Alignment of the structural static components of a gas turbine engine to the centerline of its rotating assembly is critical to the performance and reliability of the engine. There have been two general ways to achieve this needed alignment.
One method is to use concentric diameters where one cylindrical face (the outer diameter or OD of the smaller part) fits into another cylindrical face (the inner diameter or ID of the larger part). This type of alignment is called a pilot. The advantage of the pilots is that they can center a part very precisely. The disadvantage is that the accuracy is dependent on the temperature and coefficient of thermal expansion for each material at build and all running conditions of the engine. Use of materials with significantly different coefficients of thermal expansion has not been possible using this alignment method because the gap between the ID and the OD is too large at start up, when the engine is cold. Thus, there is no alignment and the engine could fail.
The second method is the use of a radially instanced geometric feature, such as tabs and slots. The advantage of tabs and slots is that they can be employed under a wide range of temperatures and load conditions. The disadvantage is that this method is not as precise as the use of pilots due to manufacturing limitations. Especially with the use of materials with significantly different coefficients of thermal expansion, at operating temperatures, vibration and wear would cause the tabs to eventually fail.
Typically one or the other of the alignment methods is used for each component interface. The material and the temperature range of each component involved in the fit have, in the past, determined which of these two alignment methods is used. However, as noted above, neither is effective alone.
It has now been discovered that gas turbine engines can be made and used with effective alignment between two materials having very dissimilar coefficients of thermal expansion using the method of this invention. For the first time it is possible to manufacture and use an engine with, for example, a titanium diffuser and a nickel alloy seal plate.
Specifically, the present invention comprises the use of both (1) a pilot alignment with a difference between the OD of the outer piece and the ID of the inner piece to be large enough so that under operating conditions at maximum operating temperatures, the OD and ID mate to provide complete alignment and (2) the use of tabs and slots to align the inner and outer piece during assembly and cold startup.
Turbine nozzle 13 is held in place by a seal plate 19 with pressure on nozzle 13. Seal plate 19 prevents combustion gases from returning to compressor 11.
A diffuser 23 locates the seal plate 19. Both seal plate 19 and diffuser 23 need to be concentric and aligned with the centerline of a gas turbine engine at all times and all temperatures, even though their coefficients of thermal expansion might be significantly different. Diffuser plate 23 serves to increase the pressure of the compressed air delivered to the combustor.
Also shown in
The present invention has been shown to work with seal plates and diffusers of significantly different coefficients of thermal expansion, such as titanium and nickel alloy, both at ambient start up temperatures and at maximum operating temperatures. This allows manufacture and use of engines having less weight and lower cost while improving the alignment of the static components and thus the performance of the engine.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof.
Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This invention was made with government support under [N00019-06-C-0081] awarded by U.S. Navy. The government has certain rights in the invention.