The present disclosure relates to the field of medical procedures.
Various medical procedures involve the use of one or more devices configured to penetrate the human anatomy to reach a treatment site. Certain operational processes can involve inserting the one or more devices through the skin and other anatomy of a patient to reach the treatment site and extract an object from the patient, such as a urinary stone.
Described herein are one or more systems, devices, and/or methods to assist a physician or other user in aligning a medical instrument for percutaneous access to an object, such as a urinary stone, located within the human anatomy.
In some embodiments, the present disclosure relates to a method for assisting guidance of a needle. The method can include receiving, by control circuitry of a medical system, first sensor data from a needle that is configured to be inserted into a patient percutaneously, and based at least in part on the first sensor data, determining, by the control circuitry, an orientation of the needle. Further, the method can comprise receiving, by the control circuitry, second sensor data from an endoscope that is disposed at least partially within an anatomical lumen of the patient; and based at least in part on the second sensor data, determining, by the control circuitry, a target location within an organ of the patient. The method can also include determining, by the control circuitry, a target trajectory for accessing the target location percutaneously; generating, by the control circuitry, user interface data representing an interface that includes a needle-alignment icon representing the orientation of the needle, a positioning of the needle-alignment icon within the interface indicating an alignment of the orientation of the needle to the target trajectory, and displaying the interface based at least in part on the user interface data.
In some embodiments, the interface can include a boundary marking, and the method can include determining that the orientation of the needle is out of alignment with the target trajectory by more than a threshold amount, and displaying the needle-alignment icon at the boundary marking with a deformed shape. Further, in some embodiments, the method can include determining that the orientation of the needle is aligned with the target trajectory, and displaying, within the interface, an indication that the orientation of the needle is aligned with the target trajectory.
In some embodiments, the method can include determining a proximity of the needle to the target location, and displaying, within the interface, a progress bar indicating the proximity of the needle to the target location. Further, in some embodiments, the method can include determining that the needle has reached the target location, and displaying, within the interface, an indication that the needle has reached the target location. Moreover, in some embodiments, the method can include determining that the needle is inserted beyond the target location, and displaying, within the interface, an indication that the needle is inserted beyond the target location.
In some embodiments, the present disclosure relates to a medical system comprising a communication interface and control circuitry communicatively coupled to the communication interface. The communication interface can be configured to receive sensor data from a medical instrument that is configured to access a human anatomy percutaneously. The control circuitry can be configured to based at least in part on the sensor data, determine an orientation of the medical instrument, determine a target location within the human anatomy, determine a target trajectory for percutaneous access of the target location, and cause display of an interface that includes an instrument-alignment element indicative of an alignment of the orientation of the medical instrument to the target trajectory.
In some embodiments, the control circuitry can be configured to set a position change parameter to a first value, determine that the medical instrument is within a predetermined proximity to the target location, and based at least in part on determining that the medical instrument is within the predetermined proximity to the target location, set the position change parameter to a second value. The position change parameter can be indicative of an amount of position change of the instrument-alignment element within the interface with respect to a unit of movement of the medical instrument. The second value can be associated with a greater amount of position change of the instrument-alignment element for the unit of movement of the medical instrument than the first value.
In some embodiments, the medical system further includes the medical instrument configured to percutaneously access the target location. The medical instrument can include a sensor that is configured to provide the sensor data to the communication interface. The target trajectory can be determined based at least in part on the sensor data. Further, in some embodiments, the medical system further includes an endoscope configured to access the target location via a lumen of the human anatomy. The endoscope can include a sensor that is configured to provide additional sensor data to the communication interface. The target trajectory can be determined based at least in part on the additional sensor data.
In some embodiments, the control circuitry can be configured to determine that the orientation of the medical instrument is aligned with the target trajectory, and cause display of an indication that the orientation of the medical instrument is aligned with the target trajectory. Further, in some embodiments, the control circuitry can be configured to determine that the orientation of the medical instrument is out of alignment with the target trajectory by more than a threshold amount, and cause display of an indication that the orientation of the medical instrument is out of alignment with the target trajectory by more than the threshold amount.
In some embodiments, the control circuitry can be configured to determine a proximity of the medical instrument to the target location, and cause display of an indication of the proximity of the medical instrument to the target location. Further, in some embodiments, the control circuitry can be configured to determine that the medical instrument is inserted beyond the target location, and cause display of an indication that the medical instrument is inserted beyond the target location. Moreover, in some embodiments, the control circuitry can be configured to determine that the medical instrument has reached the target location, and cause display of an indication that the medical instrument has reached the target location.
In some embodiments, the control circuitry can be configured to determine that the orientation of the medical instrument is out of alignment with the target trajectory by more than a threshold amount, and determine that the medical instrument is inserted into the human anatomy. Further, the control circuitry can be configured to, based at least in part on the determination that the orientation of the medical instrument is out of alignment with the target trajectory by more than the threshold amount and the determination that the medical instrument is inserted into the human anatomy, cause display of an indication to retract the medical instrument from the human anatomy.
In some embodiments, the present disclosure relates to one or more non-transitory computer-readable media storing computer-executable instructions that, when executed by control circuitry, cause the control circuitry to perform operations. The operations can include determining an orientation of a medical instrument that is configured to access a human anatomy, determining a target location within the human anatomy, determining a target trajectory for percutaneous access of the target location, and causing display of an interface that includes an instrument-alignment element indicating an alignment of the orientation of the medical instrument to the target trajectory.
In some embodiments, the interface further includes an alignment marking. A positioning of the instrument-alignment element relative to the alignment marking can indicate the alignment of the orientation of the medical instrument to the target trajectory. In some embodiments, the alignment marking includes a boundary marking. The operations can include determining that the orientation of the medical instrument is out of alignment with the target trajectory by more than a threshold amount, and causing the instrument-alignment element to be displayed within a predetermined distance to the boundary marking. Alternatively or additionally, the operations can include determining that the orientation of the medical instrument is aligned with the target trajectory, and causing display of the instrument-alignment element in an aligned arrangement with the alignment marking.
In some embodiments, the operations include determining a proximity of the medical instrument to the target location, and causing display of, within the interface, an indication of the proximity of the medical instrument to the target location. Further, in some embodiments, the operations include determining that the medical instrument is inserted beyond the target location, and causing display of, within the interface, an indication that the medical instrument is inserted beyond the target location.
In some embodiments, the operations include, in response to determining that the orientation of the medical instrument has changed by a unit of measurement and determining that the medical instrument is outside a predetermined proximity to the target location, updating a position of the instrument-alignment element within the interface by a first amount. Further, the operations can include, in response to determining that the orientation of the medical instrument has changed by the unit of measurement and determining that the medical instrument is within the predetermined proximity to the target location, updating the position of the instrument-alignment element within the interface by a second amount.
In some embodiments, the present disclosure relates to a method including determining, by control circuitry, an orientation of a medical instrument that is configured to access a human anatomy, determining a target location within the human anatomy, and determining, by control circuitry, a target trajectory to access the target location. The method can also include causing, by control circuitry, display of an interface that includes an instrument-alignment element indicating an alignment of the orientation of the medical instrument to the target trajectory.
In some embodiments, the method includes receiving sensor data from the medical instrument, based at least in part on the sensor data, determining that the orientation of the medical instrument is aligned with the target trajectory, and causing display of an indication that the orientation of the medical instrument is aligned with the target trajectory.
In some embodiments, the method includes receiving sensor data from the medical instrument, based at least in part on the sensor data, determining a proximity of the medical instrument to the target location, and causing display of a progress representation indicating the proximity of the medical instrument to the target location. Further, in some embodiments, the method includes receiving sensor data from the medical instrument, based at least in part on the sensor data, determining that the orientation of the medical instrument is out of alignment with the target trajectory by more than a threshold amount, and causing display of, within at least a portion of the progress representation, an indication that the orientation of the medical instrument is out of alignment with the target trajectory by more than the threshold amount. Moreover, in some embodiments, the method includes receiving sensor data from the medical instrument, based at least in part on the sensor data, determining that the medical instrument is inserted beyond the target location, and causing display of, within at least a portion of the progress representation, an indication that the medical instrument is inserted beyond the target location.
In some embodiments, the method includes receiving sensor data from the medical instrument, based at least in part on the sensor data, determining that the orientation of the medical instrument is out of alignment with the target trajectory by more than a threshold amount, and based at least in part on the sensor data, determining that the medical instrument is inserted into the human anatomy. The method can also include, based at least in part on determining that the orientation of the needle is out of alignment with the target trajectory by more than the threshold amount and determining that the medical instrument is inserted into the human anatomy, causing display of an indication to retract the medical instrument from the human anatomy.
In some embodiments, the method includes associating a first value with a position change parameter, determining that the medical instrument is within a predetermined proximity to the target location and based at least in part on determining that the medical instrument is within the predetermined proximity to the target location, associating a second value with the position change parameter. The position change parameter can be indicative of an amount of position change of the instrument-alignment element with respect to a unit of movement of the medical instrument.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features have been described. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, the disclosed embodiments can be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.
Various embodiments are depicted in the accompanying drawings for illustrative purposes and should in no way be interpreted as limiting the scope of the disclosure. In addition, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. Throughout the drawings, reference numbers may be reused to indicate correspondence between reference elements.
The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of disclosure. Although certain preferred embodiments and examples are disclosed below, the subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and to modifications and equivalents thereof. Thus, the scope of the claims that may arise herefrom is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
Certain standard anatomical terms of location may be used herein to refer to the anatomy of animals, and namely humans, with respect to the preferred embodiments. Although certain spatially relative terms, such as “outer,” “inner,” “upper,” “lower,” “below,” “above,” “vertical,” “horizontal,” “top,” “bottom,” and similar terms, are used herein to describe a spatial relationship of one device/element or anatomical structure to another device/element or anatomical structure, it is understood that these terms are used herein for ease of description to describe the positional relationship between element(s)/structures(s), as illustrated in the drawings. It should be understood that spatially relative terms are intended to encompass different orientations of the element(s)/structures(s), in use or operation, in addition to the orientations depicted in the drawings. For example, an element/structure described as “above” another element/structure may represent a position that is below or beside such other element/structure with respect to alternate orientations of the subject patient or element/structure, and vice-versa.
Overview
The present disclosure relates to systems, devices, and methods for assisting a physician or other user in aligning a medical instrument for percutaneous access to a location within the human anatomy. Although certain aspects of the present disclosure are described in detail herein in the context of renal, urological, and/or nephrological procedures, such as kidney stone removal/treatment procedures, it should be understood that such context is provided for convenience and clarity, and the concepts disclosed herein are applicable to any suitable medical procedure. However, as mentioned, description of the renal/urinary anatomy and associated medical issues and procedures is presented below to aid in the description of the concepts disclosed herein.
Kidney stone disease, also known as urolithiasis, is a relatively common medical condition that involves the formation, in the urinary tract, of a solid piece of material, referred to as “kidney stones,” “urinary stones,” “renal calculi,” “renal lithiasis,” or “nephrolithiasis.” Urinary stones can be formed and/or found in the kidneys, the ureters, and the bladder (referred to as “bladder stones”). Such urinary stones form as a result of concentrated minerals and can cause significant abdominal pain once they reach a size sufficient to impede urine flow through the ureter or urethra. Urinary stones can be formed from calcium, magnesium, ammonia, uric acid, cysteine, and/or other compounds.
To remove urinary stones from the bladder and ureter, surgeons can insert a ureteroscope into the urinary tract through the urethra. Typically, a ureteroscope includes an endoscope at its distal end configured to enable visualization of the urinary tract. The ureteroscope can also include a lithotomy mechanism to capture or break apart urinary stones. During a ureteroscopy procedure, one physician/technician can control the position of the ureteroscope, while another other physician/technician can control the lithotomy mechanism.
In order to remove relatively large stones from the kidneys (i.e., “kidney stones”), physicians can use a percutaneous nephrolithotomy (“PCNL”) technique that includes inserting a nephroscope through the skin to break up and/or remove the stone(s). Locating the kidney stone(s) can be achieved using fluoroscopy to provide a target for insertion of the nephroscope. However, fluoroscopy increases the cost of the nephrolithotomy procedure due to the cost of the fluoroscope itself as well as the cost of a technician to operate the fluoroscope. Fluoroscopy also exposes the patient to radiation for a prolonged period of time. Even with fluoroscopy, accurately making a percutaneous incision to access the kidney stone can be difficult and undesirably imprecise. Furthermore, some nephrolithotomy techniques involve a two-day or three-day inpatient stay. In sum, certain nephrolithotomy techniques can be relatively costly and problematic for patients.
In some implementations, the present disclosure relates to techniques and systems to assist in aligning a medical instrument for percutaneous access to a target location within the human anatomy. For example, to perform a medical procedure, a physician or other user can use a medical instrument to access a target location within a patient, such as to remove a kidney stone located within the kidneys. The target location can represent a desired location for the medical instrument to access the anatomy of the patient, such as a desired papilla or other location within the kidney. The techniques and systems discussed herein can provide information regarding an orientation of the medical instrument to assist the physician or other user in aligning the medical instrument with the appropriate orientation and/or inserting the medical instrument into the patient to reach the target location. For example, the techniques and systems can provide a visual representation indicating a current orientation of the medical instrument relative to a target trajectory, a visual representation indicating a proximity of the medical instrument to the target location, and/or other information regarding the medical instrument and/or procedure. The target trajectory can represent a desired path for accessing the target location from an entry point on the patient, such as from a position on the skin of the patient. By providing such information, the physician or other user can accurately maneuver/manipulate the medical instrument to reach the target location and perform the medical procedure in a manner that minimizes damage to the anatomy of the patient.
In many embodiments, the techniques and systems are discussed in the context of a percutaneous procedure, which can include any procedure where access is gained to a target location by making a puncture and/or incision in the skin, mucous membrane, and/or other body layer. However, it should be understood that the techniques and systems can be implemented in the context of any medical procedure including, for example, minimally invasive procedures (e.g., a laparoscopy), non-invasive procedures (e.g., an endoscopy), therapeutic procedures, diagnostic procedures, percutaneous procedures, non-percutaneous procedures, or other types of procedures. An endoscopic procedure can include a bronchoscopy, a ureteroscopy, a gastroscopy, nephroscopy, nephrolithotomy, and so on. In some embodiments, in the context of a laparoscopic procedure or another procedure, the techniques and systems can be used to align a first medical instrument to a second medical instrument/anatomical position, such as to guide port placement (e.g., to align a first trocar to a second trocar/anatomical position). Further, in some embodiments, in the context of a diagnostic procedure, the techniques and systems can be used to align an ultrasound probe equipped with an Electromagnetic sensor to an anatomical target or to guide a user to a set of target orientations to reconstruct anatomy, such as three-dimensional (3D) kidney anatomy. Moreover, in some embodiments, in the context of an endoscopic procedure, the techniques and systems can be used to guide a position of a bronchoscope while performing a biopsy at a marked location, such as a location of a tumor.
Medical System
In some implementations, the medical system 100 can be used to perform a percutaneous procedure. For example, if the patient 130 has a kidney stone that is too large to be removed through a urinary tract, the physician 160 can perform a procedure to remove the kidney stone through a percutaneous access point on the patient 130. To illustrate, the physician 160 can interact with the control system 140 to control the robotic system 110 to advance and navigate the medical instrument 120 (e.g., a scope) from the urethra, through the bladder, up the ureter, and into the kidney where the stone is located. The control system 140 can provide information via the display(s) 142 regarding the medical instrument 120 to assist the physician 160 in navigating the medical instrument 120, such as real-time images captured therewith.
Once at the site of the kidney stone (e.g., within a calyx of the kidney), the medical instrument 120 can be used to designate/tag a target location for the medical instrument 170 to access the kidney percutaneously (e.g., a desired point to access the kidney). To minimize damage to the kidney and/or the surrounding anatomy, the physician 160 can designate a particular papilla as the target location for entering into the kidney with the medical instrument 170. However, other target locations can be designated or determined. To assist the physician in inserting the medical instrument 170 into the patient 130 through the particular papilla, the control system 140 can provide an instrument alignment interface 144, which can include a visualization to indicate an alignment of an orientation of the medical instrument 170 relative to a target trajectory (e.g., a desired access path), a visualization to indicate a progress of inserting the medical instrument 170 towards the target location, and/or other information. Once the medical instrument 170 has reached the target location, the physician 160 can use the medical instrument 170 and/or another medical instrument to extract the kidney stone from the patient 130, such as through the percutaneous access point.
Although the above percutaneous procedure and/or other procedures are discussed in the context of using the medical instrument 120, in some implementations a percutaneous procedure can be performed without the assistance of the medical instrument 120. Further, the medical system 100 can be used to perform a variety of other procedures.
Moreover, although many embodiments describe the physician 160 using the medical instrument 170, the medical instrument 170 can alternatively be used by a component of the medical system 100. For example, the medical instrument 170 can be held/manipulated by the robotic system 110 (e.g., the one or more robotic arms 112) and the techniques discussed herein can be implemented to control the robotic system 110 to insert the medical instrument 170 with the appropriate orientation to reach a target location.
In the example of
In some embodiments, a medical instrument, such as the scope 120 and/or the needle 170, includes a sensor that is configured to generate sensor data, which can be sent to another device. In examples, sensor data can indicate a location/orientation of the medical instrument and/or can be used to determine a location/orientation of the medical instrument. For instance, a sensor can include an electromagnetic (EM) sensor with a coil of conductive material. Here, an EM field generator, such as the EM field generator 180, can provide an EM field that is detected by the EM sensor on the medical instrument. The magnetic field can induce small currents in coils of the EM sensor, which can be analyzed to determine a distance and/or angle/orientation between the EM sensor and the EM field generator. Further, a medical instrument can include other types of sensors configured to generate sensor data, such as a camera, a range sensor, a radar device, a shape sensing fiber, an accelerometer, a gyroscope, an accelerometer, a satellite-based positioning sensor (e.g., a global positioning system (GPS)), a radio-frequency transceiver, and so on. In some embodiments, a sensor is positioned on a distal end of a medical instrument, while in other embodiments a sensor is positioned at another location on the medical instrument. In some embodiments, a sensor on a medical instrument can provide sensor data to the control system 140 and the control system 140 can perform one or more localization techniques to determine/track a position and/or an orientation of a medical instrument.
The term “scope” or “endoscope” are used herein according to their broad and ordinary meanings and can refer to any type of elongate medical instrument having image generating, viewing, and/or capturing functionality and configured to be introduced into any type of organ, cavity, lumen, chamber, and/or space of a body. For example, references herein to scopes or endoscopes can refer to a ureteroscope (e.g., for accessing the urinary tract), a laparoscope, a nephroscope (e.g., for accessing the kidneys), a bronchoscope (e.g., for accessing an airway, such as the bronchus), a colonoscope (e.g., for accessing the colon), an arthroscope (e.g., for accessing a joint), a cystoscope (e.g., for accessing the bladder), a borescope, and so on.
A scope can comprise a tubular and/or flexible medical instrument that is configured to be inserted into the anatomy of a patient to capture images of the anatomy. In some embodiments, a scope can accommodate wires and/or optical fibers to transfer signals to/from an optical assembly and a distal end of the scope, which can include an imaging device, such as an optical camera. The camera/imaging device can be used to capture images of an internal anatomical space, such as a target calyx/papilla of a kidney. A scope can further be configured to accommodate optical fibers to carry light from proximately-located light sources, such as light-emitting diodes, to the distal end of the scope. The distal end of the scope can include ports for light sources to illuminate an anatomical space when using the camera/imaging device. In some embodiments, the scope is configured to be controlled by a robotic system, such as the robotic system 110. The imaging device can comprise an optical fiber, fiber array, and/or lens. The optical components can move along with the tip of the scope such that movement of the tip of the scope results in changes to the images captured by the imaging device.
A scope can be articulable, such as with respect to at least a distal portion of the scope, so that the scope can be steered within the human anatomy. In some embodiments, a scope is configured to be articulated with, for example, five or six degrees of freedom, including X, Y, Z coordinate movement, as well as pitch, yaw, and roll. A position sensor(s) of the scope can likewise have similar degrees of freedom with respect to the position information they produce/provide. A scope can include telescoping parts, such as an inner leader portion and an outer sheath portion, which can be manipulated to telescopically extend the scope. A scope, in some instances, can comprise a rigid or flexible tube, and can be dimensioned to be passed within an outer sheath, catheter, introducer, or other lumen-type device, or can be used without such devices. In some embodiments, a scope includes a working channel for deploying medical instruments (e.g., lithotripters, basketing devices, forceps, etc.), irrigation, and/or aspiration to an operative region at a distal end of the scope.
The robotic system 110 can be configured to at least partly facilitate execution of a medical procedure. The robotic system 110 can be arranged in a variety of ways depending on the particular procedure. The robotic system 110 can include the one or more robotic arms 112 configured to engage with and/or control the scope 120 to perform a procedure. As shown, each robotic arm 112 can include multiple arm segments coupled to joints, which can provide multiple degrees of movement. In the example of
The robotic system 110 can also include a support structure 114 coupled to the one or more robotic arms 112. The support structure 114 can include control electronics/circuitry, one or more power sources, one or more pneumatics, one or more optical sources, one or more actuators (e.g., motors to move the one or more robotic arms 112), memory/data storage, and/or one or more communication interfaces. In some embodiments, the support structure 114 includes an input/output (I/O) device(s) 116 configured to receive input, such as user input to control the robotic system 110, and/or provide output, such as a graphical user interface (GUI), information regarding the robotic system 110, information regarding a procedure, and so on. The I/O device(s) 116 can include a display, a touchscreen, a touchpad, a projector, a mouse, a keyboard, a microphone, a speaker, etc. In some embodiments, the robotic system 110 is movable (e.g., the support structure 114 includes wheels) so that the robotic system 110 can be positioned in a location that is appropriate or desired for a procedure. In other embodiments, the robotic system 110 is a stationary system. Further, in some embodiments, the robotic system 112 is integrated into the table 150.
The robotic system 110 can be coupled to any component of the medical system 100, such as the control system 140, the table 150, the EM field generator 180, the scope 120, and/or the needle 170. In some embodiments, the robotic system is communicatively coupled to the control system 140. In one example, the robotic system 110 can be configured to receive a control signal from the control system 140 to perform an operation, such as to position a robotic arm 112 in a particular manner, manipulate the scope 120, and so on. In response, the robotic system 110 can control a component of the robotic system 110 to perform the operation. In another example, the robotic system 110 is configured to receive an image from the scope 120 depicting internal anatomy of the patient 130 and/or send the image to the control system 140, which can then be displayed on the display(s) 142. Furthermore, in some embodiments, the robotic system 110 is coupled to a component of the medical system 100, such as the control system 140, in such a manner as to allow for fluids, optics, power, or the like to be received therefrom. Example details of the robotic system 110 are discussed in further detail below in reference to
The control system 140 can be configured to provide various functionality to assist in performing a medical procedure. In some embodiments, the control system 140 can be coupled to the robotic system 110 and operate in cooperation with the robotic system 110 to perform a medical procedure on the patient 130. For example, the control system 140 can communicate with the robotic system 110 via a wireless or wired connection (e.g., to control the robotic system 110 and/or the scope 120, receive an image(s) captured by the scope 120, etc.), provide fluids to the robotic system 110 via one or more fluid channels, provide power to the robotic system 110 via one or more electrical connections, provide optics to the robotic system 110 via one or more optical fibers or other components, and so on. Further, in some embodiments, the control system 140 can communicate with the needle 170 and/or the scope 170 to receive sensor data from the needle 170 and/or the endoscope 120 (via the robotic system 110 and/or directly from the needle 170 and/or the endoscope 120). Moreover, in some embodiments, the control system 140 can communicate with the table 150 to position the table 150 in a particular orientation or otherwise control the table 150. Further, in some embodiments, the control system 140 can communicate with the EM field generator 180 to control generation of an EM field around the patient 130.
The control system 140 includes various I/O devices configured to assist the physician 160 or others in performing a medical procedure. In this example, the control system 140 includes an I/O device(s) 146 that is employed by the physician 160 or other user to control the scope 120, such as to navigate the scope 120 within the patient 130. For example, the physician 160 can provide input via the I/O device(s) 146 and, in response, the control system 140 can send control signals to the robotic system 110 to manipulate the scope 120. Although the I/O device(s) 146 is illustrated as a controller in the example of
As also shown in
To facilitate the functionality of the control system 140, the control system 140 can include various components (sometimes referred to as “subsystems”). For example, the control system 140 can include control electronics/circuitry, as well as one or more power sources, pneumatics, optical sources, actuators, memory/data storage devices, and/or communication interfaces. In some embodiments, the control system 140 includes control circuitry comprising a computer-based control system that is configured to store executable instructions, that when executed, cause various operations to be implemented. In some embodiments, the control system 140 is movable, such as that shown in
The imaging device 190 can be configured to capture/generate one or more images of the patient 130 during a procedure, such as one or more x-ray or CT images. In examples, images from the imaging device 190 can be provided in real-time to view anatomy and/or medical instruments, such as the scope 120 and/or the needle 170, within the patient 130 to assist the physician 160 in performing a procedure. The imaging device 190 can be used to perform a fluoroscopy (e.g., with a contrast dye within the patient 130) or another type of imaging technique. Although shown in
The various components of the medical system 100 can be communicatively coupled to each other over a network, which can include a wireless and/or wired network. Example networks include one or more personal area networks (PANs), local area networks (LANs), wide area networks (WANs), Internet area networks (IANs), cellular networks, the Internet, etc. Further, in some embodiments, the components of the medical system 100 are connected for data communication, fluid/gas exchange, power exchange, and so on, via one or more support cables, tubes, or the like.
The medical system 100 can provide a variety of benefits, such as providing guidance to assist a physician in performing a procedure (e.g., instrument tracking, instrument alignment information, etc.), enabling a physician to perform a procedure from an ergonomic position without the need for awkward arm motions and/or positions, enabling a single physician to perform a procedure with one or more medical instruments, avoiding radiation exposure (e.g., associated with fluoroscopy techniques), enabling a procedure to be performed in a single-operative setting, providing continuous suction to remove an object more efficiently (e.g., to remove a kidney stone), and so on. For example, the medical system 100 can provide guidance information to assist a physician in using various medical instruments to access a target anatomical feature while minimizing bleeding and/or damage to anatomy (e.g., critical organs, blood vessels, etc.). Further, the medical system 100 can provide non-radiation-based navigational and/or localization techniques to reduce physician and patient exposure to radiation and/or reduce the amount of equipment in the operating room. Moreover, the medical system 100 can provide functionality that is distributed between at least the control system 140 and the robotic system 110, which can be independently movable. Such distribution of functionality and/or mobility can enable the control system 140 and/or the robotic system 110 to be placed at locations that are optimal for a particular medical procedure, which can maximize working area around the patient and/or provide an optimized location for a physician to perform a procedure.
Although various techniques and systems are discussed as being implemented as robotically-assisted procedures (e.g., procedures that at least partly use the medical system 100), the techniques and systems can be implemented in other procedures, such as in fully-robotic medical procedures, human-only procedures (e.g., free of robotic systems), and so on. For example, the medical system 100 can be used to perform a procedure without a physician holding/manipulating a medical instrument (e.g., a fully-robotic procedure). That is, medical instruments that are used during a procedure, such as the scope 120 and the needle 170, can each be held/controlled by components of the medical system 100, such as the robotic arm(s) 112 of the robotic system 110.
Example Interface
As noted above, the scope section 212 provides the image(s) 212 for a scope that is configured to navigate within a lumen or other anatomy. In this example, the image(s) 212 depicts an interior portion of a kidney, including cavities 214 and the kidney stone 216 located within one of the cavities 214. Here, the kidney stone 216 is located within a calyx in proximity to a papilla. However, the image(s) 212 can depict any human anatomy depending on a location of the scope within a patient. The image(s) 212 can include a real-time image, such as a video.
The alignment section 220 includes an alignment-progress visualization 230 to indicate an alignment of an orientation of a medical instrument to a target trajectory and/or a proximity of the medical instrument to a target location. As shown, the alignment-progress visualization 230 includes an instrument-alignment element 232 (sometimes referred to as “the instrument-alignment icon 232” or “the needle-alignment icon 232”) representing the orientation of the medical instrument and alignment markings 234 associated with the target trajectory. In this example, the instrument-alignment element 232 can move within an area defined by the alignment marking 234(C) (also referred to as “the boundary marking 234(C)”) based on a change in the orientation of the medical instrument. For instance, as the medical instrument is tilted, the instrument-alignment element 232 can change position within the area.
In some embodiments, a tilt of the medical instrument in one direction will cause movement of the instrument-alignment element 232 in the opposite direction, similar to a bull's-eye spirit type of level. For example, if the medical instrument is tilted to the right, the instrument-alignment element 232 can move to the left. In other embodiments, a tilt of the medical instrument will cause movement of the instrument-alignment element 232 in the same direction of the tilt. For example, if the medical instrument is tilted to the right, the instrument-alignment element 232 can move to the right. In any event, when the orientation of the medical instrument is aligned with the target trajectory, the instrument alignment element 232 can be displayed in an aligned arrangement with the alignment markings 234 (e.g., centered with the alignment markings 234, such as within or centered on the alignment marking 234(A)).
In some embodiments, an amount of position change of the instrument-alignment element 232 for a unit of orientation change of a medical instrument (e.g., a sensitivity of the instrument-alignment element 232) is based on a proximity of the medical instrument to a target location. For example, as the medical instrument moves closer to the target location, the instrument alignment element 232 can be implemented with larger or smaller movements for a same amount of change in the orientation of the medical instrument. To illustrate, when the medical instrument is a first distance from the target location, the instrument-alignment interface 200 can change a position of the instrument-alignment element 232 by a first amount in response to a unit of change of an orientation of the medical instrument. When the medical instrument is a second distance from the target location (e.g., closer to the target location), the instrument-alignment interface 200 can change a position of the instrument-alignment element 232 by a second amount (e.g., a larger or smaller amount) in response to the same unit of change of the orientation of the medical instrument.
In some embodiments, changing the sensitivity of the instrument-alignment element 232 can further assist a physician in reaching a target location with a medical instrument. For example, in some cases, as a medical instrument is farther from a target, less precision can be needed. While as the medical instrument moves closer to the target location, more precision can be required to orient the medical instrument. In other words, as the medical instrument moves closer to the target, the physician may need to adjust the orientation of the medical instrument more precisely to actually reach the target. As such, by changing the sensitivity of the instrument-alignment element 232, a physician can more accurately maneuver the medical instrument to reach a target location, which can be relatively small.
The alignment-progress visualization 230 can also include a progress bar 236 to indicate a proximity of a medical instrument to a target location. In the example of
In some embodiments, the alignment-progress visualization 230 includes a single visualization to view orientation and progress information regarding a medical instrument. For example, information regarding an orientation of the medical instrument and a progress of the instrument to a target location can be displayed in a combined visualization. Such combined visualization can allow a physician or other user to maintain visual contact with a single item while manipulating the medical instrument and avoid inadvertent movements of the medical instrument that can occur due to movement of the physician's eyes or body to view several displays, interfaces, visualizations, etc. As such, the combined visualization can allow the physician or other user to more accurately manipulate the medical instrument to reach a target location within the patient.
In the example of
As also shown in
Although many embodiments are discussed and illustrated in the context of an instrument-alignment interface including two-dimensional (2D) representations, an instrument-alignment interface can include three-dimensional (3D) representations in some embodiments. For example, an instrument-alignment interface can present a plane and distorted lines on the plane to indicate misalignment, present a plane with a shape/form of the plane being configured to distort/change to indicate misalignment, and so on.
Example Procedure Using a Medical System
Although
The renal anatomy, as illustrated at least in part in
The kidneys are typically located relatively high in the abdominal cavity and lie in a retroperitoneal position at a slightly oblique angle. The asymmetry within the abdominal cavity, caused by the position of the liver, typically results in the right kidney being slightly lower and smaller than the left, and being placed slightly more to the middle than the left kidney. On top of each kidney is an adrenal gland. The upper parts of the kidneys are partially protected by the 11th and 12th ribs. Each kidney, with its adrenal gland is surrounded by two layers of fat: the perirenal fat present between renal fascia and renal capsule and pararenal fat superior to the renal fascia.
The kidney participates in the control of the volume of various body fluid compartments, fluid osmolality, acid-base balance, various electrolyte concentrations, and removal of toxins. The kidneys provide filtration functionality by secreting certain substances and reabsorbing others. Examples of substances secreted into the urine are hydrogen, ammonium, potassium, and uric acid. In addition, the kidneys also carry out various other functions, such as hormone synthesis, and others.
A recessed area on the concave border of the kidney is the renal hilum, where the renal artery enters the kidney and the renal vein and ureter leave. The kidney is surrounded by tough fibrous tissue, the renal capsule, which is itself surrounded by perirenal fat, renal fascia, and pararenal fat. The anterior (front) surface of these tissues is the peritoneum, while the posterior (rear) surface is the transversalis fascia.
The functional substance, or parenchyma, of the kidney is divided into two major structures: the outer renal cortex and the inner renal medulla. These structures take the shape of a plurality of cone-shaped renal lobes, each containing renal cortex surrounding a portion of medulla called a renal pyramid. Between the renal pyramids are projections of cortex called renal columns. Nephrons, the urine-producing functional structures of the kidney, span the cortex and medulla. The initial filtering portion of a nephron is the renal corpuscle, which is located in the cortex. This is followed by a renal tubule that passes from the cortex deep into the medullary pyramids. Part of the renal cortex, a medullary ray is a collection of renal tubules that drain into a single collecting duct.
The tip, or papilla, of each pyramid empties urine into a respective minor calyx; minor calyces empty into major calyces, and major calyces empty into the renal pelvis, which transitions to the ureter. At the hilum, the ureter and renal vein exit the kidney and the renal artery enters. Hilar fat and lymphatic tissue with lymph nodes surrounds these structures. The hilar fat is contiguous with a fat-filled cavity called the renal sinus. The renal sinus collectively contains the renal pelvis and calyces and separates these structures from the renal medullary tissue.
As shown in
The physician 160 can also position the robotic arm 112(A) near a treatment site for the procedure. For example, the robotic arm 112(A) can be positioned within proximity to the incision site and/or the kidneys 310 of the patient 130. The robotic arm 112(A) can be connected to the EM field generator 180 to assist in tracking a location of the scope 120 and/or the needle 170 during the procedure. Although the robotic arm 112(A) is positioned relatively close to the patient 130, in some embodiments the robotic arm 112(A) is positioned elsewhere and/or the EM field generator 180 is integrated into the table 150 (which can allow the robotic arm 112(A) to be in a docked position). In this example, at this point in the procedure, the robotic arm 112(C) remains in a docked position, as shown in
Once the robotic system 110 is properly positioned and/or the medical instrument 350 is inserted at least partially into the urethra 340, the scope 120 can be inserted into the patient 130 robotically, manually, or a combination thereof, as shown in
As shown, the control system 140 can present an instrument-alignment interface 410, such as the instrument-alignment interface 200 of
Upon locating the kidney stone 318, the physician 160 can identify a location for the needle 170 to enter the kidney 310(A) for eventual extraction of the kidney stone 318. For example, to minimize bleeding and/or avoid hitting a blood vessel or other undesirable anatomy of the kidney 310(A) and/or anatomy surrounding the kidney 310(A), the physician 160 can seek to align the needle 170 with an axis of a calyx (e.g., can seek to reach the calyx head-on through the center of the calyx). To do so, the physician 160 can identify a papilla as a target location. In this example, the physician 160 uses the scope 120 to locate the papilla 314 that is near the kidney stone 318 and designate the papilla 314 as the target location. In some embodiments of designating the papilla 314 as the target location, the physician 160 can navigate the scope 120 to contact the papilla 314, the control system 140 can use localization techniques to determine a location of the scope 120 (e.g., a location of the end of the scope 120), and the control system 140 can associate the location of the scope 120 with the target location. In other embodiments, the physician 160 can navigate the scope 120 to be within a particular distance to the papilla 314 (e.g., park in front of the papilla 314) and provide input indicating that the target location is within a field-of-view of the scope 120. The control system 140 can perform image analysis and/or other localization techniques to determine a location of the target location. In yet other embodiments, the scope 120 can deliver a fiduciary to mark the papilla 314 as the target location.
As shown in
In any event, the control system 140 can determine a target trajectory 502 for inserting the needle 170 to assist the physician 160 in reaching the target location (i.e., the papilla 314). The target trajectory 502 can represent a desired path for accessing to the target location. The target trajectory 502 can be determined based on a position of a medical instrument (e.g., the needle 170, the scope 120, etc.), a target location within the human anatomy, a position and/or orientation of a patient, the anatomy of the patient (e.g., the location of organs within the patient relative to the target location), and so on. In this example, the target trajectory 502 includes a straight line that passes through the papilla 314 and the needle 170 (e.g., extends from a tip of the needle 170 through the papilla 314, such as a point on an axis of the papilla 314). However, the target trajectory 502 can take other forms, such as a curved line, and/or can be defined in other manners. In some examples, the needle 170 is implemented a flexible bevel-tip needle that is configured to curve as the needle 170 is inserted in a straight manner. Such needle can be used to steer around particular anatomy, such as the ribs or other anatomy. Here, the control system 140 can provide information to guide a user, such as to compensate for deviation in the needle trajectory or to maintain the user on the target trajectory.
Although the example of
The control system 140 can use the target trajectory 502 to provide an alignment-progress visualization 504 via the instrument-alignment interface 410. For example, the alignment-progress visualization 504 can include an instrument alignment element 506 indicative of an orientation of the needle 170 relative to the target trajectory 502. The physician 160 can view the alignment-progress visualization 504 and orient the needle 170 to the appropriate orientation (i.e., the target trajectory 502). When aligned, the physician 160 can insert the needle 170 into the patient 130 to reach the target location. The alignment-progress visualization 504 can provide a progress visualization 508 (also referred to as “the progress bar 508”) indicative of a proximity of the needle 170 to the target location. As such, the instrument-alignment interface 410 can assist the physician 160 in aligning and/or inserting the needle 170 to reach the target location.
Once the target location has been reached with the needle 170, the physician 160 can insert another medical instrument, such as a power catheter, vacuum, nephroscope, etc., into the path created by the needle 170 and/or over the needle 170. The physician 160 can use the other medical instrument and/or the scope 120 to fragment and remove pieces of the kidney stone 318 from the kidney 310(A).
In some embodiments, a position of a medical instrument can be represented with a point/point set and/or an orientation of the medical instrument can be represented as an angle/offset relative to an axis/plane. For example, a position of a medical instrument can be represented with a coordinate(s) of a point/point set within a coordinate system (e.g., one or more X, Y, Z coordinates) and/or an orientation of the medical instrument can be represented with an angle relative to an axis/plane for the coordinate system (e.g., angle with respect to the X-axis/plane, Y-axis/plane, and/or Z-axis/plane). Here, a change in orientation of the medical instrument can correspond to a change in an angle of the medical instrument relative to the axis/plane. Further, in some embodiments, an orientation of a medical instrument is represented with yaw, pitch, and/or roll information.
In some embodiments, a trajectory refers as a pose. For example, a trajectory of a medical instrument can refer to a pose of the medical instrument, including/indicating both a position and orientation of the medical instrument. Similarly, a target trajectory can refer to a target pose, including/indicating both a position and orientation of a desired path. However, in other embodiments, a trajectory refers to either an orientation or a position.
Although particular robotic arms of the robotic system 110 are illustrated as performing particular functions in the context of
Example Instrument Visualizations
In the example of
In some embodiments, the instrument-alignment element 632 can move within the area of the boundary alignment marking 634(C) (e.g., within the constraints of the boundary alignment marking 634(C)). The instrument alignment element 632 can move closer to the boundary alignment marking 634(C) as the needle 170 is less aligned with the target trajectory 670 and move closer to the center alignment marking 634(A) as the needle 170 is more aligned with the target trajectory 670. In the example of
In some embodiments, if the needle 170 is substantially out of alignment with the target trajectory 670, the instrument-alignment element 632 can provide an indication of such out-of-alignment configuration, as shown in
When the needle 170 is aligned with the target trajectory 670, the instrument-alignment element 632 can be displayed in an aligned manner with the alignment markings 634, as shown in
In in this example, the physician 160 inserts the needle 170 when the needle 170 is aligned with the target trajectory 670, as shown in
In some embodiments, as the needle 170 moves closer to the target location 664, an amount of movement of the instrument-alignment element 632 can change (e.g., a sensitivity of the instrument-alignment element 632 can change). For example, the control system 140 can set a position change parameter for the instrument-alignment element 632 to a first value initially when the needle 170 is relatively far from the target location 664 (e.g., outside a distance to the target location 664). The position change parameter can be indicative of an amount of position change of the instrument-alignment element 632 with respect to a unit of movement of the needle 170. As the needle 170 moves closer to the target location 664, the position change parameter can be updated to a second value, such as a value that is associated with a greater or lesser amount of position change for the same unit of movement of the needle 170 than the first value.
In one illustration of updating a position change parameter, when the needle 170 is located on the skin of the patient 130, the position change parameter can be set to an initial value. The initial value can cause the instrument-alignment element 632 to move by a first number of pixels in response to an orientation change of the needle 170 by 5 degrees, for example. As the needle 170 moves closer to the target location 664, the position change parameter can be updated to a larger value that causes the instrument-alignment element 632 to move by a second number of pixels in response to an orientation change of the needle 170 by 5 degrees, where the second number of pixels is greater than the first number of pixels. The position change parameter can be updated any number of times as the needle 170 moves closer to the target location 664. In some embodiments, this can assist the physician in aligning the needle 170 to reach a relatively small target, such as a calyx that can be 4 to 8 mm in diameter.
When the needle 170 has reached the target location 664, the instrument-alignment interface 600 can display an indication that the target location 664 has been reached, as illustrated in
In some implementations, if the needle 170 is inserted beyond the target location 664, the instrument-alignment interface 600 can provide an indication that the needle 170 is inserted beyond the target location 664, as shown in
In some embodiments, as shown in
In some procedures, once the needle 170 has reached the target location 664, a medical instrument 638 can be inserted over the needle 170 and/or in the place of the needle 170, as shown in
The medical instrument 638 and/or the scope 120 (and/or the needle 170, in some cases) can facilitate extraction of the kidney stone 662 from the kidney 660. For example, the scope 120 can deploy a tool (e.g., a laser, a cutting instrument, etc.) to fragment the kidney stone 662 into pieces and the medical instrument 638 can suck out the pieces from the kidney 660, as shown in
In some embodiments, in returning to alignment of the needle 170 on the skin of the patient 130 (e.g.,
Although alignment and progress information are illustrated with specific indications in
In some implementations, the progress bar 636 can include a straight progress bar, instead of the circular bar illustrated around the boundary marking 634, which can be positioned at any location within the instrument-alignment interface 600. Further, in some embodiments, instead of filling in the progress bar 636 to indicate a proximity of the needle 170 to the target location 664, a current position of the needle 170 can be displayed on the progress bar 636 with an icon (e.g., with the icon at a top position indicating that the needle 170 is not yet inserted into the patient 130 and/or has reached the target location 664). Moreover, in some embodiments, a percentage of progress to the target location 664 can be presented via the instrument-alignment interface 600.
Furthermore, in some embodiments, a size of the center alignment marking 634(A), the boundary marking 634(C), and/or the instrument-alignment element 632 can change to indicate a progress of inserting the needle 170 to the target location 664. For example, a diameter of the center alignment marking 634(A) can decrease as the needle 170 is inserted until the center alignment marking 634(A) reaches the same diameter as the instrument-alignment element 632.
Example Flow Diagrams
At block 704, the process 700 can include determining a target location within human anatomy. For example, according to certain use cases, control circuitry can determine a target location within a patient, such as an anatomical landmark, a location of a medical instrument, or any other location/target. In some embodiments, the control circuitry can determine the target location based at least in part on sensor data from a medical instrument that is disposed at least partially within the patient.
At block 706, the process 700 can include determining a position and/or an orientation of the one or more medical instruments. For example, according to certain use cases, control circuitry can determine a position and/or an orientation of one or more medical instruments based at least in part on sensor data from the one or more medical instruments. In some embodiments, the control circuitry can use one or more localization techniques to determine the position and/or the orientation of the one or more medical instruments.
At block 708, the process 700 can include determining a target trajectory for accessing the target location. For example, according to certain use cases, control circuitry can determine a target trajectory for accessing a target location within a patient percutaneously. In some embodiments, the control circuitry can determine the target trajectory based at least in part on sensor data from a medical instrument that is disposed at least partially within the patient, sensor data from a medical instrument that is located externally to the patient (or partially inserted), a position of the target location, and so on. Additionally or alternatively, a target trajectory can be determined based on a user providing input through an interface to designate a target trajectory. In examples, a target trajectory can be defined with respect to one or more anatomical planes/axes.
At block 710, the process 700 can include generating user interface data representing an interface that includes an instrument-alignment element indicative of an alignment of an orientation of a medical instrument to the target trajectory. For example, according to certain use cases, control circuitry can generate user interface data representing an interface (e.g., an instrument-alignment interface) that includes an instrument-alignment element representing an orientation of a medical instrument, such as a needle-alignment icon representing an orientation of a needle. In some embodiments, a positioning of the instrument-alignment element within the interface can indicate an alignment of the orientation of the medical instrument to a target trajectory.
At block 712, the process 700 can include causing display of the interface. For example, according to certain use cases, control circuitry can cause display of an interface via a display device, such as by sending user interface data to a display device associated with a control system. Further, according to certain use cases, a display device can display of an interface based at least in part on user interface data. In any case, the interface can include an instrument-alignment element representing an orientation of a medical instrument.
At block 714, the process 700 can include updating a position of the instrument-alignment element based at least in part on a change in the orientation of the medical instrument. For example, according to certain use cases, control circuitry can determine a change to an orientation of a medical instrument and update a position of an instrument-alignment element that is associated with the medical instrument based at least in part on the change in orientation of the medical instrument.
In some embodiments of block 714, control circuitry can update the position of an instrument-alignment element based at least in part on a proximity of a medical instrument to a target location. For example, in response to determining that the orientation of the medical instrument has changed by a unit of measurement and determining that the medical instrument is outside a predetermined proximity to the target location, the control circuitry can update a position of the instrument-alignment element within an interface by a first amount. Further, in response to determining that the orientation of the medical instrument has changed by the unit of measurement and determining that the medical instrument is within the predetermined proximity to the target location, the control circuitry can update the position of the instrument-alignment element within the interface by a second amount.
At block 804, the process 800 can include determining if the orientation of the medical instrument is aligned with a target trajectory. For example, according to certain use cases, control circuitry can determine, based at least in part on sensor data of a medical instrument, whether or not an orientation of the medical instrument is aligned with a target trajectory that is determined for accessing a target location percutaneously. In some embodiments, the control circuitry can compare one or more coordinates and/or angles of the orientation of the medical instrument with one or more coordinates and/or angles of the target trajectory and determine if one or more thresholds are satisfied (e.g., the one or more coordinates and/or angles of the orientation of the medical instrument are within a particular number of coordinates and/or degrees to the one or more coordinates and/or angles of the target trajectory). In examples, alignment can be determined with respect to positional error and/or angular error (e.g., X, Y, Z, yaw, pitch, roll) and/or with respect to any coordinate frame.
If it is determined that the orientation of the medical instrument is aligned with the target trajectory, the process 800 can proceed to block 806. In contrast, if it is determined that the orientation of the medical instrument is not aligned with the target trajectory, the process 800 can proceed to block 808.
At block 806, the process 800 can include causing display of an indication that the orientation of the medical instrument is aligned with the target trajectory. For example, according to certain use cases, control circuitry can cause display of an indication, within an interface, that an orientation of a medical instrument is aligned with a target trajectory, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display, within an interface, an indication that an orientation of a medical instrument is aligned with a target trajectory. In some embodiments, an instrument-alignment element is displayed in an aligned arrangement with one or more alignment markings (e.g., centered on a marking) to indicate that the orientation of the medical instrument is aligned with the target trajectory.
At block 808, the process 800 can include determining if the orientation of the medical instrument is out of alignment with the target trajectory by more than a threshold amount. For example, according to certain use cases, control circuitry can determine, based at least in part on sensor data of a medical instrument, whether or not the orientation of the medical instrument is out of alignment with a target trajectory by more than a threshold amount. In some embodiments, the control circuitry can compare one or more coordinates and/or angles of the orientation of the medical instrument with one or more coordinates and/or angles of the target trajectory.
If it is determined that the orientation of the medical instrument out of alignment with the target trajectory by more than the threshold amount, the process 800 can proceed to block 810. In contrast, if it is determined that the orientation of the medical instrument not out of alignment with the target trajectory by more than the threshold amount, the process 800 can proceed to block 812.
At block 810, the process 800 can include causing display of an instrument-alignment element at a boundary marking and/or with a deformed form. For example, according to certain use cases, control circuitry can cause display of an instrument-alignment element within a predetermined proximity to a boundary marking and/or with a deformed shape, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display, within an interface, an instrument-alignment element within a predetermined proximity to a boundary marking and/or with a deformed shape.
At block 812, the process 800 can include causing display of an instrument-alignment element with a position that is out of alignment. For example, according to certain use cases, control circuitry can cause display of an instrument-alignment element at a location that is not aligned with an alignment marking, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display an instrument-alignment element at a location that is not aligned with an alignment marking.
At block 814, the process 800 can include determining if the medical instrument is inserted into the human anatomy. For example, according to certain use cases, control circuitry can determine whether or not a medical instrument is disposed at least partially within a patient based at least in part on sensor data from the medical instrument and/or information regarding a position and/or orientation of the patient. In some embodiments, the control circuitry can determine whether or not the medical instrument is inserted into the patient by a particular amount.
If it is determined that the medical instrument is inserted into the human anatomy, the process 800 can proceed to block 816. In contrast, if it is determined that the medical instrument is not inserted into the human anatomy, the process 800 can proceed to block 818.
At block 816, the process 800 can include causing display of an indication to retract the medical instrument. For example, according to certain use cases, control circuitry can cause display of an indication to retract a medical instrument, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display an indication to retract a medical instrument. In some embodiments, control circuitry can maintain display of information associated with blocks 810 and/or 812 (e.g., instrument-alignment elements), as well as provide the indication to retract the medical instrument.
At block 818, the process 800 can include maintaining display of information. For example, according to certain use cases, control circuitry can maintain display of text or other visualizations regarding a current orientation and/or position of a medical instrument (e.g., information presented at blocks 810 and/or 812). Although block 818 is illustrated, in some embodiments, another operation or process can be performed.
At block 904, the process 900 can include causing display of an indication of the proximity of the medical instrument to the target location. For example, according to certain use cases, control circuitry can cause display of an indication, within an interface, of a proximity of a medical instrument to a target location, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display an indication, within an interface, of a proximity of a medical instrument to a target location.
At block 906, the process 900 can include determining if the medical instrument has reached the target location. For example, according to certain use cases, control circuitry can determine whether or not a medical instrument has reached a target location within a patient based at least in part on sensor data from the medical instrument.
If it is determined that the medical instrument has reached the target location, the process 900 can proceed to block 908. In contrast, if it is determined that the medical instrument as not reached the target location, the process 900 can proceed back to block 902.
At block 908, the process 900 can include causing display of an indication of that the medical instrument has reached the target location. For example, according to certain use cases, control circuitry can cause display of an indication, within an interface, that a medical instrument has reached a target location, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display an indication, within an interface, that a medical instrument has reached a target location.
At block 910, the process 900 can include determining if the medical instrument is inserted beyond the target location. For example, according to certain use cases, control circuitry can determine, whether or not a medical instrument is inserted beyond the target location based at least in part on sensor data from the medical instrument.
If it is determined that the medical instrument is inserted beyond the target location, the process 900 can proceed to block 912. In contrast, if it is determined that the medical instrument is not inserted beyond the target location, the process 900 can proceed back to block 902. Although the process 900 is illustrated as proceeding back to block 902 in the example of
At block 912, the process 900 can include causing display of an indication of that the medical instrument is inserted beyond the target location. For example, according to certain use cases, control circuitry can cause display of an indication, within an interface, that a medical instrument is inserted beyond the target location, such as by sending data to a display device associated with a control system. Further, according to certain use cases, a display device can display an indication, within an interface, that a medical instrument is inserted beyond the target location. The process 900 can then proceed back to block 902.
At block 1004, the process 1000 can include using the position change parameter to change a position of an instrument-alignment element based at least in part on a change in an orientation of the medical instrument. For example, according to certain use cases, control circuitry can determine that an orientation of a medical instrument has changed and, in response, use a position change parameter to change a position of an instrument-alignment element (e.g., use a value of the position change parameter to identify an amount of position change to apply to the instrument-alignment element).
At block 1006, the process 1000 can include determining if the medical instrument is closer to a target location. For example, according to certain use cases, control circuitry can determine whether or not a medical instrument is closer to a target location in comparison to a last position of the medical instrument. Such determination can be based at least in part on sensor data from the medical instrument. In some embodiments, the control circuitry can determine if the medical instrument is within a predetermined proximity to the target location.
If it is determined that the medical instrument it is closer to the target location, the process 1000 can proceed to block 1008. In contrast, if it is determined that the medical instrument it is not closer to the target location, the process 1000 can proceed back to block 1004 and continue to use the previously set position change parameter.
At block 1008, the process 1000 can include updating the position change parameter. For example, according to certain use cases, control circuitry can update a position change parameter to another value that is associated with more or less position change for a unit of movement of a medical instrument. In some embodiments, block 1008 can be implemented in any number of times to update the position change parameter one or more times as the medical instrument moves closer to the target location. Further, in some embodiments, block 1008 can be implemented once when the medical instrument is within a predetermined proximity to the target location. Here, the process 1000 may not return to block 1004 after implementing block 1008.
Example Robotic System
The robotic system 110 can include the support structure 114 including an elongated section 114(A) (sometimes referred to as “the column 114(A)”) and a base 114(B). The column 114(A) can include one or more carriages, such as a carriage 1102 (alternatively referred to as “the arm support 1102”) for supporting the deployment of one or more the robotic arms 112 (three shown in
In some embodiments, the slot 1106 can be supplemented with a slot cover(s) that is flush and/or parallel to the slot surface to prevent dirt and/or fluid ingress into the internal chambers of the column 114(A) and/or the vertical translation interface as the carriage 1102 vertically translates. The slot covers can be deployed through pairs of spring spools positioned near the vertical top and bottom of the slot 1106. The covers can be coiled within the spools until deployed to extend and retract from their coiled state as the carriage 1102 vertically translates up and down. The spring-loading of the spools can provide force to retract the cover into a spool when the carriage 1102 translates towards the spool, while also maintaining a tight seal when the carriage 1102 translates away from the spool. The covers can be connected to the carriage 1102 using, for example, brackets in the carriage interface 1104 to ensure proper extension and retraction of the covers as the carriage 1102 translates.
The base 114(B) can balance the weight of the column 114(A), the carriage 1102, and/or arms 112 over a surface, such as the floor. Accordingly, the base 114(B) can house heavier components, such as one or more electronics, motors, power supply, etc., as well as components that enable movement and/or immobilize the robotic system 110. For example, the base 114(B) can include rollable wheels 1116 (also referred to as “the casters 1116”) that allow for the robotic system 110 to move around the room for a procedure. After reaching an appropriate position, the casters 1116 can be immobilized using wheel locks to hold the robotic system 110 in place during the procedure. As shown, the robotic system 110 also includes a handle 1118 to assist with maneuvering and/or stabilizing the robotic system 110.
The robotic arms 112 can generally comprise robotic arm bases 1108 and end effectors 1110, separated by a series of linkages 1112 that are connected by a series of joints 1114. Each joint 1114 can comprise an independent actuator and each actuator can comprise an independently controllable motor. Each independently controllable joint 1114 represents an independent degree of freedom available to the robotic arm 112. For example, each of the arms 112 can have seven joints, and thus, provide seven degrees of freedom. However, any number of can be implemented with any degrees of freedom. In examples, a multitude of can result in a multitude of degrees of freedom, allowing for “redundant” degrees of freedom. Redundant degrees of freedom allow the robotic arms 112 to position their respective end effectors 1110 at a specific position, orientation, and/or trajectory in space using different linkage positions and/or joint angles. In some embodiments, the end effectors 1110 can be configured to engage with and/or control a medical instrument, a device, an object, and so on. The freedom of movement of the arms 112 can allow the robotic system 110 to position and/or direct a medical instrument from a desired point in space and/or allow a physician to move the arms 112 into a clinically advantageous position away from the patient to create access, while avoiding arm collisions.
As shown in
The robotic system 110 can include a variety of other components. For example, the robotic system 110 can include one or more control electronics/circuitry, power sources, pneumatics, optical sources, actuators (e.g., motors to move the robotic arms 112), memory, and/or communication interfaces (e.g. to communicate with another device). In some embodiments, the memory can store computer-executable instructions that, when executed by the control circuitry, cause the control circuitry to perform any of the operations discussed herein. For example, the memory can store computer-executable instructions that, when executed by the control circuitry, cause the control circuitry to receive input and/or a control signal regarding manipulation of the robotic arms 112 and, in response, control the robotic arms 112 to be positioned in a particular arrangement and/or to navigate a medical instrument connected to the end effectors 1110.
In some embodiments, robotic system 110 is configured to engage with and/or control a medical instrument, such as the scope 120. For example, the robotic arms 112 can be configured to control a position, orientation, and/or tip articulation of a scope (e.g., a sheath and/or a leader of the scope). In some embodiments, the robotic arms 112 can be configured/configurable to manipulate the scope 120 using elongate movement members. The elongate movement members can include one or more pull wires (e.g., pull or push wires), cables, fibers, and/or flexible shafts. To illustrate, the robotic arms 112 can be configured to actuate multiple pull wires coupled to the scope 120 to deflect the tip of the scope 120. Pull wires can include any suitable or desirable materials, such as metallic and/or non-metallic materials such as stainless steel, Kevlar, tungsten, carbon fiber, and the like. In some embodiments, the scope 120 is configured to exhibit nonlinear behavior in response to forces applied by the elongate movement members. The nonlinear behavior can be based on stiffness and compressibility of the scope 120, as well as variability in slack or stiffness between different elongate movement members.
Example Control System
Although certain components of the control system 140 are illustrated in
The various components of the control system 140 can be electrically and/or communicatively coupled using certain connectivity circuitry/devices/features, which can or may not be part of the control circuitry 1202. For example, the connectivity feature(s) can include one or more printed circuit boards configured to facilitate mounting and/or interconnectivity of at least some of the various components/circuitry of the control system 140. In some embodiments, two or more of the control circuitry 1202, the data storage/memory 1204, the communication interface(s) 1206, the power supply unit(s) 1208, and/or the input/output (I/O) component(s) 1210, can be electrically and/or communicatively coupled to each other.
As illustrated, the memory 1204 can include a localization component 1214, a target/trajectory component 1216, and a user interface component 1218 configured to facilitate various functionality discussed herein. In some embodiments, the localization component 1214, the target/trajectory component 1216, and/or the user interface component 1218 can include one or more instructions that are executable by the control circuitry 1202 to perform one or more operations. Although many embodiments are discussed in the context of the components 1214-1218 including one or more instructions that are executable by the control circuitry 1202, any of the components 1214-1218 can be implemented at least in part as one or more hardware logic components, such as one or more application specific integrated circuits (ASIC), one or more field-programmable gate arrays (FPGAs), one or more program-specific standard products (ASSPs), one or more complex programmable logic devices (CPLDs), and/or the like. Furthermore, although the components 1214-1218 are illustrated as being included within the control system 140, any of the components 1214-1218 can be implemented at least in part within another device/system, such as the robotic system 110, the table 150, or another device/system. Similarly, any of the other components of the control system 140 can be implemented at least in part within another device/system.
The localization component 1214 can be configured to perform one or more localization techniques to determine and/or track a position and/or an orientation of an object, such as a medical instrument. For example, the localization component 1214 can process input data (e.g., sensor data from a medical instrument, model data regarding anatomy of a patient, position data of a patient, pre-operative data, robotic command and/or kinematics data, etc.) to generate position/orientation data 1220 for one or more medical instruments. The position/orientation data 1220 can indicate a location and/or an orientation of one or more medical instruments relative to a frame of reference. The frame of reference can be a frame of reference relative to anatomy of a patient, a known object (e.g., an EM field generator), a coordinate system/space, and so on. In some implementations, the position/orientation data 1220 can indicate a location and/or an orientation of a distal end of a medical instrument (and/or proximal end, in some cases).
In some embodiments, the localization component 1214 can process pre-operative data to determine a position and/or an orientation of an object. The pre-operative data (sometimes referred to as “mapping data”) can be generated by performing computed tomography (CT) scans, such as low dose CT scans. The pre-operative CT images from the scans can be reconstructed into three-dimensional images, which are visualized, e.g. as “slices” of a cutaway view of a patient's internal anatomy. When analyzed in the aggregate, image-based models for anatomical cavities, spaces, and/or structures of the patient's anatomy, such as a patient lung network, can be generated. A center-line geometry can be determined and/or approximated from the CT images to develop a three-dimensional volume of the patient's anatomy, referred to as model data (also referred to as “pre-operative model data” when generated using only pre-operative CT scans). Example uses of center-line geometry are discussed in U.S. patent application Ser. No. 14/523,760, the contents of which are herein incorporated by reference in its entirety. Network topological models can also be derived from CT-images.
Further, in some embodiments, the localization component 1214 can perform vision-based techniques to determine a position and/or an orientation of an object. For example, a medical instrument can be equipped with a camera, a range sensor (sometimes referred to as “a depth sensor”), a radar device, etc., to provide sensor data in the form of vision data. The localization component 1214 can process the vision data to facilitate vision-based location tracking of the medical instrument. For example, a pre-operative model data can be used in conjunction with vision data to enable computer vision-based tracking of a medical instrument (e.g., an endoscope). In examples, using pre-operative model data, the control system 140 can generate a library of expected endoscopic images based on the expected path of travel of a scope, with each image being linked to a location within the model. Intra-operatively, this library can be referenced by the control system 140 in order to compare real-time images and/or other vision data captured at a scope (e.g., a camera at a distal end of an endoscope) to those in the image library to assist with localization.
Moreover, in some embodiments, other types of vision-based techniques can be performed to determine a position and/or an orientation of an object. For example, the localization component 1214 can use feature tracking to determine motion of an image sensor (e.g., a camera or other sensor), and thus, a medical instrument associated with the image sensor. In some cases, the localization component 1214 can identify circular geometries in pre-operative model data that correspond to anatomical lumens and track the change of those geometries to determine which anatomical lumen was selected, as well as the relative rotational and/or translational motion of the medical instrument. Use of a topological map can also enhance vision-based algorithms or techniques. Furthermore, the localization component 1214 can use optical flow, another computer vision-based technique, to analyze displacement and/or translation of image pixels in a video sequence in vision data to infer camera movement. Examples of optical flow techniques can include motion detection, object segmentation calculations, luminance, motion compensated encoding, stereo disparity measurement, etc. By comparing multiple frames over multiple iterations, the localization component 1214 can determine movement and a location of an image sensor (and thus an endoscope).
Furthermore, in some embodiments, the localization component 1214 can use electromagnetic tracking to determine a position and/or an orientation of an object. For example, the localization component 1214 can use real-time EM tracking to determine a real-time location of a medical instrument in a coordinate system/space that can be registered to the patient's anatomy, which can be represented by a pre-operative model or other model. In EM tracking, an EM sensor (or tracker) including one or more sensor coils can be embedded in one or more locations and/or orientations in a medical instrument (e.g., a scope, a needle, etc.). The EM sensor can measure a variation in an EM field created by one or more static EM field generators positioned at a known location. The location information detected by the EM sensors can be stored as EM data. The localization component 1214 can process the EM data to determine a position and/or orientation of an object, such as a medical instrument. An EM field generator (or transmitter) can be placed close to the patient (e.g., within a predetermined distance) to create a low intensity magnetic field that an EM sensor can detect. The magnetic field can induce small currents in the sensor coils of the EM sensor, which can be analyzed to determine a distance and/or angle between the EM sensor and the EM field generator. These distances and/or orientations can be intra-operatively “registered” to patient anatomy (e.g., a pre-operative model) in order to determine a geometric transformation that aligns a single location in a coordinate system with a position in the pre-operative model of the patient's anatomy. Once registered, an EM sensor (e.g., an embedded EM tracker) in one or more positions of a medical instrument (e.g., the distal tip of an endoscope, a needle, etc.) can provide real-time indications of a position and/or an orientation the medical instrument through the patient's anatomy.
Additionally or alternatively, in some embodiments, the localization component 1214 can use robotic command and/or kinematics data to determine a position and/or an orientation of an object. Robotic command and/or kinematics data can be indicative of pitch and/or yaw (e.g., of a robotic arm) resulting from an articulation command, such as those used during pre-operative calibration and/or during a procedure. Intra-operatively, calibration measurements can be used in combination with known insertion depth information to estimate a position and/or an orientation of a medical instrument. Alternatively or additionally, these calculations can be analyzed in combination with EM, vision, and/or topological modeling to estimate a position and/or orientation of a medical instrument.
Further, in some embodiments, the localization component 1214 can use other types of data to determine a position and/or an orientation of an object. For example, the localization component 1214 can analyze sensor data from a shape sensing fiber (e.g., which can provide shape data regarding a location/shape of a medical instrument), an accelerometer, a gyroscope, a satellite-based positioning sensor (e.g., a global positioning system (GPS)), a radio-frequency transceiver, and so on, embedded on a medical instrument. Such data can be indicative of a position and/or an orientation of the medical instrument.
In some embodiments, the localization component 1214 can use input data in combination. For example, the localization component 1214 can use a probabilistic approach where a confidence weight is assigned to a position/orientation determined from multiple forms of input data. To illustrate, if EM data is not as reliable (as may be the case where there is EM interference), the EM data can be associated with a relatively low confidence value and other forms of input data can be relied on, such as vision data, robotic command and kinematics data, and so on.
The target/trajectory component 1216 can be configured to determine a position of a target location within the human anatomy and/or a coordinate space/system. A target location can represent a point/point set within the human anatomy and/or a coordinate space/system. For example, the target/trajectory component 1216 can identify one or more points for a target location within a coordinate system, identify coordinates for the one or more points (e.g., X, Y, Z coordinates for each point), and associate the coordinates with the target location. In some embodiments, the target/trajectory component 1216 can use a position and/or orientation of a medical instrument to determine a position of a target location. For example, a scope can be navigated to contact or be within proximity to a target location (e.g., parked in-front of the target location). The localization component 1214 can use localization techniques to determine a position of the scope (e.g., a location of the end of the scope) and/or a position of an object within a field-of-view of the scope. The target/trajectory component 1216 can associate the position of the scope (e.g., the coordinates of the scope) with the target location. Additionally or alternatively, in some embodiments, a scope can deliver a fiduciary to mark a target location and a position of the fiduciary can be determined.
A target location can represent a fixed or movable point(s) within the human anatomy and/or a coordinate space/system. For example, if a papilla is initially designated as a target location, coordinates for the target location can be determined and updated as the procedure proceeds and the papilla moves (e.g., due to insertion of a medical instrument). Here, a location of a scope (which can be within proximity to the papilla) can be tracked over time and used to update the coordinates of the target location. In some embodiments, the target/trajectory component 1216 can estimate/predict a position of a target location. Here, the target location can be represented with the predicted position. For example, the target/trajectory component 1216 can use an algorithm to predict coordinates of the target location as the human anatomy moves. The predicted coordinates can be used to determine a target trajectory.
In some embodiments, a target trajectory and/or a trajectory of a medical instrument can be defined/represented with respect to one or more anatomical planes/axes. For example, a trajectory can be defined/represented as an angle with respect to the coronal/sagittal/transverse plane(s) or another plane/axis (e.g., a 20 degree cranial-caudal angle, 10 degree medial-lateral angle, etc.). To illustrate, the control system 140 can determine a pose of a medical instrument with respect to an EM field generator and/or a location of a target with respect to the EM field generator. The control system 140 can also determine, based on robotic kinematics, a pose of the EM field generator with respect to a robotic system. In some cases, the control system 140 can infer/determine that the robotics system is parallel to the bed. Based on such information, the control system 140 can determine a target trajectory and/or a trajectory of the medical instrument within respect to an anatomical plane, such as an angle with respect to an anatomical plane for the patient on the bed.
The target/trajectory component 1216 can also be configured to determine a target trajectory for a medical instrument or another object. A target trajectory can represent a desired path for accessing a target location. A target trajectory can be determined based on a variety of information, such as a position of a medical instrument(s) (e.g., a needle, a scope, etc.), a target location within the human anatomy, a position and/or orientation of a patient, the anatomy of the patient (e.g., the location of organs within the patient relative to the target location), and so on. For example, a target trajectory can include a line that extends from a position of a medical instrument and/or a location on the skin of a patient to/through a position of a target location within the patient. In examples, a physician can analyze images or models of the human anatomy and provide input to designate a target trajectory, such as by drawing a line on an image of the internal anatomy of a patient. In some embodiments, the target/trajectory component 1216 can calculate a target trajectory initially and/or update the target trajectory throughout the procedure. For example, as a target location moves during the procedure, a target trajectory can be updated due to the change in position of the target location. In examples where a target location is estimated, a target trajectory can represent an estimated path to reach the target location.
The user interface component 1218 can be configured to facilitate one or more user interfaces (also referred to as “one or more graphical user interfaces (GUI)”). For example, the user interface component 1218 can generate user interface data 1222 representing an instrument-alignment interface 1224 that includes one or more visualizations to indicate an orientation and/or position of a medical instrument. The user interface component 1228 can use the position/orientation data 1220 regarding a medical instrument, information regarding a target location, and/or information regarding a target trajectory to present, within the instrument-alignment interface 1224, one or more visualizations indicative of an alignment of an orientation of the medical instrument relative to the target trajectory and/or a proximity of the medical instrument to the target location. Further, the user interface component 1228 can use vision data, such as images captured by a scope, to present information within the instrument-alignment interface 1224. In examples, information can be overlaid on images from a scope (e.g., augmented image view). The user interface component 1228 can provide the user interface data 1222 or other data to the one or more displays 142 and/or another display(s) for display of the instrument-alignment interface 1224.
The one or more communication interfaces 1206 can be configured to communicate with one or more device/sensors/systems. For example, the one or more communication interfaces 1206 can send/receive data in a wireless and/or wired manner over a network. A network in accordance with embodiments of the present disclosure can include a local area network (LAN), wide area network (WAN) (e.g., the Internet), personal area network (PAN), body area network (BAN), etc. In some embodiments, the one or more communication interfaces 1206 can implement a wireless technology such as Bluetooth, Wi-Fi, near field communication (NFC), or the like.
The one or more power supply units 1208 can be configured to manage power for the control system 140 (and/or the robotic system 110, in some cases). In some embodiments, the one or more power supply units 1208 include one or more batteries, such as a lithium-based battery, a lead-acid battery, an alkaline battery, and/or another type of battery. That is, the one or more power supply units 1208 can comprise one or more devices and/or circuitry configured to provide a source of power and/or provide power management functionality. Moreover, in some embodiments the one or more power supply units 1208 include a mains power connector that is configured to couple to an alternating current (AC) or direct current (DC) mains power source.
The one or more I/O components 1210 can include a variety of components to receive input and/or provide output, such as to interface with a user. The one or more I/O components 1210 can be configured to receive touch, speech, gesture, or any other type of input. In examples, the one or more I/O components 1210 can be used to provide input regarding control of a device/system, such as to control the robotic system 110, navigate the scope or other medical instrument attached to the robotic system 110, control the table 150, control the fluoroscopy device 190, and so on. As shown, the one or more I/O components 1210 can include the one or more displays 142 (sometimes referred to as “the one or more display devices 142”) configured to display data. The one or more displays 142 can include one or more liquid-crystal displays (LCD), light-emitting diode (LED) displays, organic LED displays, plasma displays, electronic paper displays, and/or any other type(s) of technology. In some embodiments, the one or more displays 142 include one or more touchscreens configured to receive input and/or display data. Further, the one or more I/O components 1210 can include the one or more I/O devices 146, which can include a touchscreen, touch pad, controller, mouse, keyboard, wearable device (e.g., optical head-mounted display), virtual or augmented reality device (e.g., head-mounted display), etc. Additionally, the one or more I/O components 1210 can include one or more speakers 1226 configured to output sounds based on audio signals and/or one or more microphones 1228 configured to receive sounds and generate audio signals. In some embodiments, the one or more I/O components 1210 include or are implemented as a console.
Although not shown in
The control system 140 can also include support equipment for sensors deployed throughout the medical system 100. For example, the control system 140 can include opto-electronics equipment for detecting, receiving, and/or processing data received from optical sensors and/or cameras. Such opto-electronics equipment can be used to generate real-time images for display in any number of devices/systems, including in the control system 140. Similarly, the control system 140 can include an electronic subsystem for receiving and/or processing signals received from deployed electromagnetic (EM) sensors. In some embodiments, the control system 140 can also be used to house and position an EM field generator for detection by EM sensors in or on a medical instrument.
In some embodiments, the control system 140 can be coupled to the robotic system 110, the table 150, and/or a medical instrument, such as the scope 120 and/or the needle 170, through one or more cables or connections (not shown). In some implementations, support functionality from the control system 140 can be provided through a single cable, simplifying and de-cluttering an operating room. In other implementations, specific functionality can be coupled in separate cabling and connections. For example, while power can be provided through a single power cable, the support for controls, optics, fluidics, and/or navigation can be provided through a separate cable.
The term “control circuitry” is used herein according to its broad and ordinary meaning, and can refer to any collection of one or more processors, processing circuitry, processing modules/units, chips, dies (e.g., semiconductor dies including come or more active and/or passive devices and/or connectivity circuitry), microprocessors, micro-controllers, digital signal processors, microcomputers, central processing units, graphics processing units, field programmable gate arrays, programmable logic devices, state machines (e.g., hardware state machines), logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. Control circuitry can further comprise one or more, storage devices, which can be embodied in a single memory device, a plurality of memory devices, and/or embedded circuitry of a device. Such data storage can comprise read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, data storage registers, and/or any device that stores digital information. It should be noted that in embodiments in which control circuitry comprises a hardware state machine (and/or implements a software state machine), analog circuitry, digital circuitry, and/or logic circuitry, data storage device(s)/register(s) storing any associated operational instructions can be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
The term “memory” is used herein according to its broad and ordinary meaning and can refer to any suitable or desirable type of computer-readable media. For example, computer-readable media can include one or more volatile data storage devices, non-volatile data storage devices, removable data storage devices, and/or nonremovable data storage devices implemented using any technology, layout, and/or data structure(s)/protocol, including any suitable or desirable computer-readable instructions, data structures, program modules, or other types of data.
Computer-readable media that can be implemented in accordance with embodiments of the present disclosure includes, but is not limited to, phase change memory, static random-access memory (SRAM), dynamic random-access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to store information for access by a computing device. As used in certain contexts herein, computer-readable media may not generally include communication media, such as modulated data signals and carrier waves. As such, computer-readable media should generally be understood to refer to non-transitory media.
Depending on the embodiment, certain acts, events, or functions of any of the processes or algorithms described herein can be performed in a different sequence, may be added, merged, or left out altogether. Thus, in certain embodiments, not all described acts or events are necessary for the practice of the processes.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is intended in its ordinary sense and is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous, are used in their ordinary sense, and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is understood with the context as used in general to convey that an item, term, element, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present.
It should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, Figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Moreover, any components, features, or steps illustrated and/or described in a particular embodiment herein can be applied to or used with any other embodiment(s). Further, no component, feature, step, or group of components, features, or steps are necessary or indispensable for each embodiment. Thus, it is intended that the scope of the inventions herein disclosed and claimed below should not be limited by the particular embodiments described above, but should be determined only by a fair reading of the claims that follow.
It should be understood that certain ordinal terms (e.g., “first” or “second”) may be provided for ease of reference and do not necessarily imply physical characteristics or ordering. Therefore, as used herein, an ordinal term (e.g., “first,” “second,” “third,” etc.) used to modify an element, such as a structure, a component, an operation, etc., does not necessarily indicate priority or order of the element with respect to any other element, but rather may generally distinguish the element from another element having a similar or identical name (but for use of the ordinal term). In addition, as used herein, indefinite articles (“a” and “an”) may indicate “one or more” rather than “one.” Further, an operation performed “based on” a condition or event may also be performed based on one or more other conditions or events not explicitly recited.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The spatially relative terms “outer,” “inner,” “upper,” “lower,” “below,” “above,” “vertical,” “horizontal,” and similar terms, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device shown in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in the other direction, and thus the spatially relative terms may be interpreted differently depending on the orientations.
Unless otherwise expressly stated, comparative and/or quantitative terms, such as “less,” “more,” “greater,” and the like, are intended to encompass the concepts of equality. For example, “less” can mean not only “less” in the strictest mathematical sense, but also, “less than or equal to.”
This application claims priority to U.S. Provisional Application No. 62/955,993, filed Dec. 31, 2019, and entitled ALIGNMENT INTERFACES FOR PERCUTANEOUS ACCESS, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4644237 | Frushour et al. | Feb 1987 | A |
4745908 | Wardle | May 1988 | A |
4748969 | Wardle | Jun 1988 | A |
D307263 | Ishida | Apr 1990 | S |
5194791 | Cull | Mar 1993 | A |
5199417 | Muller et al. | Apr 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5273025 | Sakiyama et al. | Dec 1993 | A |
5280781 | Oku | Jan 1994 | A |
5408263 | Kikuchi et al. | Apr 1995 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5550953 | Seraji | Aug 1996 | A |
5669876 | Schechter et al. | Sep 1997 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5769086 | Ritchart et al. | Jun 1998 | A |
5831614 | Tognazzini et al. | Nov 1998 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5899851 | Koninckx | May 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
6004016 | Spector | Dec 1999 | A |
6038467 | Bliek et al. | Mar 2000 | A |
6047080 | Chen et al. | Apr 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6167292 | Badano et al. | Dec 2000 | A |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6203493 | Ben-Haim | Mar 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
6246784 | Summers et al. | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6425865 | Salcudean et al. | Jul 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6466198 | Feinstein | Oct 2002 | B1 |
6490467 | Bucholz et al. | Dec 2002 | B1 |
6553251 | Landesmaki | Apr 2003 | B1 |
6665554 | Charles et al. | Dec 2003 | B1 |
6671538 | Ehnholm et al. | Dec 2003 | B1 |
6690963 | Ben-Haim et al. | Feb 2004 | B2 |
6690964 | Bieger et al. | Feb 2004 | B2 |
6755797 | Stouffer | Jun 2004 | B1 |
6812842 | Dimmer | Nov 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6899672 | Chin et al. | May 2005 | B2 |
6926709 | Bieger et al. | Aug 2005 | B2 |
7180976 | Wink et al. | Feb 2007 | B2 |
7197354 | Sobe | Mar 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7233820 | Gilboa | Jun 2007 | B2 |
7386339 | Strommer et al. | Jun 2008 | B2 |
7607440 | Coste-Maniere et al. | Oct 2009 | B2 |
7756563 | Higgins et al. | Jul 2010 | B2 |
7763015 | Cooper et al. | Jul 2010 | B2 |
7772541 | Froggatt et al. | Aug 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7901348 | Soper et al. | Mar 2011 | B2 |
7963288 | Rosenberg et al. | Jun 2011 | B2 |
8021326 | Moll et al. | Sep 2011 | B2 |
8155403 | Tschirren et al. | Apr 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8298135 | Ito et al. | Oct 2012 | B2 |
8317746 | Sewell et al. | Nov 2012 | B2 |
8335557 | Maschke | Dec 2012 | B2 |
8348931 | Cooper et al. | Jan 2013 | B2 |
8376934 | Takahashi et al. | Feb 2013 | B2 |
8394054 | Wallace et al. | Mar 2013 | B2 |
8396595 | Dariush | Mar 2013 | B2 |
8442618 | Strommer et al. | May 2013 | B2 |
8460236 | Roelle et al. | Jun 2013 | B2 |
8469945 | Schena | Jun 2013 | B2 |
8498691 | Moll et al. | Jul 2013 | B2 |
8506555 | Morales | Aug 2013 | B2 |
8554368 | Fielding et al. | Oct 2013 | B2 |
8573228 | Kalpin | Nov 2013 | B2 |
8652030 | Matsuura et al. | Feb 2014 | B2 |
8720448 | Reis et al. | May 2014 | B2 |
8738181 | Greer et al. | May 2014 | B2 |
8821376 | Tolkowsky | Sep 2014 | B2 |
8827948 | Romo et al. | Sep 2014 | B2 |
8858424 | Hasegawa et al. | Oct 2014 | B2 |
8894610 | MacNamara et al. | Nov 2014 | B2 |
8929631 | Pfister et al. | Jan 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
9014851 | Wong et al. | Apr 2015 | B2 |
9023060 | Cooper et al. | May 2015 | B2 |
9084623 | Gomez et al. | Jul 2015 | B2 |
9125639 | Mathis et al. | Sep 2015 | B2 |
9129417 | Zheng et al. | Sep 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9173713 | Hart et al. | Nov 2015 | B2 |
9183354 | Baker et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9199372 | Henderson et al. | Dec 2015 | B2 |
9226796 | Bowling et al. | Jan 2016 | B2 |
9256940 | Carelsen et al. | Feb 2016 | B2 |
9259274 | Prisco | Feb 2016 | B2 |
9272416 | Hourtash et al. | Mar 2016 | B2 |
9289578 | Walker et al. | Mar 2016 | B2 |
9302702 | Schepmann et al. | Apr 2016 | B1 |
9314306 | Yu | Apr 2016 | B2 |
9345456 | Tsonton et al. | May 2016 | B2 |
9358682 | Morales | Jun 2016 | B2 |
9452276 | Duindam et al. | Sep 2016 | B2 |
9459087 | Dunbar et al. | Oct 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9522034 | Johnson et al. | Dec 2016 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9603668 | Weingarten et al. | Mar 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9629595 | Walker et al. | Apr 2017 | B2 |
9629682 | Wallace et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9668768 | Piron et al. | Jun 2017 | B2 |
9675422 | Hourtash et al. | Jun 2017 | B2 |
9710921 | Wong et al. | Jul 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9717563 | Tognaccini et al. | Aug 2017 | B2 |
9726476 | Ramamurthy et al. | Aug 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9782229 | Crawford et al. | Oct 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9789608 | Itkowitz et al. | Oct 2017 | B2 |
9839481 | Blumenkranz et al. | Dec 2017 | B2 |
9844353 | Walker et al. | Dec 2017 | B2 |
9844412 | Boguslcy et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10046140 | Kokish et al. | Aug 2018 | B2 |
10080576 | Romo et al. | Sep 2018 | B2 |
10123755 | Walker et al. | Nov 2018 | B2 |
10130345 | Wong et al. | Nov 2018 | B2 |
10136950 | Schoenefeld | Nov 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10143360 | Roelle et al. | Dec 2018 | B2 |
10143526 | Walker et al. | Dec 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10213264 | Tanner et al. | Feb 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10278778 | State et al. | May 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10314463 | Agrawal et al. | Jun 2019 | B2 |
10383765 | Alvarez et al. | Aug 2019 | B2 |
10398518 | Yu et al. | Sep 2019 | B2 |
10405939 | Romo | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426559 | Graetzel et al. | Oct 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Meyer et al. | Oct 2019 | B2 |
10454347 | Covington et al. | Oct 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill et al. | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10492741 | Walker et al. | Dec 2019 | B2 |
10493241 | Jiang | Dec 2019 | B2 |
10500001 | Yu et al. | Dec 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan et al. | Jan 2020 | B2 |
10531864 | Wong et al. | Jan 2020 | B2 |
10539478 | Lin et al. | Jan 2020 | B2 |
10543048 | Noonan | Jan 2020 | B2 |
10555778 | Ummalaneni | Feb 2020 | B2 |
10583271 | Bogusky | Mar 2020 | B2 |
10631949 | Schuh et al. | Apr 2020 | B2 |
10639109 | Bovay et al. | May 2020 | B2 |
10646291 | Turner | May 2020 | B2 |
20010000040 | Adams et al. | Mar 2001 | A1 |
20010021843 | Bosselmann et al. | Sep 2001 | A1 |
20010039421 | Heilbrun et al. | Nov 2001 | A1 |
20020035330 | Cline et al. | Mar 2002 | A1 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020077533 | Bieger et al. | Jun 2002 | A1 |
20020082612 | Moll et al. | Jun 2002 | A1 |
20020120188 | Brock et al. | Aug 2002 | A1 |
20020128535 | Kikuchi et al. | Sep 2002 | A1 |
20020161280 | Chatenever et al. | Oct 2002 | A1 |
20020173878 | Watanabe et al. | Nov 2002 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030105603 | Hardesty | Jun 2003 | A1 |
20030125622 | Schweikard et al. | Jul 2003 | A1 |
20030181809 | Hall et al. | Sep 2003 | A1 |
20030182091 | Kukuk | Sep 2003 | A1 |
20030195664 | Nowlin et al. | Oct 2003 | A1 |
20040015079 | Berger et al. | Jan 2004 | A1 |
20040047044 | Dalton | Mar 2004 | A1 |
20040072066 | Cho et al. | Apr 2004 | A1 |
20040152970 | Hunter et al. | Aug 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040186349 | Ewers et al. | Sep 2004 | A1 |
20040249267 | Gilboa | Dec 2004 | A1 |
20040257021 | Chang et al. | Dec 2004 | A1 |
20040263535 | Birkenbach et al. | Dec 2004 | A1 |
20050027397 | Niemeyer | Feb 2005 | A1 |
20050043718 | Madhani et al. | Feb 2005 | A1 |
20050060006 | Pflueger et al. | Mar 2005 | A1 |
20050065400 | Banik et al. | Mar 2005 | A1 |
20050085714 | Foley et al. | Apr 2005 | A1 |
20050107679 | Geiger et al. | May 2005 | A1 |
20050107917 | Smith et al. | May 2005 | A1 |
20050143649 | Minai et al. | Jun 2005 | A1 |
20050143655 | Satoh | Jun 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050193451 | Quistgaard et al. | Sep 2005 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20050234293 | Yamamoto et al. | Oct 2005 | A1 |
20050256398 | Hastings et al. | Nov 2005 | A1 |
20050261551 | Couvillon | Nov 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060015096 | Hauck et al. | Jan 2006 | A1 |
20060025668 | Peterson et al. | Feb 2006 | A1 |
20060041293 | Mehdizadeh et al. | Feb 2006 | A1 |
20060058617 | Sano et al. | Mar 2006 | A1 |
20060058643 | Florent et al. | Mar 2006 | A1 |
20060079745 | Viswanathan | Apr 2006 | A1 |
20060084860 | Geiger et al. | Apr 2006 | A1 |
20060095066 | Chang et al. | May 2006 | A1 |
20060098851 | Shoham et al. | May 2006 | A1 |
20060149134 | Soper et al. | Jul 2006 | A1 |
20060173290 | Lavallee et al. | Aug 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060184016 | Glossop | Aug 2006 | A1 |
20060200026 | Wallace et al. | Sep 2006 | A1 |
20060200049 | Leo et al. | Sep 2006 | A1 |
20060209019 | Hu | Sep 2006 | A1 |
20060258935 | Pile-Spellman et al. | Nov 2006 | A1 |
20060258938 | Hoffman et al. | Nov 2006 | A1 |
20070013336 | Nowlin et al. | Jan 2007 | A1 |
20070032826 | Schwartz | Feb 2007 | A1 |
20070043455 | Viswanathan et al. | Feb 2007 | A1 |
20070055128 | Glossop | Mar 2007 | A1 |
20070055144 | Neustadter et al. | Mar 2007 | A1 |
20070073136 | Metzger | Mar 2007 | A1 |
20070083193 | Werneth et al. | Apr 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070135886 | Maschke | Jun 2007 | A1 |
20070142971 | Schena | Jun 2007 | A1 |
20070150155 | Kawai et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070161857 | Durant et al. | Jul 2007 | A1 |
20070167743 | Honda et al. | Jul 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070232856 | Ueno et al. | Oct 2007 | A1 |
20070249911 | Simon | Oct 2007 | A1 |
20070253599 | White et al. | Nov 2007 | A1 |
20070269001 | Maschke | Nov 2007 | A1 |
20070287992 | Diolaiti et al. | Dec 2007 | A1 |
20070293721 | Gilboa | Dec 2007 | A1 |
20070299353 | Harlev et al. | Dec 2007 | A1 |
20080027313 | Shachar | Jan 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080071140 | Gattani et al. | Mar 2008 | A1 |
20080079421 | Jensen | Apr 2008 | A1 |
20080103389 | Begelman et al. | May 2008 | A1 |
20080108870 | Wiita et al. | May 2008 | A1 |
20080118118 | Berger | May 2008 | A1 |
20080118135 | Averbuch et al. | May 2008 | A1 |
20080123921 | Gielen et al. | May 2008 | A1 |
20080140087 | Barbagli | Jun 2008 | A1 |
20080147089 | Loh et al. | Jun 2008 | A1 |
20080159653 | Dunki-Jacobs et al. | Jul 2008 | A1 |
20080161681 | Hauck | Jul 2008 | A1 |
20080183064 | Chandonnet et al. | Jul 2008 | A1 |
20080183068 | Carls et al. | Jul 2008 | A1 |
20080183073 | Higgins et al. | Jul 2008 | A1 |
20080183188 | Carls et al. | Jul 2008 | A1 |
20080201016 | Finlay | Aug 2008 | A1 |
20080207997 | Higgins et al. | Aug 2008 | A1 |
20080212082 | Froggatt et al. | Sep 2008 | A1 |
20080218770 | Moll et al. | Sep 2008 | A1 |
20080231221 | Ogawa | Sep 2008 | A1 |
20080243142 | Gildenberg | Oct 2008 | A1 |
20080249640 | Vittor et al. | Oct 2008 | A1 |
20080255505 | Carlson et al. | Oct 2008 | A1 |
20080262297 | Gilboa et al. | Oct 2008 | A1 |
20080275349 | Halperin et al. | Nov 2008 | A1 |
20080287963 | Rogers et al. | Nov 2008 | A1 |
20080306490 | Lakin et al. | Dec 2008 | A1 |
20080312501 | Hasegawa et al. | Dec 2008 | A1 |
20080312771 | Sugiura | Dec 2008 | A1 |
20090005768 | Sharareh et al. | Jan 2009 | A1 |
20090030307 | Govari et al. | Jan 2009 | A1 |
20090048611 | Funda et al. | Feb 2009 | A1 |
20090054729 | Mori et al. | Feb 2009 | A1 |
20090062611 | Toyama | Mar 2009 | A1 |
20090062813 | Prisco et al. | Mar 2009 | A1 |
20090076476 | Barbagli et al. | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090149867 | Glozman et al. | Jun 2009 | A1 |
20090184825 | Anderson | Jul 2009 | A1 |
20090198298 | Kaiser et al. | Aug 2009 | A1 |
20090227861 | Ganatra et al. | Sep 2009 | A1 |
20090228020 | Wallace et al. | Sep 2009 | A1 |
20090245600 | Hoffman et al. | Oct 2009 | A1 |
20090248036 | Hoffman et al. | Oct 2009 | A1 |
20090256905 | Tashiro | Oct 2009 | A1 |
20090259099 | Zhou et al. | Oct 2009 | A1 |
20090259230 | Khadem et al. | Oct 2009 | A1 |
20090262109 | Markowitz et al. | Oct 2009 | A1 |
20090287354 | Choi | Nov 2009 | A1 |
20090292166 | Ito et al. | Nov 2009 | A1 |
20090295797 | Sakaguchi | Dec 2009 | A1 |
20090324161 | Prisco | Dec 2009 | A1 |
20090326318 | Tognaccini et al. | Dec 2009 | A1 |
20100008555 | Trumer et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030115 | Fujimoto et al. | Feb 2010 | A1 |
20100039506 | Sarvestani et al. | Feb 2010 | A1 |
20100041949 | Tolkowsky | Feb 2010 | A1 |
20100054536 | Huang et al. | Mar 2010 | A1 |
20100069920 | Naylor et al. | Mar 2010 | A1 |
20100076263 | Tanaka et al. | Mar 2010 | A1 |
20100082041 | Prisco | Apr 2010 | A1 |
20100121138 | Goldenberg et al. | May 2010 | A1 |
20100121139 | OuYang et al. | May 2010 | A1 |
20100137882 | Quaid, III | Jun 2010 | A1 |
20100160733 | Gilboa | Jun 2010 | A1 |
20100161022 | Tolkowsky | Jun 2010 | A1 |
20100161129 | Costa et al. | Jun 2010 | A1 |
20100168918 | Zhao et al. | Jul 2010 | A1 |
20100198170 | Umeda et al. | Aug 2010 | A1 |
20100204713 | Morales | Aug 2010 | A1 |
20100225209 | Goldberg et al. | Sep 2010 | A1 |
20100228266 | Hourtash | Sep 2010 | A1 |
20100234856 | Stoianovici et al. | Sep 2010 | A1 |
20100234857 | Itkowitz et al. | Sep 2010 | A1 |
20100240989 | Stoianovici et al. | Sep 2010 | A1 |
20100256812 | Tsusaka et al. | Oct 2010 | A1 |
20100290530 | Huang et al. | Nov 2010 | A1 |
20100292565 | Meyer et al. | Nov 2010 | A1 |
20100298641 | Tanaka | Nov 2010 | A1 |
20100328455 | Nam et al. | Dec 2010 | A1 |
20110009880 | Prisco et al. | Jan 2011 | A1 |
20110015484 | Alvarez et al. | Jan 2011 | A1 |
20110021926 | Spencer et al. | Jan 2011 | A1 |
20110054303 | Barrick et al. | Mar 2011 | A1 |
20110082366 | Scully et al. | Apr 2011 | A1 |
20110082462 | Suarez et al. | Apr 2011 | A1 |
20110092808 | Shachar et al. | Apr 2011 | A1 |
20110137122 | Kawai | Jun 2011 | A1 |
20110153252 | Govari et al. | Jun 2011 | A1 |
20110160570 | Kariv et al. | Jun 2011 | A1 |
20110184238 | Higgins et al. | Jul 2011 | A1 |
20110196199 | Donhowe et al. | Aug 2011 | A1 |
20110218676 | Okazaki | Sep 2011 | A1 |
20110234780 | Ito et al. | Sep 2011 | A1 |
20110238082 | Wenderow et al. | Sep 2011 | A1 |
20110245665 | Nentwick | Oct 2011 | A1 |
20110248987 | Mitchell | Oct 2011 | A1 |
20110249016 | Zhang et al. | Oct 2011 | A1 |
20110257480 | Takahashi et al. | Oct 2011 | A1 |
20110258842 | Dukesherer et al. | Oct 2011 | A1 |
20110276179 | Banks et al. | Nov 2011 | A1 |
20110277775 | Holop et al. | Nov 2011 | A1 |
20110282188 | Burnside | Nov 2011 | A1 |
20110319910 | Roelle et al. | Dec 2011 | A1 |
20120000427 | Nilsson | Jan 2012 | A1 |
20120046521 | Hunter et al. | Feb 2012 | A1 |
20120046522 | Naito | Feb 2012 | A1 |
20120056986 | Popovic | Mar 2012 | A1 |
20120059249 | Verard et al. | Mar 2012 | A1 |
20120062714 | Liu et al. | Mar 2012 | A1 |
20120065481 | Hunter et al. | Mar 2012 | A1 |
20120069167 | Liu et al. | Mar 2012 | A1 |
20120071752 | Sewell et al. | Mar 2012 | A1 |
20120071782 | Patil et al. | Mar 2012 | A1 |
20120071822 | Romo et al. | Mar 2012 | A1 |
20120071894 | Tanner et al. | Mar 2012 | A1 |
20120082351 | Higgins et al. | Apr 2012 | A1 |
20120120305 | Takahashi | May 2012 | A1 |
20120123441 | Au et al. | May 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120143268 | Burroughs | Jun 2012 | A1 |
20120165656 | Montag et al. | Jun 2012 | A1 |
20120191079 | Moll et al. | Jul 2012 | A1 |
20120209069 | Popovic et al. | Aug 2012 | A1 |
20120209293 | Carlson et al. | Aug 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120219185 | Hu et al. | Aug 2012 | A1 |
20120221007 | Batten et al. | Aug 2012 | A1 |
20120239060 | Orban, III | Sep 2012 | A1 |
20120253200 | Stolka et al. | Oct 2012 | A1 |
20120253276 | Govari et al. | Oct 2012 | A1 |
20120283745 | Goldberg et al. | Nov 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20120289777 | Chopra et al. | Nov 2012 | A1 |
20120289783 | Duindam et al. | Nov 2012 | A1 |
20120302869 | Koyrakh et al. | Nov 2012 | A1 |
20120328077 | Bouvier | Dec 2012 | A1 |
20130018306 | Ludwin | Jan 2013 | A1 |
20130060146 | Yang et al. | Mar 2013 | A1 |
20130085330 | Ramamurthy et al. | Apr 2013 | A1 |
20130090530 | Ramamurthy et al. | Apr 2013 | A1 |
20130102846 | Sjostrom et al. | Apr 2013 | A1 |
20130123580 | Peters et al. | May 2013 | A1 |
20130131503 | Schneider et al. | May 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130165854 | Sandhu et al. | Jun 2013 | A1 |
20130165945 | Roelle et al. | Jun 2013 | A9 |
20130197357 | Green et al. | Aug 2013 | A1 |
20130204124 | Duindam et al. | Aug 2013 | A1 |
20130209208 | Bailey et al. | Aug 2013 | A1 |
20130218005 | Desai et al. | Aug 2013 | A1 |
20130225942 | Holsing et al. | Aug 2013 | A1 |
20130243153 | Sra et al. | Sep 2013 | A1 |
20130246334 | Ahuja et al. | Sep 2013 | A1 |
20130259315 | Angot et al. | Oct 2013 | A1 |
20130274783 | Wynberg | Oct 2013 | A1 |
20130303891 | Chopra | Nov 2013 | A1 |
20130303892 | Zhao et al. | Nov 2013 | A1 |
20130325030 | Hourtash et al. | Dec 2013 | A1 |
20130345718 | Crawford et al. | Dec 2013 | A1 |
20140001235 | Shelton, IV | Jan 2014 | A1 |
20140051049 | Jarc et al. | Feb 2014 | A1 |
20140058406 | Tsekos | Feb 2014 | A1 |
20140107390 | Brown et al. | Apr 2014 | A1 |
20140114180 | Jain | Apr 2014 | A1 |
20140135985 | Coste-Maniere et al. | May 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140148808 | Inkpen et al. | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140180063 | Zhao et al. | Jun 2014 | A1 |
20140222207 | Bowling et al. | Aug 2014 | A1 |
20140235943 | Paris et al. | Aug 2014 | A1 |
20140243801 | Fanelli et al. | Aug 2014 | A1 |
20140243849 | Saglam et al. | Aug 2014 | A1 |
20140257333 | Blumenkranz | Sep 2014 | A1 |
20140257746 | Dunbar et al. | Sep 2014 | A1 |
20140264081 | Walker et al. | Sep 2014 | A1 |
20140275988 | Walker et al. | Sep 2014 | A1 |
20140276033 | Brannan et al. | Sep 2014 | A1 |
20140276937 | Wong et al. | Sep 2014 | A1 |
20140277333 | Lewis et al. | Sep 2014 | A1 |
20140296655 | Akhbardeh et al. | Oct 2014 | A1 |
20140296657 | Izmirli et al. | Oct 2014 | A1 |
20140296870 | Stern et al. | Oct 2014 | A1 |
20140309527 | Namati et al. | Oct 2014 | A1 |
20140309625 | Okamoto et al. | Oct 2014 | A1 |
20140316420 | Ballard et al. | Oct 2014 | A1 |
20140343416 | Panescu et al. | Nov 2014 | A1 |
20140343569 | Turner | Nov 2014 | A1 |
20140350391 | Prisco et al. | Nov 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364739 | Liu et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150045675 | Chernomorsky | Feb 2015 | A1 |
20150051482 | Liu et al. | Feb 2015 | A1 |
20150054929 | Ito et al. | Feb 2015 | A1 |
20150057498 | Akimoto et al. | Feb 2015 | A1 |
20150073266 | Brannan et al. | Mar 2015 | A1 |
20150073267 | Brannan et al. | Mar 2015 | A1 |
20150088161 | Hata et al. | Mar 2015 | A1 |
20150104284 | Riedel | Apr 2015 | A1 |
20150119628 | Bharat et al. | Apr 2015 | A1 |
20150119645 | Baldwin | Apr 2015 | A1 |
20150141808 | Elhawary et al. | May 2015 | A1 |
20150141858 | Razavi et al. | May 2015 | A1 |
20150142013 | Tanner et al. | May 2015 | A1 |
20150150635 | Kilroy et al. | Jun 2015 | A1 |
20150150636 | Hagn et al. | Jun 2015 | A1 |
20150202015 | Elhawary et al. | Jul 2015 | A1 |
20150209056 | Shoham et al. | Jul 2015 | A1 |
20150223725 | Engel et al. | Aug 2015 | A1 |
20150223832 | Swaney et al. | Aug 2015 | A1 |
20150223897 | Kostrzewski et al. | Aug 2015 | A1 |
20150223902 | Walker et al. | Aug 2015 | A1 |
20150255782 | Kim et al. | Sep 2015 | A1 |
20150265087 | Messick, Jr. | Sep 2015 | A1 |
20150265359 | Camarillo | Sep 2015 | A1 |
20150265368 | Chopra et al. | Sep 2015 | A1 |
20150265807 | Park et al. | Sep 2015 | A1 |
20150275986 | Cooper | Oct 2015 | A1 |
20150287192 | Sasaki | Oct 2015 | A1 |
20150297133 | Jouanique-Dubuis et al. | Oct 2015 | A1 |
20150297299 | Yeung et al. | Oct 2015 | A1 |
20150305650 | Hunter et al. | Oct 2015 | A1 |
20150311838 | Moule et al. | Oct 2015 | A1 |
20150313503 | Seibel et al. | Nov 2015 | A1 |
20150342695 | He et al. | Dec 2015 | A1 |
20150359597 | Gombert et al. | Dec 2015 | A1 |
20160000302 | Brown et al. | Jan 2016 | A1 |
20160000414 | Brown et al. | Jan 2016 | A1 |
20160000495 | Elliott et al. | Jan 2016 | A1 |
20160000520 | Lachmanovich et al. | Jan 2016 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160005168 | Merlet | Jan 2016 | A1 |
20160005220 | Weingarten et al. | Jan 2016 | A1 |
20160005576 | Tsukamoto | Jan 2016 | A1 |
20160008033 | Hawkins et al. | Jan 2016 | A1 |
20160016319 | Remirez et al. | Jan 2016 | A1 |
20160045269 | Elhawary et al. | Feb 2016 | A1 |
20160051221 | Dickhans et al. | Feb 2016 | A1 |
20160066794 | Klinder et al. | Mar 2016 | A1 |
20160073928 | Soper et al. | Mar 2016 | A1 |
20160075030 | Takahashi | Mar 2016 | A1 |
20160081568 | Kolberg et al. | Mar 2016 | A1 |
20160100772 | Ikuma et al. | Apr 2016 | A1 |
20160111192 | Suzara | Apr 2016 | A1 |
20160128992 | Hudson et al. | May 2016 | A1 |
20160166320 | Ciulla et al. | Jun 2016 | A1 |
20160183841 | Duindam et al. | Jun 2016 | A1 |
20160199134 | Brown et al. | Jul 2016 | A1 |
20160206389 | Miller | Jul 2016 | A1 |
20160213432 | Flexman et al. | Jul 2016 | A1 |
20160228032 | Walker et al. | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160278865 | Capote et al. | Sep 2016 | A1 |
20160287053 | Miura | Oct 2016 | A1 |
20160287111 | Jacobsen | Oct 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160287346 | Hyodo et al. | Oct 2016 | A1 |
20160314710 | Jarc et al. | Oct 2016 | A1 |
20160331469 | Hall et al. | Nov 2016 | A1 |
20160338787 | Popovic et al. | Nov 2016 | A1 |
20160346038 | Helgeson et al. | Dec 2016 | A1 |
20160346924 | Hasegawa et al. | Dec 2016 | A1 |
20160354057 | Hansen et al. | Dec 2016 | A1 |
20160354152 | Beck | Dec 2016 | A1 |
20160360947 | Iida et al. | Dec 2016 | A1 |
20160360949 | Hyodo et al. | Dec 2016 | A1 |
20160372743 | Cho et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170023423 | Jackson et al. | Jan 2017 | A1 |
20170055851 | Al-Ali | Mar 2017 | A1 |
20170056215 | Nagesh et al. | Mar 2017 | A1 |
20170068796 | Passerini et al. | Mar 2017 | A1 |
20170071456 | Ratnakar | Mar 2017 | A1 |
20170079725 | Hoffman et al. | Mar 2017 | A1 |
20170079726 | Hoffman et al. | Mar 2017 | A1 |
20170095299 | Hendrick et al. | Apr 2017 | A1 |
20170100197 | Zubiate et al. | Apr 2017 | A1 |
20170106904 | Hanson et al. | Apr 2017 | A1 |
20170119412 | Noonan et al. | May 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170135710 | Hasegawa et al. | May 2017 | A1 |
20170135718 | Lyons | May 2017 | A1 |
20170135833 | Syed | May 2017 | A1 |
20170143442 | Tesar et al. | May 2017 | A1 |
20170165503 | Hautvast et al. | Jun 2017 | A1 |
20170181809 | Panescu et al. | Jun 2017 | A1 |
20170189118 | Chopra et al. | Jul 2017 | A1 |
20170189131 | Weir | Jul 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170209162 | Sperry et al. | Jul 2017 | A1 |
20170215808 | Shimol et al. | Aug 2017 | A1 |
20170215969 | Zhai et al. | Aug 2017 | A1 |
20170231647 | Saunders et al. | Aug 2017 | A1 |
20170238807 | Vertikov | Aug 2017 | A9 |
20170245854 | Zemlok et al. | Aug 2017 | A1 |
20170245885 | Lenker | Aug 2017 | A1 |
20170251988 | Weber et al. | Sep 2017 | A1 |
20170258366 | Tupin, Jr. et al. | Sep 2017 | A1 |
20170280978 | Yamamoto et al. | Oct 2017 | A1 |
20170281049 | Yamamoto et al. | Oct 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170296032 | Li | Oct 2017 | A1 |
20170296202 | Brown | Oct 2017 | A1 |
20170303889 | Grim et al. | Oct 2017 | A1 |
20170303941 | Eisner | Oct 2017 | A1 |
20170304015 | Tavallaei et al. | Oct 2017 | A1 |
20170325715 | Mehendale et al. | Nov 2017 | A1 |
20170325896 | Donhowe et al. | Nov 2017 | A1 |
20170326337 | Romoscanu et al. | Nov 2017 | A1 |
20170340241 | Yamada | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170348067 | Krimsky | Dec 2017 | A1 |
20170360508 | Germain et al. | Dec 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180055576 | Koyrakh et al. | Mar 2018 | A1 |
20180055582 | Krimsky | Mar 2018 | A1 |
20180064498 | Kapadia et al. | Mar 2018 | A1 |
20180098690 | Iwaki | Apr 2018 | A1 |
20180098817 | Nichogi | Apr 2018 | A1 |
20180169671 | Winter et al. | Jun 2018 | A1 |
20180193102 | Inoue | Jul 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180217734 | Koenig et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180240237 | Donhowe et al. | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180286108 | Hirakawa | Oct 2018 | A1 |
20180289394 | Shah | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180308247 | Gupta | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180338799 | Hladio et al. | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20180368920 | Ummalaneni | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190046814 | Senden et al. | Feb 2019 | A1 |
20190066314 | Abhari et al. | Feb 2019 | A1 |
20190083178 | Mata et al. | Mar 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190086349 | Nelson et al. | Mar 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190125164 | Roelle et al. | May 2019 | A1 |
20190151148 | Alvarez et al. | May 2019 | A1 |
20190167366 | Ummalaneni et al. | Jun 2019 | A1 |
20190167367 | Walker et al. | Jun 2019 | A1 |
20190175009 | Mintz et al. | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175799 | Hsu et al. | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190201105 | Shelton, IV et al. | Jul 2019 | A1 |
20190209252 | Walker et al. | Jul 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre et al. | Jul 2019 | A1 |
20190223974 | Romo et al. | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190287673 | Michihata et al. | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda et al. | Oct 2019 | A1 |
20190298465 | Chin et al. | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu et al. | Nov 2019 | A1 |
20190365201 | Noonan et al. | Dec 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Auer | Dec 2019 | A1 |
20190380787 | Ye et al. | Dec 2019 | A1 |
20190380797 | Yu et al. | Dec 2019 | A1 |
20200000530 | DeFonzo et al. | Jan 2020 | A1 |
20200000533 | Schuh et al. | Jan 2020 | A1 |
20200008874 | Barbagli et al. | Jan 2020 | A1 |
20200022767 | Hill et al. | Jan 2020 | A1 |
20200038123 | Graetzel et al. | Feb 2020 | A1 |
20200039086 | Meyer et al. | Feb 2020 | A1 |
20200046434 | Graetzel et al. | Feb 2020 | A1 |
20200054405 | Schuh et al. | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez, Jr. | Feb 2020 | A1 |
20200078103 | Duindam et al. | Mar 2020 | A1 |
20200085516 | DeFonzo et al. | Mar 2020 | A1 |
20200093549 | Chin et al. | Mar 2020 | A1 |
20200093554 | Schuh et al. | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100853 | Ho et al. | Apr 2020 | A1 |
20200100855 | Leparmentier et al. | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace et al. | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200146769 | Eyre et al. | May 2020 | A1 |
20200155084 | Walker et al. | May 2020 | A1 |
20200170630 | Wong et al. | Jun 2020 | A1 |
20200170720 | Ummalaneni | Jun 2020 | A1 |
20200171660 | Ho et al. | Jun 2020 | A1 |
20200188043 | Yu et al. | Jun 2020 | A1 |
20200197112 | Chin et al. | Jun 2020 | A1 |
20200206472 | Ma et al. | Jul 2020 | A1 |
20200217733 | Lin et al. | Jul 2020 | A1 |
20200222134 | Schuh et al. | Jul 2020 | A1 |
20200237458 | DeFonzo et al. | Jul 2020 | A1 |
20200246591 | Bogusky | Aug 2020 | A1 |
20200261172 | Romo et al. | Aug 2020 | A1 |
20200268459 | Noonan | Aug 2020 | A1 |
20200268460 | Tse et al. | Aug 2020 | A1 |
20200281787 | Ruiz | Sep 2020 | A1 |
20200297437 | Schuh et al. | Sep 2020 | A1 |
20200305922 | Yan et al. | Oct 2020 | A1 |
20200305983 | Yampolsky et al. | Oct 2020 | A1 |
20200305989 | Schuh et al. | Oct 2020 | A1 |
20200315717 | Bovay et al. | Oct 2020 | A1 |
20200315723 | Hassan et al. | Oct 2020 | A1 |
20200323596 | Moll et al. | Oct 2020 | A1 |
20200330167 | Romo et al. | Oct 2020 | A1 |
20210196312 | Plewe et al. | Jul 2021 | A1 |
20210196399 | Ayvali et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1364275 | Aug 2002 | CN |
1511249 | Jul 2004 | CN |
1846181 | Oct 2006 | CN |
1857877 | Nov 2006 | CN |
101147676 | Mar 2008 | CN |
102316817 | Jan 2012 | CN |
101325920 | Feb 2012 | CN |
102341057 | Feb 2012 | CN |
101222882 | Mar 2013 | CN |
102973317 | Mar 2013 | CN |
103705307 | Apr 2014 | CN |
103735313 | Apr 2014 | CN |
102458295 | Jun 2014 | CN |
103930063 | Jul 2014 | CN |
102711586 | Jun 2015 | CN |
103565529 | Jun 2015 | CN |
103767659 | Jun 2015 | CN |
105030331 | Nov 2015 | CN |
105511881 | Apr 2016 | CN |
105559886 | May 2016 | CN |
104758066 | May 2017 | CN |
105559850 | Aug 2017 | CN |
107028659 | Aug 2017 | CN |
103813748 | Apr 2018 | CN |
108348139 | Jul 2018 | CN |
104931059 | Sep 2018 | CN |
104684502 | Oct 2018 | CN |
106821498 | Feb 2020 | CN |
102013100605 | Jul 2014 | DE |
0347098 | Feb 1996 | EP |
1250986 | Oct 2002 | EP |
1800593 | Jan 2009 | EP |
2158834 | Mar 2010 | EP |
1566150 | Apr 2010 | EP |
2615992 | Jul 2013 | EP |
3025630 | Mar 2017 | EP |
2392435 | Dec 2020 | EP |
2008528130 | Jul 2008 | JP |
2009509654 | Mar 2009 | JP |
2009524530 | Jul 2009 | JP |
2011088260 | May 2011 | JP |
2013510662 | Mar 2013 | JP |
6388686 | Sep 2018 | JP |
1020140009359 | Jan 2014 | KR |
2569699 | Nov 2015 | RU |
0156457 | Aug 2001 | WO |
2004029782 | Apr 2004 | WO |
2005078128 | Aug 2005 | WO |
2006122061 | Nov 2006 | WO |
2009097461 | Aug 2009 | WO |
2009120940 | Oct 2009 | WO |
2010127162 | Nov 2010 | WO |
2011002215 | Apr 2011 | WO |
2011132409 | Oct 2011 | WO |
2012044334 | Apr 2012 | WO |
2012082719 | Jun 2012 | WO |
2013055707 | Apr 2013 | WO |
2014114551 | Jul 2014 | WO |
2015089013 | Jun 2015 | WO |
2015142957 | Sep 2015 | WO |
2017036774 | Mar 2017 | WO |
2017053698 | Mar 2017 | WO |
2017066108 | Apr 2017 | WO |
2017075574 | May 2017 | WO |
2017048194 | Jul 2017 | WO |
2017118750 | Jul 2017 | WO |
2017146890 | Aug 2017 | WO |
2017167754 | Oct 2017 | WO |
2018098477 | May 2018 | WO |
Entry |
---|
U.S. Appl. No. 17/130,700, filed Dec. 22, 2020, Sarah Plewe. |
U.S. Appl. No. 17/131,117, filed Dec. 22, 2020, Sarah Plewe. |
Al-Ahmad et al., dated 2005, Early experience with a computerized robotically controlled cathetersystem, Journal of Interventional Cardiac Electrophysiology, 12:199-202, 4 pages. |
Blankenstein, Jun. 2008, Dynamic Registration and High Speed Visual Servoing in Robot-Assisted Surgery, Katholieke Universiteit Leuven, Leuven, Belgium, 96 pages. |
Ciuti et al., 2012, Intra-operative monocular 30 reconstruction for image-guided navigation in active locomotion capsule endoscopy. Biomedical Robotics and Biomechatronics (Biorob), 4th IEEE Ras & Embs International Conference on IEEE, 7 pages. |
Darwiche, 2015, Operative technique and early experience for robotic assisted laparoscopic nephroureterectomy (RALNU) using da Vinci XI, SpringerPlus, 4:298, 5 pages. |
Fallavollita et al., 2010, Acquiring multiview C-arm images to assist cardiac ablation procedures, EURASIP Journal on Image and Video Processing, vol. 2010, Article ID 871408, pp. 1-10. |
Gutierrez et al., Mar. 2008, A practical global distortion correction method for an image intensifierbased x-ray fluoroscopy system, Med. Phys, 35(3):997-1007, 11 pgs. |
Haigron et al., 2004, Depth-map-based scene analysis for active navigation in virtual angioscopy, IEEE Transactions on Medical Imaging, 23( 11 ): 1380-1390, 11 pages. |
Hansen Medical, Inc. 2005, System Overview, product brochure, 2 pp., dated as available at http://hansenmedical.com/system.aspx on Jul. 14, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine). |
Hansen Medical, Inc. Bibliography, product brochure, 1 p., dated as available at http://hansenmedical.com/bibliography.aspx on Jul. 14, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine). |
Hansen Medical, Inc. dated 2007, Introducing the Sensei Robotic Catheter System, product brochure,10 pp. |
Hansen Medical, Inc. dated 2009, Sensei X Robotic Catheter System, product brochure, 5 pgs. |
Hansen Medical, Inc. Technology Advantages, product brochure, dated as available at http://hansenmedical.com/advantages.aspx on Jul. 13, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine), 1 page. |
International search report and written opinion dated Dec. 18, 2019 for PCT/US2019/53600 32836259, 13 pages. |
Kiraly et al, 2002, Three-dimensional Human Airway Segmentation Methods for Clinical Virtual Bronchoscopy, Acad Radio!, 9:1153-1168, 16 pages. |
Kiraly et al., Sep. 2004, Three-dimensional path planning for virtual bronchoscopy, IEEE Transactions on Medical Imaging, 23(9):1365-1379, 15 pages. |
Konen et al., 1998, The VN-project: endoscopic image processing for neurosurgery, Computer Aided Surgery, 3:1-6, 6 pages. |
Kukuk, Oct. 5, 2001, TBNA-protocols: Guiding TransBronchial Needle Aspirations Without a Computer in the Operating Room, MICCAI 2001, 2208:997-1006, 10 pages. |
Kumar et al., 2014, Stereoscopic visualization of laparoscope image using depth information from 3D model, Computer methods and programs in biomedicine 113(3):862-868, 7 pages. |
Lawton et al., 1999, Ribbons and groups: A thin rod theory for catheters and filaments, J. Phys. A., 1999, 32:1709-1735, 27 pages. |
Livatino et al., 2015, Stereoscopic visualization and 3-D technologies in medical endoscopic teleoperation, IEEE, 11 pages. |
Luo et al., 2010, Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation, Asian Conference on Computer Vision. Springer, Berlin, Heidelberg, 13 pages. |
Marrouche et al., dated May 6, 2005, AB32-1, Preliminary human experience using a novel robotic catheter remote control, Heart Rhythm, 2(5):S63. |
Mayo Clinic, Robotic Surgery, https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac-20394974?p=1, downloaded from the internet on Jul. 12, 2018, 2 pp. |
Mourgues et al., 2002, Flexible calibration of actuated stereoscopic endoscope for overlay in robot 672 assisted surgery, International Conference on Medical Image Computing and Computer-Assisted Intervention. SprinQer, Berlin, HeidelberQ, 10 pages. |
Nadeem et al., 2016, Depth Reconstruction and Computer-Aided Polyp Detection in Optical Colonoscopy Video Frames, arXiv preprint arXiv:1609.01329, 12 pages. |
Oh et al., dated May 2005, P5-75, Novel robotic catheter remote control system: safety and accuracy in delivering RF Lesions in all 4 cardiac chambers, Heart Rhythm, 2(5):S277-S278, 2 pages. |
Point Cloud, Sep. 10, 2010, Wikipedia, 2 pp. |
Racadio et al., Dec. 2007, Live 3D guidance in the interventional radiology suite, AJR, 189:W357-W364, 8 pages. |
Reddy et al., May 2005, P1-53. Porcine pulmonary vein ablation using a novel robotic catheter control system and real-time integration of CT imaging with electroanatomical mapping, Hearth Rhythm, 2(5):S121, 1 page. |
Sasaki, 2017, Laparoscopic hemicolectomy for a patient with situs inversus totalis: a case report, Int. J. Surg. Case Rep. 41 :93-96, 4 pages. |
Sato et al., 2016, Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP), Journal of Thoracic Disease, 8(Suppl 9):S716, 15 pages. |
Shen et al., 2015, Robust camera localisation with depth reconstruction for bronchoscopic navigation. International Journal of Computer Assisted Radiology and Surgery, 10(6):801-813, 13 pages. |
Shi et al., Sep. 14-18, 2014, Simultaneous catheter and environment modeling for trans-catheter aortic valve implantation, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2024-2029, 6 pages. |
Slepian, dated 2010, Robotic Catheter Intervention: the Hansen Medical Sensei Robot Catheter System, PowerPoint presentation, 28 pp. |
Solheim et al., May 14, 2009, Navigated resection of giant intracranial meningiomas based on intraoperative 3D ultrasound, Acta Neurochir, 151 :1143-1151, 9 pages. |
Solomon et al., Dec. 2000, Three-dimensional CT—Guided Bronchoscopy With a Real-Time Electromagnetic Position Sensor a Comparison of Two Image Registration Methods, Chest, 118(6):1783-1787, 5 pages. |
Song et al., 2012, Autonomous and stable tracking of endoscope instrument tools with monocular camera, Advanced Intelligent Mechatronics (AIM), 2012 IEEE-ASME International Conference on. IEEE, 6 pages. |
Vemuri et al., Dec. 2015, Inter-operative biopsy site relocations in endoluminal surgery, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, < 10 .1109/T8ME 2015.2503981 >, 13 pages. |
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 μm Er,Cr;YSGG and 2.94 λm Er:YAG laser, Proceedings of SPIE, vol. 8221. 12. |
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 μm Er,Cr;YSGG and 2.94 μm Er:YAG laser, Proceedings of SPIE, vol. 8221, 12, 1 page. |
Wilson et al., 2008, a buyer's guide to electromagnetic tracking systems for clinical applications, Proc. of SPCI, 6918:691828-1 p. 69188-11, 12 pages. |
Yip et al., 2012, Tissue tracking and registration for image-guided surgery, IEEE transactions on medical imaging 31 (11 ):2169-2182, 14 pages. |
Zhou et al., 2010, Synthesis of stereoscopic views from monocular endoscopic videos, Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on IEEE, 8 pages. |
Office Action for U.S. Appl. No. 16/586,198, dated Aug. 9, 2021, 47 pages. |
Office Action for U.S. Appl. No. 17/131,117, dated Sep. 15, 2021, 9 pages. |
Office Action for U.S. Appl. No. 16/586,198 dated Dec. 31, 2019, 31 pages. |
Office Action for U.S. Appl. No. 16/586,198 dated Feb. 2, 2021, 40 pages. |
Office Action for U.S. Appl. No. 16/586,198 dated Jul. 23, 2020, 34 pages. |
International Search Report for PCT/IB2020/062360, dated Apr. 1, 2021, 3 pages. |
Notice Of Allowance for U.S. Appl. No. 17/131,117, dated Jan. 20, 2022, 11 pages. |
Search Report for Appl. No. PCT/IB2020/062359, dated Jul. 8, 2021, 3 pages. |
Written Opinion for Appl. No. PCT/IB2020/062359, dated Apr. 1, 2021, 3 pages. |
Written Opinion for PCT/IB2020/062360, dated Apr. 1, 2021, 3 pages. |
Notice Of Allowance for U.S. Appl. No. 17/131,117, dated Feb. 1, 2022, 4 pages. |
Non-Final Rejection for U.S. Appl. No. 16/586,198, dated Mar. 1, 2022, 54 pages. |
Notice of Allowance for U.S. Appl. No. 17/131,117, dated May 11, 2022, 8 pages. |
European Search Report for Appl. No. 19867337.8, dated May 27, 2022, 10 pages. |
Final Rejection for Appl. No. 16586198, dated Sep. 30, 2022, 52 pages. |
International Preliminary Report on Patentability and Written Opinion for Appl. No. PCT/IB2020/052359, dated Jul. 5, 2022, 4 pages. |
International Preliminary Report on Patentability and Written Opinion for Appl. No. PCT/IB2020/062360, dated Jul. 5, 2022, 4 pages. |
Notice of Allowance for U.S. Appl. No. 17/111,17, dated Sep. 28, 2022, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210196312 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62955993 | Dec 2019 | US |