Alignment of fiber optic bundle to array waveguide using an epoxy

Information

  • Patent Grant
  • 6707970
  • Patent Number
    6,707,970
  • Date Filed
    Friday, December 15, 2000
    23 years ago
  • Date Issued
    Tuesday, March 16, 2004
    20 years ago
Abstract
A device and method of aligning a fiber optic bundle with an array waveguide is achieved by mounting the fiber optic bundle and the array waveguide on a base. The fiber optic bundle is held by a high viscosity epoxy. The fiber optic bundle is moved until it is aligned. In one embodiment, an epoxy with high silicate content is used.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The described invention relates to the field of optics. In particular; the invention relates to coupling a fiber optic bundle to a planar photonic structure, such as an array waveguide (“AWG”).




2. Description of Related Art




Fiber optic bundles and AWGs are both used for propagating light. A fiber optic bundle has multiple optical fibers for propagating light, and an AWG has multiple channels for propagating light within. Coupling a fiber optic bundle to an AWG, however, is not easy. Manual alignment requires detecting and maximizing light connectivity between the fiber optic bundle and the AWG. Once a good connection is obtained, permanently fixing the alignment is required.





FIG. 1A

shows a prior art fiber optic bundle


10


. The fiber optic bundle


10


comprises multiple optical fibers


12


sandwiched between two retainers


16


and


18


. The retainers are substrates made of silicon, for example, that are appropriately masked with a suitable etch mask. Thereafter, symmetrically spaced unmasked areas of the substrate are exposed to a chosen anisotropic etchant, such as hot KOH or ethylenediamine. This etchant preferentially attacks a chosen (


100


) crystallographic plane of the silicon substrate and preferentially etches in a vertical direction until V-shaped grooves (“V-grooves”) are attained. Upon completion of these V-shaped grooves, optical fibers are placed in the grooves and come to rest in alignment with the center of the V-grooves between the retainers


16


and


18


.





FIG. 1B

shows a prior art single retainer without the optical fibers. The two retainers


16


and


18


sandwich the optical fibers together as a termination block for the fiber optic bundle. The termination block maintains the spacing between the optical fibers and allows for easily handling the fiber optic bundle. The ends of the optical fibers


22


are typically polished after being set in the termination block.





FIG. 2

shows a prior art example of an AWG. The AWG comprises multiple channels


30


running through the AWG. The AWG may comprise a glass, silicon, oxide or polymer substrate. The channels are made of materials having a slightly higher index of refraction than the rest of the AWG. AWGs and fiber optic bundles may be made with various numbers of channels.





FIG. 3

shows a side view of a fiber optic bundle being aligned to an AWG


42


. The optical fibers of the fiber optic bundle and the channels of the AWG have identical spacings and number. A dotted line


45


shows the channels in the AWG. An epoxy


50


is used to hold the termination block


40


of the fiber optic bundle to the AWG


42


, but alignment must be maintained. It is difficult to achieve alignment, i.e., photonically couple the optical fibers to the AWG channels, and then to epoxy without losing alignment.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

shows a prior art fiber optic bundle





FIG. 1B

shows a prior art single retainer without the optical fibers.





FIG. 2

shows a prior art example of an AWG.





FIG. 3

shows a side view of a fiber optic bundle being aligned to an AWG.





FIG. 4

shows a first embodiment for aligning a fiber optic bundle to an AWG.





FIG. 5A

shows a second embodiment for aligning a fiber optic bundle with an AWG using pins (or dowels/rods).





FIG. 5B

shows an AWG corresponding to the fiber optic bundle of FIG.


5


A.





FIG. 6

shows a cross section of a fiber optic block and an AWG joined with pins


200


to perform a course alignment.





FIG. 7

shows a third embodiment for aligning optical fibers to an AWG.





FIG. 8

shows a side view of the retainer placed over the etched AWG having channels within.





FIG. 9

shows another embodiment in which the AWG is etched a predetermined depth below the AWG surface before etching the V-grooves.











DETAILED DESCRIPTION




There are several ways of improving alignment between a fiber optic bundle and an AWG. In some cases, quick course alignment is followed up with finely aligning the fiber optic bundle and AWG afterwards.





FIG. 4

shows a first embodiment for aligning a fiber optic bundle to an AWG. In this embodiment, the AWG


142


is mounted to a base


110


. The fiber optic bundle's termination head


140


is also mounted to the base


110


via a high viscosity epoxy


120


. In one embodiment, a spacer


122


attached to the base


110


may be used to reduce the thickness of epoxy


120


employed.




Typical epoxies such as that used in prior art

FIG. 3

shrink when cured. This post-bond shrinkage is not a problem in the prior art

FIG. 3

since it pulls the termination head


40


closer to the AWG


42


. However, if the epoxy of

FIG. 4

shrinks, alignment of the fiber optic bundle with the AWG will suffer, as the termination block


140


is pulled toward the base


110


.




An epoxy having a silicate content of over 70% by volume has been found to reduce shrinkage. Additionally, the high silicate content makes the epoxy very viscous allowing for manual alignment being maintained after being achieved. Thus, alignment of the termination head


140


and the AWG


142


can be achieved without significant post-bond shrinkage as the epoxy is cured by heat or other methods.




Raising the silicate content of the epoxy to up to 90% by volume reduces the post-bond shrinkage even more. However, as the silicate content is increased, the sheer strength of the bond is reduced, so a balancing between post-bond shrinkage and sheer strength should be performed.




The alignment method using the high viscosity epoxy described provides a robust bond area for achieving and maintaining alignment between the fiber optic bundle and the AWG. Additionally, a gel having a refractive index matching the optical fibers and the AWG channels may be dispensed between the fiber optic bundle and the AWG. This helps to prevent light from scattering at an air gap between the fiber optic bundle and the AWG.





FIG. 5A

shows a second embodiment for aligning a fiber optic bundle with an AWG using pins (or dowels/rods). In one embodiment, the termination head is made with optical fibers filling all of the grooves except for a groove at each end. The ends of the optical fibers are then polished, as usual. Pins


200


can then be inserted into the open grooves in the termination block of the fiber optic bundle.





FIG. 5B

shows an AWG corresponding to the fiber optic bundle of FIG.


5


A. The AWG has recesses


202


. In one embodiment, the AWG recesses are initially filled with materials different from the rest of the AWG. This allows selective etching to form the recesses


202


. However, other methods of making the recesses are possible.




The pins


200


of the fiber optic bundle fit snugly into the recesses


202


of the AWG to provide course alignment. Additional manual adjustment to more finely align the fiber optic bundle to the AWG may be performed.





FIG. 6

shows a cross section of a fiber optic block and an AWG joined with pins


200


to perform a course alignment. A gel can be dispensed between the fiber optic bundle and the AWG to provide better photonic coupling, and an epoxy is used to permanently fix the alignment.





FIG. 7

shows a third embodiment for aligning optical fibers to an AWG. In this embodiment only one retainer


300


is used in the termination block of the fiber optic bundle, and the optical fibers are attached into the one retainer


300


. V-grooves are etched into the AWG's substrate in the same way that the retainer was etched, however the V-grooves on the AWG extend only a predetermined distance across the AWG from an edge of the AWG.




The one retainer


300


is placed over the V-grooves on the AWG


320


to sandwich the optical fibers between the retainer


300


and the AWG


320


. The optical fibers come to rest within the V-grooves of the AWG


320


. The ends of the optical fibers


322


are butted up against the ends of the AWG's V-grooves


324


.




The interlocking compatibility between the retainer


300


and the V-grooves of the AWG


320


provide for quick course alignment of the optical fibers with the channels


350


of the AWG. Manual adjustment may then be performed to more finely align the optical fibers with the AWG.





FIG. 8

shows a side view of the retainer


300


placed over the etched AWG


320


having channels


350


within.

FIG. 9

shows another embodiment in which the AWG


325


is etched a predetermined depth below the AWG surface before etching the V-grooves. This allows a better coupling to channels


355


that are deeper below the AWG surface.




In one embodiment, over-etching the AWG provides for a better ability to manually align the optical fibers and the AWG afterwards. As previously described, gel or epoxy having a refractive index matching the optical fibers and the channels of the AWG can be dispensed between the retainer and AWG.




Thus, a device and method of aligning optical fibers in a fiber optic bundle to a waveguide is disclosed. However, the specific embodiments and methods described herein are merely illustrative. Numerous modifications in form and detail may be made without departing from the scope of the invention as claimed below. Rather, the invention is limited only by the scope of the appended claims.



Claims
  • 1. A method of aligning a fiber optic bundle with an array waveguide comprising:mounting the array waveguide to a base; mounting an end of the fiber optic bundle to the base using a high viscosity epoxy having a silicate content over 70% by volume; moving the fiber optic bundle until it is aligned to the array waveguide; and curing the epoxy while maintaining alignment between the fiber optic bundle and the array waveguide.
  • 2. The method of claim 1, wherein the mounting of the end of the fiber optic bundle to the base is done via mounting a spacer to the base and mounting the fiber optic bundle to the spacer using the high viscosity epoxy.
  • 3. The method of claim 1 further comprising:inserting an optical gel between the fiber optic bundle and the array waveguide to improve optical coupling.
  • 4. A method of aligning a fiber optic bundle with an array waveguide comprising:mounting an end of the fiber optic bundle and the array waveguide to a base using an epoxy having a silicate content over 70% by volume; and aligning the fiber optic bundle to the array waveguide; and curing the epoxy while maintaining alignment between the fiber optic bundle and the array waveguide.
  • 5. The method of claim 4, wherein the mounting uses an epoxy having a silicate content under 90% by volume.
  • 6. The method of claim 4 further comprising:inserting an optical gel between the fiber optic bundle and the array waveguide to improve optical coupling.
  • 7. A device comprising:a base; an array waveguide mounted to the base, the array waveguide having channels internally; and a fiber optic bundle mounted to the base by an epoxy, the fiber optic bundle photonically coupled to the channels of the array waveguide, wherein the epoxy has a silicate content over 70% by volume.
  • 8. The device of claim 7, wherein the array waveguide is made of glass.
  • 9. The device of claim 7, wherein the epoxy is also used to bond the fiber optic bundle to the array waveguide.
  • 10. The device of claim 9, wherein the fiber optic bundle comprises two retainers with etched grooves in them.
  • 11. The device of claim 7 comprising:an optical gel between the fiber optic bundle and the array waveguide.
  • 12. The device of claim 11, wherein the optical gel has an index of refraction substantially similar to the channels in the array waveguide.
US Referenced Citations (19)
Number Name Date Kind
4973127 Cannon et al. Nov 1990 A
4983012 Saito et al. Jan 1991 A
5037179 Bortolin Aug 1991 A
5574811 Bricheno et al. Nov 1996 A
5611010 Shiino et al. Mar 1997 A
5613024 Shahid Mar 1997 A
5619605 Ueda et al. Apr 1997 A
5625730 Ishikawa et al. Apr 1997 A
5633968 Sheem May 1997 A
5689599 Shahid Nov 1997 A
5721798 Kanda Feb 1998 A
5818994 Hehmann Oct 1998 A
6160936 You et al. Dec 2000 A
6181855 Richter et al. Jan 2001 B1
6240235 Uno et al. May 2001 B1
6241399 Nobuhara Jun 2001 B1
6243518 Lee et al. Jun 2001 B1
6375365 Chau Apr 2002 B1
6394663 Nakagawa et al. May 2002 B2
Foreign Referenced Citations (6)
Number Date Country
0-667-543 Aug 1995 EP
60-158410 Dec 1985 JP
01-142508 Jun 1989 JP
02-156211 Jun 1990 JP
09-230168 Sep 1998 JP
10-206685 Nov 1998 JP
Non-Patent Literature Citations (1)
Entry
PCT Search Report Dated Sep. 20, 2002.