Storage systems are used in warehouses, department stores, and storage facilities to store products thereon. Storage systems containing a plurality of storage racks may hold and support large amounts and often heavy materials. Storage racks often employ a number of vertical columns that are sturdily positioned on a base or floor, and then a plurality of horizontal supporting beams may connect to and be fastened to the vertical columns. Storage racks can be 1, 2, or more levels high. Some racks have 5, 6 or more levels. Pallets of goods weighing up to 3000 lbs. or more each can be stored on these racks. Deep storage systems can be 10, 20 or more pallets deep. Accordingly, these racks commonly hold huge loads that are often constantly shifting as pallets are moved to different locations in a warehouse by forklifts, automated pallet carts and otherwise.
According to safety law and regulations, storage racks must be secured safely to increase their stability and decrease the chance of collapsing. For example, anchor bolts may be installed through predrilled holes on the base plates of the storage rack and into the floor. A portion of the aboveground bolt, is used together with nuts and washers to secure the storage racks. The racks may also be secured to the adjacent wall or to each other. Heavy duty storage racks may require additional safety measurements to secure the racks to the floor.
In some warehouses, the threaded anchor bolts are fixed in ground before the installation of the storage racks. These fixed in ground anchor bolts provide strong support for the storage rack. One example is a cast-in-place anchor bolt, wherein the anchor bolt is cast in the wet concrete before the concrete sets. The portion of the cast-in-place anchor bolt that is embedded in the concrete may have the shape of straight (with an optional hex nut), J, L or pigtail. The portion of the cast-in-place anchor bolt that is above the ground is generally a straight post with nut receiving threads.
In other warehouses, straight anchor bolts may also be installed in the pre-existing floor by drilling holes having a diameter that is slightly larger than the diameter of the bolt and then applying an adhesive material, such as epoxy resin or polyurethane, to secure the lower portion of the bolt into the floor. These straight fixed-in-ground anchor bolts can be flexibly installed at any time into the pre-existing floor, making them more practical than these cast-in-place anchor bolts.
During installation of the storage rack, the aboveground portion of the fixed-in-ground anchor bolts are carefully aligned with the holes on the base plates of the storage rack, and then the storage rack is lowered to be placed on the floor while the anchor bolts are inserted through the holes through the base plates of the storage rack. However, because the holes on the base plates of the storage rack are only slightly larger than the diameter of the anchor bolts, and because these base plates are very heavy, often up to and over 1000 lbs., the bolts can easily be damaged during the installation of storage rack base plate, especially by heavy-duty storage racks that may weigh over one thousand pounds, i.e., several thousand pounds.
The installation of large and heavy storage racks often requires the precise alignment of multiple holes with multiple corresponding bolts at the same time, which can be very time consuming and any misalignment could significantly increase the chance of damage to the anchor bolts. For example, the thread on the anchor bolt may be damaged or stripped, or the bolt itself may be bent or broken by the heavy storage rack base.
Whether the damage to the bolts is significant depends on the type of damage. The bolts may need to be rethreaded with a rethreading kit or straightened with a tool. However, if the damages are so severe that the bolts cannot be repaired, a replacement of the anchor bolt would be required. In that situation, the anchor bolts would have to be removed from the floor, potentially causing major damage to the floor. While it is possible to reinstall a new bolt at the same location after the removal of the damaged bolt, due to the weakened structure of the floor, the same spot may not be suitable for the replacement bolt, and the change of location of one bolt in a set of multiple bolts would require the rest of bolts to be relocated accordingly.
Therefore, there is need to protect the aboveground portion of anchor bolts during the installation of storage rack base plates to avoid costly repair or replacement of the anchor bolts. There is also a need to improve the efficiency of the alignment process during the installation of storage racks.
An alignment method and tool that is easy to use and provides protection to the fixed in ground threaded anchor bolts is disclosed herein.
In one embodiment, the alignment tool comprises three parts: a first solid body having a substantially conical or tapered shape with a round/smooth apex, a circular body gradually expanding from the apex and a flat circular base portion terminating the circular body of the first solid body, wherein the center of the apex and the center of the flat circular base lie substantially along a longitudinal axis of the alignment tool; a second solid body having an elongated tubular body extended from the flat circular base of the first solid body in an opposite direction of the round apex of the first solid body and along the longitudinal axis defined by the first solid body; and a hollow body having a substantially cylinder body extended from the second solid body in an opposite direction of the round apex of the first solid body, along the longitudinal axis defined by the first solid body and terminated at a circular ring and a hollow space having a substantially cylindrical shape encompassed by the hollow body.
The installation method involves sliding or screwing the alignment tool over a portion of an anchor bolt extending from the floor, then lowering the base plate, such that the anchor bolt receiving holes of the base plate are guided by the alignment tool over the alignment tool and thereby over the anchor bolts. The alignment tool is then removed and the base can be bolted to the anchor bolts.
In another embodiment, the alignment tool has a substantially cylindrical body defined along a longitudinal axis and comprises a first end having a conical shape and a second end defining an opening therein, and the opening extends into the substantially cylindrical body of the alignment tool along the longitudinal axis.
In another embodiment of the invention, the portion of the opening closest to the tip of the alignment tool is not flay, e.g. convex away from the tip, such that the alignment tool does not make substantial contact with the top face of the anchor bolt. This helps prevent the tip of the anchor bolt from being damaged by the inside surface of the alignment tool if the base plate strikes the alignment tool, if such impact were to be transferred to the tip of the anchor bolt.
The figures are for purposes of illustration and are not intended to limit the scope or aspects of the invention.
The present disclosure may be understood more readily by reference to the following detailed description of the disclosure taken in connection with the accompanying figures, which form a part of this disclosure. It is to be understood that this disclosure is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed disclosure.
Also, as used in the specification and including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
Reference will now be made in detail to the exemplary embodiments of the present disclosure, which are illustrated in the accompanying drawings.
The first solid body 101 has a substantially conical shape with a round apex 102, a circular body 103 gradually expanding from the round apex 102 and a flat circular base 104 terminating the circular body 103 of the first solid body 101. Those skilled in the art will appreciate that apex 102 does not necessarily need to be round, but should be smooth, as pointed or jagged surfaces can lead to injury. First solid body 101 should taper out from apex 102. The center of the round apex 102 and the center of the flat circular base 104 preferably lie substantially along a longitudinal axis “a” of the alignment tool 100.
The second solid body 111 has an elongated tubular body 112 extended from the flat circular base 104 of the first solid body 101 in an opposite direction of the round apex 102 of the first solid body 101 and along the longitudinal axis “a” defined by the first solid body 101. An upward direction can be defined along axis a in a direction from base 104 towards apex 102.
A hollow body 121 includes a substantially cylinder body 122 which extends from second solid body 111 in a downward direction opposite from the direction of round apex 102 of the first solid body 101, along longitudinal axis “a.” Hollow body 121 terminates at a circular ring 123 at its downward end. Hollow body 121 encompasses a hollow space 124 which has a substantially cylindrical shape defined by cylinder body 122.
The length l1 of the first solid body 101 of the alignment tool 100 is defined by the shortest distance along axis a from the center of the round apex 102 of the first solid body 101 to the center of the flat circular base 104 of the first solid body 101. The length l1 is preferably in the range of from 0.5 to 15 inches, more preferably, from 1 to 10 inches.
The length l2 of the second solid body 111 of the alignment tool 100 is defined by the shortest distance along axis a from the center of the flat circular base 104 of the first solid body 101 along the longitudinal axis “a” to the intersection of the second solid body 111 and the hollow body 121. The length l2 is in the range of from 0.1 to 10 inches and preferably, from 0.2 to 8 inches.
The length l3 of the hollow body 121 of the alignment tool 100 is defined by the shortest distance along the longitudinal axis “a” from the intersection of the second solid body 111 and the hollow body 121 to the center of the circular ring 123 of the hollow body 121. The length l3 is in the range of from 0.5 to 10 inches and preferably, from 1 to 8 inches.
The diameter d1 of the flat circular base 104 of the first solid body 101 is in the range of from 0.1 to 5 inches and preferably, from 0.2 to 4 inches, most preferably 0.5 to 2 inches.
The diameter d2 of the tubular body 112 of the second solid body 111 is in the range of from 0.1 to 5 inches and preferably, from 0.2 to 4 inches, most preferably 0.5 to 2 inches.
The diameter d3 of the inner surface of the hollow body 121, which is the same as the diameter of the outer surface of the hollow space 124, is in the range of from 0.05 to 5 inches and preferably, from 0.1 to 4 inches, most preferably 0.5 to 2 inches.
The diameter d4 of the outer surface of the hollow body 121 is in the range of from 0.1 to 5 inches and preferably, from 0.2 to 4 inches.
The diameter d1 of the flat circular base 104 of the first solid body 101 should be substantially the same as the diameter d2 of the tubular body 112 of the second solid body 111 and the diameter d4 of the outer surface of the hollow body 121.
The diameter d3 of the inner surface of the hollow body 121 is slightly larger than the diameter of the threaded anchor bolt (not shown in
The length l1 of the portion of the alignment tool 200 having the conical shape is in the range of from 0.5 to 15 inches and preferably, from 1 to 10 inches.
The length l3 of the opening 204 of the alignment tool 200 extending into the cylindrical body 201 along the longitudinal axis “a” is in the range of from 0.5 to 10 inches and preferably, from 1 to 8 inches.
The length l4 of the portion of the alignment tool 200 having the substantially cylindrical body 201 is in the range of from 0.5 to 20 inches and preferably, from 1 to 10 inches.
The diameter d2 of the substantially cylindrical body 201 of the alignment tool 200 is in the range of from 0.1 to 5 inches and preferably, from 0.2 to 4 inches.
The diameter d3 of the opening 204 of the alignment tool 200 is in the range of from 0.05 to 5 inches and preferably, from 0.1 to 4 inches.
Moreover, the second solid body 111 has a hole 130 having an axis “b”. The diameter d5 of the hole 130 of the alignment tool 100 is in the range of from 0.1 to 1 inch. The hole 130 extends in a plane substantially parallel to the flat circular base 104 of the first solid body 101 and in a direction substantially passing through the longitudinal axis “a” of the alignment tool 100, i.e., the axis “a” and axis “b” substantially cross. Hole 130 can be used to receive a removal tool to remove the alignment tool 100 after the installation of the storage rack. While hole 130 shown in
Furthermore, the substantially cylindrical body 201 of the alignment tool 200 has a hole 230 having an axis “b”. The diameter d5 of the hole 230 of the alignment tool 200 is in the range of from 0.1 to 1 inch. The hole 230 extends in a plane substantially perpendicular the longitudinal axis “a” of the alignment tool 200, i.e., the axis “a” and axis “b” substantially cross. Hole 230 can be used to insert a removal tool to remove the alignment tool 200 after the installation of the storage rack. While hole 230 shown in
As shown in
The present disclosure is advantageous because the alignment tool is universal in that a single steady tool may be manufactured and used for align the storage racks during the installation process. The alignment tool can be easily removed after the storage racks are installed.
The alignment tool can be fabricated from suitable materials, including, but not limited to, metal(s), alloy(s), or combinations thereof, etc. Suitable metals include aluminium, copper, iron, tin, lead, titanium, zinc and etc. Suitable alloys including steel, solder, brass, pewter, duralumin, bronze, amalgams and etc. The alignment tool may be fabricated from a single material or a combination of materials, including, but not limited to, the above exemplary materials, to achieve various desired characteristics such as strength, rigidity, performance and durability.
While the above description contains many specifics, these specifics should not be construed as limitations of the invention, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other embodiments within the scope and spirit of the invention as defined by the claims appended hereto.
This application claims priority as a continuation of application Ser. No. 16/656,827, filed Oct. 18, 2019, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1963242 | Nelson | Jun 1934 | A |
4372585 | Evora | Feb 1983 | A |
4915033 | Bond | Apr 1990 | A |
4932818 | Garwood | Jun 1990 | A |
4977836 | Bond | Dec 1990 | A |
5160231 | Miller | Nov 1992 | A |
5865490 | Vowell | Feb 1999 | A |
6241228 | Chupick | Jun 2001 | B1 |
7044066 | Miller | May 2006 | B1 |
7066697 | Guilkey | Jun 2006 | B2 |
7104514 | Ciarlo | Sep 2006 | B2 |
7293483 | Hutchings et al. | Nov 2007 | B1 |
8152828 | Taylor et al. | Apr 2012 | B2 |
8850765 | Amengual Pericas | Oct 2014 | B2 |
9200663 | Ryan | Dec 2015 | B2 |
9347232 | Francies, III | May 2016 | B1 |
10094101 | Jazzar | Oct 2018 | B1 |
10260224 | Jazzar | Apr 2019 | B1 |
10569411 | Schulz | Feb 2020 | B1 |
20050120666 | Alyea | Jun 2005 | A1 |
20060016140 | Smith | Jan 2006 | A1 |
20060042166 | Berklich, Jr. et al. | Mar 2006 | A1 |
20070221596 | Rioux | Sep 2007 | A1 |
20100080667 | Reed | Apr 2010 | A1 |
20110048175 | Levert | Mar 2011 | A1 |
20130051953 | Ryan | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1217147 | Jun 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20220039553 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16656827 | Oct 2019 | US |
Child | 17510897 | US |