This application claims the benefit of Chinese Patent Application No. CN201310449291.8 filed on Sep. 27, 2013 in the State Intellectual Property Office of China, the whole disclosure of which is incorporated herein by reference.
1. Field of the Invention
Embodiments of the present invention generally relate to fiber alignment, in particular to an alignment device for a fiber ferrule, a fiber alignment machine and a fiber alignment method.
2. Description of the Related Art
For a bare fiber inserted into a ceramic ferrule, when two fibers are connected, profiles of two ceramic ferrules are just for a match. However, due to various reasons, the bare fiber is always not aligned with a central axis of the ceramic ferrule. If such two fibers deviating from the central axis of the ceramic ferrules are connected with each other, the two bare fibers will not be completely abutted with each other, which introduces signal leakages.
In order to avoid the above problem due to the deviation of the fiber from the central axis of the ceramic ferrule, an existing method is to perform manual alignment, which may greatly increase labors and decrease production efficiency. Further, the manual alignment requires very high technology and patience of an operator, and is especially not suitable for automatic productions.
The present invention has been made to overcome or alleviate at least one aspect of the above mentioned disadvantages.
According to an aspect of the present invention, there is provided an alignment device for a fiber ferrule comprising: a ferrule holding part configured to hold the fiber ferrule in a manner that the fiber ferrule is rotatable about its central axis; a ferrule rotating part configured to rotate the ferrule about the central axis by a predetermined angle; and a marking part configured to mark on an outer surface of the ferrule rotated by the predetermined angle.
In an exemplary embodiment of the present invention, the marking part comprises a marking pen and a first driving part for driving the marking pen so that a penpoint of the marking pen moves towards and away from the ferrule. Further, the ferrule holding part comprises a first clamping block and a second clamping block opposite to each other, each of which is provided with one recess, and both of the recesses are opposite to each other to form a portion for partially inserting a ferrule body of the ferrule. Furthermore, the portion for partially inserting the ferrule body of the ferrule comprises a circular hole. In addition, the first clamping block is elastically abutted against the second clamping block.
In another exemplary embodiment of the present invention, the ferrule rotating part comprises an alignment claw adapted to releasably clamp an upper end of the ferrule and a second driving part for driving the alignment claw to move along a circular arc about the central axis. Further, the alignment device comprises an alignment platform provided with a circular arc shape through-slot which guides the alignment claw to move about the central axis. Furthermore, the second driving part comprises a supporting rod passing through the circular arc through-slot to hold the alignment claw and a driving source for driving the supporting rod to translate along the circular arc through-slot.
In yet another exemplary embodiment of the present invention, the alignment device further comprises a detecting part configured to detect whether a fiber passing through the ferrule extends along the central axis and a controlling part configured to control the ferrule rotating part to rotate the ferrule based on a signal from the detecting part indicating the fiber does not extend along the central axis. The detecting part may comprise a CCD camera.
According to another aspect of the present invention, there is provided a fiber alignment machine comprising the alignment device as described above and a first ferrule grip device which comprises a first grip claw and is configured to grip a ferrule out of a ferrule clamp via the first grip claw and then to move the gripped ferrule to the ferrule holding part.
In an exemplary embodiment of the present invention, the first ferrule grip device comprises a first grip claw support comprising: a first support part configured to move the first grip claw in a first direction; a second support part configured to move the first grip claw in a second direction, the first and the second directions being adapted to define a horizontal plane; and a third support part configured to move the first grip claw in a third direction perpendicular to the first and second directions.
In another exemplary embodiment of the present invention, the fiber alignment machine comprises two alignment devices as described above and the first ferrule grip device is configured to move the first grip claw from the ferrule clamp towards above either of the alignment devices.
In yet another exemplary embodiment of the present invention, the alignment device further comprises a holding part for an aligned ferrule clamp and a second ferrule grip device which comprises a second grip claw and is configured to grip the aligned ferrule out of the ferrule holding part via the second grip claw and then to move the aligned ferrule to the holding part for the aligned ferrule clamp. Further, the second ferrule grip device comprises a second grip claw support comprising: a fourth support part configured to move a second grip claw in a first direction; a firth support part configured to move the second grip claw in a second direction, the first and second directions being adapted to define a horizontal plane; and a sixth support part configured to move the second grip claw in a third direction perpendicular to the first and second directions.
In still another exemplary embodiment of the present invention, the holding part for the aligned ferrule clamp comprises a rotating platform supporting at least two aligned ferrule clamps.
In yet another exemplary embodiment of the present invention, the alignment device further comprises a first conveyor adapted to transport the ferrule clamp, the first conveyor comprising transporting claws adapted to grip the ferrule clamp and being configured to transport the ferrule clamp to a position where the first grip claw is adapted to grip the ferrule in the ferrule clamp. Further, the first conveyor comprises a first transporting portion and a second transporting portion adjacent to the first transporting portion, a transporting direction of the first transporting portion being perpendicular to that of the second transporting portion, wherein the transporting claws move the ferrule clamp from the first transporting portion to the second transporting portion. Furthermore, the second transporting portion comprises a carrying bracket carrying the ferule clamp and a second transportation driving portion adapted to drive the carrying bracket in the transporting direction of the second transporting portion to move between a receiving position for receiving the ferrule clamp from the first transporting portion and a grip position in which the first grip claw is adapted to grip the ferrule in the ferrule clamp. The fiber alignment machine may further comprise a second conveyor adapted to transport the ferrule clamp from the carrying bracket.
In still another exemplary embodiment of the present invention, the transporting claws comprise a first transporting claw and a second transporting claw, both of which is adapted to move in the transporting direction of the first transporting portion, the first transporting claw being adapted to move the ferrule clamp from the first transporting portion to the carrying bracket, and the second transporting claw being adapted to move the ferrule clamp from the carrying bracket to the second conveyor. The second transporting claw clamps the ferrule clamp located on the carrying bracket in the receiving position from the carrying bracket.
In yet another exemplary embodiment of the present invention, the first transporting portion is a first conveyor belt, the second conveyor is a second conveyor belt, and the second conveyor belt is arranged to be below and spaced from the first conveyor belt.
In still another exemplary embodiment of the present invention, a transporting direction of the first conveyor belt is opposite to that of the second conveyor belt.
In yet another aspect of the present invention, there is provided a fiber alignment method comprising: holding a ferrule in a ferrule holding part in a vertical direction; rotating the ferrule about a central axis thereof by a predetermined angle; and marking on an outer surface the ferrule rotated by the predetermined angle.
The method may further comprise detecting whether a fiber passing through the ferrule extends along the central axis thereof and rotating the ferrule about the central axis based on detecting results.
In an exemplary embodiment of the present invention, the ferrule comprises a ferrule body and the fiber passing through the ferrule body, the ferrule body comprising a cylindrical portion and an equilateral polygonal portion, the predetermined angle is a central angle of the equilateral polygonal portion, and the mark is made on a side surface of the equilateral polygonal portion.
In another exemplary embodiment of the present invention, detecting whether a fiber passing through the ferrule extends along the central axis thereof comprises determining whether the fiber is a defective fiber.
The method may further comprise removing the ferrule to a reject collecting box if it is determined that the fiber is a defective fiber.
In yet another exemplary embodiment of the present invention, rotating the ferrule about a central axis thereof by a predetermined angle comprises clamping the ferrule by a releasable alignment claw while rotating the alignment claw about the central axis by the predetermined angle.
In still another exemplary embodiment of the present invention, the method further comprises gripping a ferrule from a ferrule clamp to a ferrule holding part via a first grip claw before holding a ferrule in the ferrule holding in a vertical direction. Further, the method further comprises transporting the ferrule clamp to a position where the first grip claw is adapted to grip the ferrule. Furthermore, the method further comprises: removing the unloaded ferrule clamp; transporting another ferrule clamp to the position where the first grip claw is adapted to grip the ferrule; and gripping the ferrule from said another ferrule clamp to the ferrule holding part via the first grip claw.
The method as described above may further comprise moving the marked ferrule from the ferrule holding part to an aligned ferrule clamp via a second grip claw. Further, the aligned ferrule clamp comprises at least two aligned ferrule clamps disposed on a rotating platform, and the method further comprises after one of the aligned ferrule clamps is fully loaded with ferrules, rotating the rotating platform to rotate another aligned ferrule clamp to a position where the second grip claw is adapted to load the ferrule.
The present invention also relates to a fiber alignment machine comprising: a first ferrule clamp conveyor adapted to transport a first ferrule clamp loaded with a fiber ferrule; an alignment device adapted to rotate the fiber ferrule and mark on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected; a first ferrule conveyor adapted to transport the ferrule from the first ferrule clamp to the fiber alignment device; a ferrule clamp reloading device having a second ferrule clamp adapted to load the aligned ferrule; and a second ferrule conveyor adapted to transport the aligned ferrule from the alignment device to the second ferrule clamp. The first ferrule clamp may be a PC polishing clamp, and the second ferrule clamp may be an APC polishing clamp. The alignment device may be the alignment device as described above. The fiber alignment machine may further comprise a second ferrule clamp conveyor for transporting the unloaded first ferrule clamp.
The present invention also relates to a fiber alignment method comprising: transporting a first ferrule clamp on which a fiber ferrule is loaded; supplying the fiber ferrule to an alignment device; rotating the fiber ferrule by the alignment device and marking on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected; and loading the aligned ferrule to a second ferrule clamp. The first ferrule clamp may be a PC polishing clamp, and the second ferrule clamp may be an APC polishing clamp.
In an exemplary embodiment of the present invention, rotating the fiber ferrule by the alignment device and marking on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected further comprises determining whether the fiber is a defective fiber. Further, the method further comprises removing the ferrule to a reject collecting box if it is determined that the fiber is a defective fiber.
The above and other features of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the accompanying drawings, in which:
Exemplary embodiments of the present disclosure will be described hereinafter in detail with reference to the attached drawings, wherein the like reference numerals refer to the like elements. The present disclosure may, however, be embodied in many different forms and should not be construed as being limited to the embodiment set forth herein; rather, these embodiments are provided so that the present disclosure will be thorough and complete, and will fully convey the concept of the disclosure to those skilled in the art.
An alignment device for a fiber ferrule according to an exemplary embodiment of the present invention will be described with reference to
As shown in
The ferrule a can be rotated by a desired angle through the alignment device as describe above, and then a mark can be made on the rotated ferrule a by the marking part to facilitate abutment of bare fibers in subsequent operations. For example, in a case where two ferrules to be abutted are both marked, a good abutment of two bare fibers can be ensured by aligning marks on these ferrules.
The marking part 130 may comprise a marking pen 131 and a first driving part 132 for driving the marking pen 131 to move, so that a penpoint 131 a of the marking pen 131 move towards and away from the ferrule. It should be noted that the marking pen shown in
As illustrated in
As shown in
In the embodiment as described above, the ferrule holding part 110 consists of the first and second clamping blocks. However, the ferrule holding part 110 may also be one piece having an inserting hole for holding the ferrule.
The ferrule rotating part 120 will be described in details below.
As illustrated in
The alignment device 100 may further comprise the alignment platform 140 provided with a circular arc shape through-slot 141 which guides the alignment claw 121 to move about the central axis. The second driving part 122 includes a supporting rod 122a passing through the circular arc through-slot 141 to hold the alignment claw 121 and a driving source 122b for driving the supporting rod 122a to translate along the circular arc through-slot 141. The above ferrule rotating part 120 is given as a specific example only. In an exemplary embodiment of the present invention, the second driving part 122 may also be disposed above the alignment platform 140. In this case, a support for holding the alignment claw 121 may be driven along a circular arc with a circular center being on the central axis as described above to rotate the alignment claw 121.
A clamping operation of the alignment claw 121 is controlled or implemented by a driving means 123.
In an exemplary embodiment of the present invention, as shown in
The present invention also relates to a fiber alignment machine 1000 as shown in
As illustrated in
The first grip claw 210 can move in three dimensions via the first grip claw support 220.
As shown in
Referring to
As depicted in
As shown in
As illustrated in
More particularly, the first conveyor 500 includes a first transporting portion 520 (for example, see
The transporting claws 510 are supported by a support 560. The support 560 is connected to a driving portion 570 which is movable along rails 580, i.e., movable in a right-left direction in
Referring to
As shown in
As illustrated in
In an exemplary embodiment of the present invention, the first transporting portion 520 is a first conveyor belt, and the second conveyor 600 is a second conveyor belt which is arranged below and spaced from the first conveyor belt, as illustrated in
According to the above, the present invention also relates to a fiber alignment method comprising: holding a ferrule in a ferrule holding part 110 in a vertical direction; rotating the ferrule about a central axis thereof by a predetermined angle; and marking on an outer surface the ferrule which has been rotated by the predetermined angle.
The method as described above may further comprise detecting whether a fiber passing through the ferrule extends along the central axis thereof and rotating the ferrule about the central axis based on detecting results.
In the above method, the ferrule comprises a ferrule body and the fiber passing through the ferrule body, the ferrule body having a cylindrical portion and an equilateral polygonal portion. The predetermined angle is a central angle of the equilateral polygonal portion. The mark is made on a side surface of the equilateral polygonal portion.
In the method as described above, rotating the ferrule about a central axis thereof by a predetermined angle comprises clamping the ferrule by a releasable alignment claw while rotating the alignment claw about the central axis by the predetermined angle.
In the above method, the method further comprises gripping a ferrule from a ferrule clamp to a ferrule holding part via a first grip claw before holding a ferrule in the ferrule holding in a vertical direction.
The method as described above may further comprise transporting the ferrule clamp to a position where the first grip claw is adapted to grip the ferrule. Further, the above method further comprises: removing the unloaded ferrule clamp; transporting another ferrule clamp to the position in which the first grip claw is adapted to grip the ferrule; and gripping the ferrule from said another ferrule clamp to the ferrule holding part via the first grip claw.
The method as described above may further comprise moving the marked ferrule from the ferrule holding part to an aligned ferrule clamp via a second grip claw.
In the above method, the aligned ferrule clamp comprises at least two aligned ferrule clamps disposed on a rotating platform. The method may further comprise: after one of the aligned ferrule clamps is fully loaded with ferrules, rotating the rotating platform to rotate the other aligned ferrule clamp to a position where the second grip claw is adapted to be load with the ferrule.
In an exemplary embodiment of the present invention, the aligned ferrule clamps may be an angular polishing (APC) ferrule clamps, and thus can realize a seamlessness link of the fiber alignment with the angular polishing.
In an exemplary embodiment of the present invention, the grip claw and the alignment claw may be an air-powered claw, and may also be any other type such as hydraulic or electrical clamping claws.
Referring to
More particularly, referring to
An operation of the fiber alignment machine shown in
S1. transporting the PC polishing clamp b from the first transporting portion 520 to the vicinity of the second transporting portion 530.
S2. unloading the PC polishing clamp b via the left grip claw 510 in
S3. moving the right transporting claw 510 in
S4. regulating the central axis of the fiber ferrule including
S5: reloading the ferrule comprising
Compared to the prior art, the method as described above can achieve at least one of the following advantages:
saving labor time and labor costs;
realizing the seamlessness link of the fiber alignment with the angular polishing;
completely mechanizing the unloading and reloading of the fiber ferrule;
improving the production efficiency, since the fiber alignment, the unloading and reloading operations are independent from each other.
The visual detection CCD may find out the defective fibers and classify and place them into different reject collecting boxes at the workstation for the automatic alignment.
Concerning the above, the present invention also provides a fiber alignment method comprising: transporting a first ferrule clamp on which a fiber ferrule is loaded; supplying the fiber ferrule to an alignment device; rotating the fiber ferrule by the alignment device and marking on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected; and loading the aligned ferrule to a second ferrule clamp. In an exemplary embodiment of the present invention, the first ferrule clamp is a PC polishing clamp and the second ferrule clamp is an APC polishing clamp. In an exemplary embodiment of the present invention, rotating the fiber ferrule by the alignment device and marking on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected further comprises determining whether the fiber is a defective fiber. If it is determined that the fiber is a defective fiber, the fiber ferrule may be removed to a reject collecting box.
The present invention further provides a fiber alignment machine comprising: a first ferrule clamp conveyor adapted to transport a first ferrule clamp loaded with a fiber ferrule; an alignment device adapted to rotate the fiber ferrule and mark on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected; a first ferrule conveyor adapted to transport the ferrule from the first ferrule clamp to the fiber alignment device; a ferrule clamp reloading device having a second ferrule clamp adapted to load the aligned ferrule; and a second ferrule conveyor adapted to transport the aligned ferrule from the alignment device to the second ferrule clamp. The first ferrule clamp may be a PC polishing clamp and the second ferrule clamp may be an APC polishing clamp. The fiber alignment machine may further comprise a second ferrule clamp conveyor for transporting the unloaded first ferrule clamp.
In the present invention, a marker may be made on an outer surface of the ferrule toward which the fiber is deflected or on an outer surface of the ferrule from which the fiber is deflected as long as the marked outer surface can allow an operator to determine a direction in which the fiber is deflected. Therefore, the marked outer surface as used in the step of rotating the fiber ferrule by the fiber alignment device and marking on an outer surface of the fiber ferrule to determine the outer surface of the fiber ferrule towards which a fiber is deflected may be same as or different from the outer surface toward which the fiber is deflected.
Although several exemplary embodiments have been shown and described, it would be appreciated by those skilled in the art that various changes or modifications may be made in these embodiments without departing from the principle and spirit of the disclosure, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201310449291.8 | Sep 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/064171 | 9/1/2014 | WO | 00 |