional tools. In addition, the traces left on the plate by spot mounting are easily removed during normal cleanup operations. It is an object of the present invention to provide an alignment clamp assembly and method that are adapted to all plate geometry, all materials of construction, and all methods and forms of plate joinder. Suitable plate materials include, for example, metals, ceramics, plastics, masonry, wood, and the like. Suitable plate joinder and breakable spot mounting methods and materials include, for example, arc or gas welding, plasma spray, brazing, soldering, sonic welding, solvent bonding, adhesive bonding, and the like. The methods and materials used for the purposes of plate joinder need not be the same as those used for breakable spot mounting purposes on the same job. Additional objectives will become apparent to those skilled in the art from the following teachings.
The present invention has been developed in response to the current state of the art, and in particular, in response to these and other problems and needs that have not been fully or completely solved by currently available expedients. Thus, it is an overall object of the present invention to effectively resolve at least the problems and shortcomings identified herein. To acquaint persons skilled in the pertinent arts most closely related to the present invention, a preferred embodiment of an alignment clamp that illustrates a best mode now contemplated for putting the invention into practice is described herein by, and with reference to, the annexed drawings that form a part of the specification. The exemplary alignment clamp assembly is described in detail without attempting to show all of the various forms and modifications in which the invention might be embodied. As such, the embodiments shown and described herein are illustrative, and as will become apparent to those skilled in the arts, can be modified in numerous ways within the scope and spirit of the invention, the invention being measured by the appended claims and not by the details of the specification or drawings. In a preferred embodiment of the invention, a clamp body member, for example, slidably engages an anchor member. The clamp body member includes for example, a force applicator element generally laterally spaced from a mounting element. The mounting element includes, for example, a generally arcuately extended semi-cylindrical socket portion. The generally cylindrical exterior of the anchor member is for example, of such a diameter that it slidably and snugly mounts the sectorial socket portion thereon. The axially opposed ends of the anchor member define end rim or circumference portions. The rim portions provide a plurality of spot mounting locations for spot welding, brazing or otherwise temporarily attaching the anchor member to a plate or other substrate. At least one of the force applicator or mounting elements is preferably adapted to the incremental application of force on an adjacent plate. According to one preferred embodiment, the body of the clamp bridges between the respective plates that are to be brought into line with one another. In this embodiment, the anchor member holds the mounting element to one plate, and the force applicator element is spaced from the anchor member generally along a lateral axis and bears on the other plate. This lateral axis is generally approximately parallel to the longitudinal axis of the anchor member.
In operation, in one preferred embodiment, a generally cylindrical anchor member is breakably spot mounted to a plate at one mounting location on a rim of the anchor member. A generally arcuately extended semi-cylindrical socket portion of the mounting element on a clamp body member is slidably mounted to the anchor member. A force applicator element on the clamp body member is positioned in engaging relationship to a second plate. Alignment between the respective plates is accomplished by incrementally adjusting one or both of the mounting or force applicator elements until the plates are brought to the desired alignment.
Other objects, advantages, and novel features of the present invention will become more fully apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings, or may be learned by the practice of the invention as set forth herein.
The present invention provides its benefits across a broad spectrum of alignment clamp devices. While the description which follows hereinafter is meant to be representative of a number of such applications, it is not exhaustive. As those skilled in the art will recognize, the basic apparatus taught herein can be readily adapted to many uses. This specification and the claims appended hereto should be accorded a breadth in keeping with the scope and spirit of the invention being disclosed despite what might appear to be limiting language imposed by the requirements of referring to the specific examples disclosed.
Referring particularly to the drawings for the purposes of illustrating the invention and its presently understood best mode only and not limitation:
Referring now to the drawings wherein like reference numerals designate identical or corresponding parts throughout the several views. It is to be understood that the drawings are diagrammatic and schematic representations of various embodiments of the invention, and are not to be construed as limiting the invention in any way. The use of words and phrases herein with reference to specific embodiments is not intended to limit the meanings of such words and phrases to those specific embodiments. Words and phrases herein are intended to have their ordinary meanings, unless a specific definition is set forth at length herein.
Referring particularly to
With particular reference to
The clamp body 58 illustrated in
Some locations are such that there is not room or it is awkward to slide the sectorial socket portion of the mounting element over the anchor element. The embodiment of
Often, large plates require alignment one segment at a time. This is diagrammatically illustrated, for example, in
A further embodiment of the invention is diagrammatically illustrated in
Several sets of alignment clamps can be used to align the adjacent edges of the plates with fine adjustment and desired accuracy. Alternatively, one clamp can be used in one location with a partial weld formed as the desired alignment is achieved at that location. That one clamp can then be moved to another location, and the process repeated. This cycle of use can be repeated until the entire weld is formed. In one specific embodiment, several two and one-eighth long pieces of one and seven-eighth inch diameter metal pipe were spot welded to the surface of the metal plate along the welding edge, with the axis of each metal pipe parallel to the surface of the second metal plate but at right angle to the edge to be welded. An alignment clamp was mounted onto each plate. To align the edges of the plates to the same level, the threaded screw of the alignment clamp was turned until the edges of the plates were brought into alignment by raising one or lowering the other. Accurate alignment of the two edges was obtained by fine adjustments of the threaded screws of each alignment clamp. Then the two metal plates were welded together along the aligned edges in one operation. After the weld cooled down, the alignment clamps were removed from the one and seven-eighth inch short pipes by releasing the screws and sliding the clamp bodies off the pipe sections. The final steps of the process were to remove the one and seven-eighth inch diameter short pipes by striking them with a hammer or prying them off, and to polish the surface of the metal plate where the spot weld was located.
What have been described are preferred embodiments in which modifications and changes may be made without departing from the spirit and scope of the accompanying claims. Many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application claims the benefit of U.S. Provisional Application No. 60/438,175, Filed Jan. 7, 2003.
Number | Name | Date | Kind |
---|---|---|---|
1940910 | Hickey | Dec 1933 | A |
2108077 | Robinson | Feb 1938 | A |
2398306 | Hermanson | Apr 1946 | A |
2672839 | Neuhaus | Mar 1954 | A |
3015883 | Brown | Jan 1962 | A |
3182988 | Woodall | May 1965 | A |
3284883 | Haverfield et al. | Nov 1966 | A |
3342479 | Howe | Sep 1967 | A |
3380148 | Nelson et al. | Apr 1968 | A |
3422519 | Fehlman | Jan 1969 | A |
3467295 | Watson | Sep 1969 | A |
3556508 | Varga | Jan 1971 | A |
3952936 | Dearman | Apr 1976 | A |
4108346 | Minix et al. | Aug 1978 | A |
4195828 | Peterson | Apr 1980 | A |
4378937 | Dearman | Apr 1983 | A |
4475726 | Smith | Oct 1984 | A |
4513955 | Daubon | Apr 1985 | A |
4708330 | Ehl | Nov 1987 | A |
4872709 | Stack | Oct 1989 | A |
5052608 | McClure | Oct 1991 | A |
5067696 | Morley | Nov 1991 | A |
5094435 | Depperman et al. | Mar 1992 | A |
5181702 | Pettigrew | Jan 1993 | A |
5228181 | Ingle | Jul 1993 | A |
5560091 | Labit, Jr. | Oct 1996 | A |
5573229 | Lycan | Nov 1996 | A |
5640748 | Harrison | Jun 1997 | A |
5865430 | Conover et al. | Feb 1999 | A |
6161296 | Davio | Dec 2000 | A |
6325277 | Collie | Dec 2001 | B1 |
6327763 | Stephen | Dec 2001 | B2 |
6641124 | Melanson | Nov 2003 | B2 |
6651967 | Barber | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
2185934 | Aug 1987 | GB |
Number | Date | Country | |
---|---|---|---|
20040139591 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60438175 | Jan 2003 | US |