The present invention relates generally to an injection molding apparatus and, in particular, to a collar for a hot runner nozzle that improves the alignment of the nozzle during assembly and operation in an injection molding apparatus.
In general, a hot runner nozzle includes a nozzle tip, a nozzle body and a nozzle head. A nozzle collar, or flange, is provided to locate the nozzle body relative to the mold plate that surrounds the nozzle. The collar may be integral with the nozzle, or alternatively, the collar may be a separate part that is either coupled to the nozzle or movable relative to the nozzle.
Proper alignment of the components of an injection molding apparatus is critical for the production of quality molded parts. If the hot runner nozzle is not properly aligned with the mold gate, sealing or gating may be adversely affected. In thermal gating applications, alignment of the nozzle tip with the mold gate is important in order to prevent leakage of the molten material. In valve gated applications, alignment of the nozzle tip with the mold gate is important because the valve pin, which is slidable through the nozzle, must be properly aligned with the mold gate in order to close the gate effectively.
Installation and alignment of a nozzle with an integrated collar is relatively simple because there is no movement between the parts. Reference is made to U.S. Pat. Nos. 4,173,448 and 4,268,241 to Rees; U.S. Pat. No. 4,433,969 to Gellert; U.S. Pat. No. 4,588,367 to Schad; U.S. Pat. No. 4,662,837 to Anderson and U.S. Pat. No. 6,062,846.
In applications where the collar is a separate part, the collar is typically coupled to the nozzle by a suitable means such as brazing, for example. An advantage of this arrangement over an integrated collar is that the separate collar may be comprised of a different material than the nozzle. By making the collar from a less thermally conductive material than the nozzle, the heat loss from the nozzle to the cold mold plates of the injection molding apparatus is reduced. The separate collar provides a further advantage in that it may be manufactured more quickly and more precisely than the integrated collar. Similar to the nozzle with the integrated collar, this nozzle and collar arrangement is easily assembled in an injection molding apparatus because there is no relative movement between the parts. Reference is made to U.S. Pat. Nos. 4,279,588, 4,344,750, 4,837,925 and 6,162,043 to Gellert.
It is often advantageous for the collar to be a separate part that is not attached to the nozzle. Such a collar is shown in FIG. 1. Using a separate collar has the advantage that it eliminates the need to braze the collar to the nozzle, which is a time consuming and expensive process. In addition, the need for different sized collars can be accommodated very quickly. The collar can easily be replaced to suit different injection molding applications. For example, if more insulation between the nozzle and the mold plates is desired, a collar comprised of any suitable material, such as titanium, Vespel, or a ceramic may be used instead of a steel collar.
U.S. Pat. No. 6,062,846 discloses a separate collar that surrounds a nozzle. The collar aligns the nozzle relative to the mold gate by having a large surface area that is in contact with the nozzle. The collar is effective for aligning the nozzle, however, the large contact area between the collar and nozzle facilitates heat loss from the nozzle.
In order to minimize the heat loss from the nozzle 118, it is necessary to minimize the amount of contact between the collar and the nozzle. However, as a result of the minimal contact between the collar and the nozzle, it is difficult to properly align the collar with the nozzle.
Referring to
A generally cylindrical collar 42 surrounds a portion of the nozzle 18. The collar 42 is sandwiched between a nozzle head 26 and the shoulder 38 of the mold plate 32 to align the nozzle 18 with the mold gate 24. The amount of contact between collar 42 and the nozzle 18 is minimized in order minimize the amount of heat loss from the nozzle 18.
During assembly of the injection molding apparatus 10, the nozzle 18 and collar 42 are lowered as a unit into the recess 36 of the mold plate 32. The nozzle 18 and collar 42 must be lowered carefully into the recess 36 to ensure that the nozzle 18 is properly aligned with the mold gate 24. Due to the minimal contact between the collar and the nozzle, the collar often moves or tips relative to the nozzle during assembly. Any relative movement between the nozzle 18 and the collar 42 results in misalignment of the nozzle 18. Often considerable time and effort is required by an operator to properly align the nozzle 18 with the mold gate 24.
It is therefore an object of the present invention to provide an improved alignment collar that obviates or mitigates at least one of the above disadvantages.
According to an aspect of the present invention there is provided an injection molding apparatus comprising:
According to another aspect of the present invention there is provided a collar for an injection molding apparatus, the collar comprising:
According to another aspect of the present invention there is provided an injection molding apparatus comprising:
According to another aspect of the present invention there is provided a hot runner nozzle comprising:
Embodiments of the present invention will now be described more fully with reference to the accompanying drawings.
To simplify the description, the numerals used previously in describing
Referring to
Nozzles 118 are coupled to respective outlets 120 of the manifold 112. A nozzle channel 122 extends through each nozzle 118 for receiving the melt stream of moldable material from the manifold 12. Each nozzle 118 includes a nozzle head 126, a nozzle body 128 and a nozzle tip 130. The nozzle channels 22 are in communication with respective mold gates 124, which are openable to allow delivery of the melt stream to mold cavities 134.
Each nozzle 118 is received in a respective recess 136 of a mold plate 132, which is located between the manifold 112 and the mold cavities 134. The recess 136 includes a shoulder 38 that extends from an inner wall 140 thereof. A portion of the mold plate 132, through which the mold gates 124 extend, is located between the nozzles 18 and the mold cavities 134.
A collar 150 is sandwiched between the nozzle head 126 and the shoulder 138. The collar 150 includes a generally cylindrical collar body 152 having a first end 154 and a second end 156, as shown in
The collar 150 is made of a material suitable for withstanding the molding conditions. In some cases, the collar 150 is made of a material having a low thermal conductivity such as titanium or ceramic, for example.
An alignment flange 162 projects from the inner wall 160 of the collar body 152 adjacent the second end 156 thereof. As shown, the alignment flange 162 is spaced from the flange 158. An insulation cavity 166 is provided between the inner wall 160 of the collar 150, between the alignment flange 162 and the flange 158, and the nozzle body 128. The alignment flange 162 abuts the nozzle body 118 to restrict tipping of the collar 150 relative to the nozzle 18.
Referring to
During assembly of the injection molding apparatus 100, the collar 150 is slid onto the nozzle 118 to bring flange 158 into abutment with the nozzle head 126 and a portion of the nozzle body 128. The nozzle 118 and collar 150 are then lowered into the recess 136 as a unit, or an aligned assembly. The nozzle 118 and collar 150 are lowered until the second end 156 of the collar 150 contacts the shoulder 138 of the mold plate 132 and the nozzle tip 130 is aligned with the mold gate 124. Because of the alignment flange 162 contacting the nozzle body 128, generally no tipping of the collar 150 relative to the nozzle 118 occurs during assembly.
Referring to
Referring to
In an alternative embodiment, a groove (not shown) is formed in either the nozzle body 328 or the inner wall 360 to receive the alignment flange 362. The alignment flange 362 may be a split ring having spring characteristics that is clamped in the groove. The alignment flange 362 is comprised of any suitable material. In some cases, the alignment flange 362 is made of an insulating material, such as any steel that is less conductive than the nozzle body, titanium or a ceramic, for example.
Referring to
Another embodiment of an injection molding apparatus 700 is shown in
It will be appreciated by a person skilled in the art of injection molding that any of the alignment flange embodiments disclosed herein can be used on either the nozzle or the collar to align the collar with respect to the nozzle.
The many features and advantages of the invention are apparent from the detailed specification and, thus, it is intended by the appended claims to cover all such features and advantages of the invention that fall within the true spirit and scope of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4173448 | Rees et al. | Nov 1979 | A |
4268241 | Rees et al. | May 1981 | A |
4279588 | Gellert | Jul 1981 | A |
4344750 | Gellert | Aug 1982 | A |
4433969 | Gellert | Feb 1984 | A |
4588367 | Schad | May 1986 | A |
4662837 | Anderson | May 1987 | A |
4682945 | Schad | Jul 1987 | A |
4837925 | Gellert | Jun 1989 | A |
5235737 | Gellert | Aug 1993 | A |
5614233 | Gellert | Mar 1997 | A |
5896640 | Lazinski et al. | Apr 1999 | A |
6062846 | Kalemba | May 2000 | A |
6162043 | Gellert | Dec 2000 | A |
6261084 | Schmidt | Jul 2001 | B1 |
6287107 | Kazmer et al. | Sep 2001 | B1 |
6309207 | Kalemba | Oct 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040043102 A1 | Mar 2004 | US |