The present disclosure relates generally to a surgical stapling instrument including a replaceable cartridge assembly having an alignment pin and, more specifically, to a surgical stapling instrument including a replaceable cartridge assembly having an alignment pin that is selectively securable to a deployment member of the surgical stapling instrument.
Surgical stapling instruments used for applying parallel rows of staples through compressed living tissue are well known in the art, and are commonly used, for example, for closure of tissue or organs during surgical procedures for performing anastomoses and/tissue transection or resection. Surgical stapling instruments are often used for occlusion of organs in thoracic and abdominal procedures. Typically, surgical stapling instruments include an anvil assembly, a cartridge assembly for supporting an array of surgical staples, an approximation mechanism for approximating the anvil and cartridge assemblies, and a firing mechanism for ejecting the surgical staples from the cartridge assembly.
The cartridge assembly may include an alignment pin for capturing tissue between the cartridge and anvil assemblies and for maintaining alignment between the cartridge and anvil assemblies during approximation and firing of the surgical stapling instrument. Typically, the surgical instrument includes a deployment assembly that can be manually operated to advance the alignment pin from within the cartridge assembly into engagement with the anvil assembly. Alternatively, the deployment assembly may be automatically actuated upon operation of the approximation mechanism to advance the alignment pin.
To facilitate reuse of these surgical stapling instruments, the cartridge assemblies may be configured for removal following use, thereby permitting replacement of the cartridge of the surgical stapling instrument. A need exists for a surgical stapling instrument which includes an alignment pin that remains secure to the deployment assembly of the surgical stapling instrument during a surgical stapling procedure and to permit release of the alignment pin from the deployment assembly following the stapling procedure.
A surgical stapling instrument including a replaceable cartridge assembly is provided. The surgical stapling instrument includes an elongate body portion defining a longitudinal axis, an end effector supported on a distal portion of the elongated body portion, and a deployment member extending from the elongate body portion into the end effector. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, and a cartridge assembly releasably supported on the base portion. The cartridge assembly includes an alignment pin assembly. The deployment member includes a distal portion supporting an abutment member. The deployment member is movable between a retracted position and an advanced position. The abutment member is releasably coupled to the alignment pin assembly when the deployment member is in the retracted position, and is fixedly secured to the alignment pin assembly when the deployment member is moved from the retracted position.
In aspects of the disclosure, the alignment pin assembly includes a base member having an engagement portion. The engagement portion may be engageable with the abutment member of the deployment member. The housing of the cartridge assembly may define a recess. The engagement portion of the base member may be aligned with the recess in the housing when the deployment member is in the retracted position. The engagement portion of the base member may be out of alignment with the recess in the housing when the deployment member is moved from the retracted position. The engagement portion may be configured to be cantilevered into the recess in the housing when the deployment member is in the retracted position. The engagement portion may include a snap feature configured to engage the abutment member of the deployment member to maintain engagement between the base member and the deployment member.
In other aspects of the disclosure, the alignment pin assembly includes a base member and an alignment pin extending from the base member. The base member may include a pair of wings and the housing of the cartridge assembly may define a pair of slots. The wings may be received within the slots to prevent rotation of the base member. The housing may include an alignment pin retaining portion defining a channel for receiving the alignment pin assembly.
Also provided is a replaceable cartridge assembly. The replaceable cartridge assembly includes a housing supporting a plurality of staples. The housing includes a base portion and an alignment pin retaining portion. The alignment pin retaining portion defines a channel and a recess. The replaceable cartridge assembly also includes an alignment pin assembly slidably disposed within the channel and moveable between a retracted position and an advanced position. The alignment pin assembly includes a base member and an alignment pin extending from the base member. The base member includes an engagement portion that is movable from a first position to a second position within the recess to facilitate coupling of the engagement portion with a deployment member of a surgical stapling instrument. The engagement portion is aligned with the recess when the alignment pin assembly is in the retracted position to permit the engagement portion to move into the second position within the recess.
In certain aspects of the disclosure, the engagement portion of the base member includes a snap feature and the deployment member includes an abutment member. The snap feature may be configured to maintain engagement between the base member and the deployment member. The base member may include a pair of wings and the housing may define a pair of slots. The wings may be received within the slots to prevent rotation of the base member. The housing may be configured to be releasably secured to an end effector of a surgical stapling instrument. The base member and the alignment pin may be integrally formed. The engagement portion may be out of alignment with the recess when the alignment pin assembly is moved from the retracted position. The housing may be curved.
Aspects of the disclosed surgical stapling instrument are described herein with reference to the drawings, wherein:
Aspects of the disclosed replaceable cartridge assembly for surgical stapling instruments are described in detail with reference to the drawings, wherein like reference numerals designate corresponding elements in each of the several views. In the drawings and the description that follow, the term “proximal” refers to the end of the surgical stapling instrument that is closer to the clinician, whereas the term “distal” refers to the end of the surgical stapling instrument that is farther from the clinician. In addition, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.
It should be appreciated that the instruments described and illustrated herein are configured to fire surgical staples against an anvil surface; however, aspects of the present disclosure are equally applicable with other forms of staples, fasteners, clips, as well as two-part fasteners, made of metallic and/or polymeric materials.
Embodiments of the presently disclosed surgical stapling instruments include a curved end effector having a curved anvil assembly and a curved cartridge assembly. It is envisioned that the aspects of the present disclosure may be suitable for use with surgical stapling instruments having linear end effectors.
With initial reference to
A thumb button 12a is slidably positioned on each side of the body 12 of the stapling instrument 10. The thumb buttons 12a are movable to manually advance an alignment pin 154 (
The stapling instrument 10 will be described to the extent necessary to fully disclose the aspects of the present disclosure. For a detailed description of the internal structure and function of an exemplary surgical stapling instrument, please refer to commonly owned U.S. Pat. No. 6,817,508 (“the '508 patent”), and commonly owned U.S. patent application Ser. No. 15/826,837 (“the '837 application), filed Nov. 30, 2017, the contents of which are incorporated by reference herein in their entireties. Although described with reference to the stapling instrument 10, it is envisioned that the aspects of present disclosure may be modified for use with any instrument having an alignment pin.
With reference to
The base portion 52 and the transverse portion 54b of the jaw portion 54 of the frame assembly 50 of the end effector 20 are curved. In embodiments, the base portion 52 and the transverse portion 54b of the jaw portion 54 of the frame assembly 50 of the end effector 20 are substantially C-shaped although other curved and linear configurations are also envisioned. In embodiments, the end effector 20 includes a first radius of curvature and a second radius of curvature. The first and second radii of curvature may be increased or decreased to suit a particular procedure and/or to facilitate access to a particular body cavity or location within a body cavity. In some embodiments, the end effector 20 is formed by a plurality of substantially linear sections that are connected to each other to define a curved-like configuration. Each of the anvil assembly 60 and the cartridge assembly 100 include a curved configuration corresponding to the curved configuration of the frame assembly 50 of the end effector 20.
With continued reference to
With additional reference to
The deployment member 40 of the stapling instrument 10 includes a vertical portion 42 (
With reference now to
The housing 110 of the cartridge assembly 100 includes a base portion 112 that defines a plurality of staple receiving pockets 112a that support a plurality of staples “S”. The base portion 112 defines a channel (not shown) that is configured to receive the pusher assembly 130 to eject the staples “S” from the base portion 112. The housing 110 also includes an alignment pin retaining portion 114 that is configured to receive the alignment pin assembly 150. As will be described in further detail below, the alignment pin assembly 150 is maintained within the alignment pin retaining portion 114 by an end cap 116. The base portion 112 also supports a tissue guide 120.
The pusher assembly 130 of the cartridge assembly 100 includes a knife pusher 132, a knife 134 extending from the knife pusher 132, and a staple pusher 136 that is operably engageable with the knife pusher 132. During actuation of the stapling instrument 10, the knife pusher 132, the knife 134, and the staple pusher 136 are advanced to staple and cut tissue (not shown) received between the anvil assembly 60 and the cartridge assembly 100.
With additional reference to
With particular reference to
With reference now to
The base member 152 of the alignment pin assembly 150 includes an engagement portion 158 extending proximally from the body portion 156 of the base member 152. The engagement portion 158 includes a snap feature 158a disposed on a proximal end of the engagement portion 158. The snap feature 158a is configured to engage the abutment member 44 (
The alignment pin 154 of the alignment pin assembly 150 includes an elongate body 160 having a proximal portion 160a configured for engagement with the base member 152 of the alignment pin assembly 150 and tapered distal portion 160b configured to facilitate receipt within an opening 61 (
The operation of the replaceable cartridge assembly 100 will now be described with reference to
The replaceable cartridge assembly 100 is moved from the position shown in
The cartridge assembly 100 is moved from the partially loaded position shown in
Continued proximal movement of the replaceable cartridge assembly 100 permits the engagement portion 158 of the base member 152 of the alignment pin assembly 150 to return to the pre-cantilevered position, as shown in
Turning to
Turning briefly to
Following the actuation of the end effector 20, the alignment pin assembly 150 is retracted to an initial position within the replaceable cartridge assembly 100 through retraction of the deployment member 40 of the stapling instrument 10. The return of the alignment pin assembly 150 to the retracted position realigns the engagement portion 158 of the base member 152 of the alignment pin assembly 150 with the recess 117 in the alignment pin retaining portion 114 of the housing 110 of the replaceable cartridge assembly 100. As such, when the cartridge assembly 100 is moved distally in relation to the clamp slide members 30 to disconnect the cartridge assembly 100 from the clamp slide members 30 and the abutment member 44 engages the engagement portion 158 of the base member 152, the engagement portion 158 may cantilever or deflect into the recess 117 in the alignment pin retaining portion 114 of the housing 110. This facilitates separation of the alignment pin assembly 150 from the deployment member 40 of the stapling instrument 10, and removal of the replaceable cartridge assembly 100 from the end effector 20.
The stapling instrument 10 may then be reused during the same procedure by loading the end effector 20 with one or more unused or fresh cartridge assemblies 100. Alternatively, the stapling instrument 10 may be cleansed and sterilized for use in one or more subsequent procedures.
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the components of the surgical stapling instrument can be formed of any material suitable for surgical use and having the required strength characteristics. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application claims the benefit of and priority to U.S. Provisional Application No. 63/036,693, filed on Jun. 9, 2020, the entire contents of which being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1158111 | Ahlheim | Oct 1915 | A |
2891250 | Hirata | Jun 1959 | A |
3080564 | Strekopitov et al. | Mar 1963 | A |
3252643 | Strekopov et al. | May 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3315863 | O'Dea | Apr 1967 | A |
3494533 | Green | Feb 1970 | A |
3589589 | Akopov | Jun 1971 | A |
3692224 | Astafiev et al. | Sep 1972 | A |
3795034 | Strekopytov et al. | Mar 1974 | A |
3822818 | Strekopytov et al. | Jul 1974 | A |
3935981 | Akopov et al. | Feb 1976 | A |
3949923 | Akopov et al. | Apr 1976 | A |
4047654 | Alvarado | Sep 1977 | A |
4216891 | Behlke | Aug 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4296881 | Lee | Oct 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4354628 | Green | Oct 1982 | A |
4378901 | Akopov et al. | Apr 1983 | A |
4383634 | Green | May 1983 | A |
4402444 | Green | Sep 1983 | A |
4415112 | Green | Nov 1983 | A |
D273513 | Spreckelmeier | Apr 1984 | S |
4442964 | Becht | Apr 1984 | A |
4470533 | Schuler | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4485811 | Chernousov et al. | Dec 1984 | A |
4506670 | Crossley | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4508253 | Green | Apr 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4568009 | Green | Feb 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4589582 | Bilotti | May 1986 | A |
4602634 | Barkley | Jul 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4606345 | Dorband et al. | Aug 1986 | A |
4607636 | Kula et al. | Aug 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
4617928 | Alfranca | Oct 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4665916 | Green | May 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4714187 | Green | Dec 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4767044 | Green | Aug 1988 | A |
4788978 | Strekopytov et al. | Dec 1988 | A |
4802614 | Green et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4819853 | Green | Apr 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4881544 | Green et al. | Nov 1989 | A |
4881545 | Isaacs et al. | Nov 1989 | A |
4915100 | Green | Apr 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4951861 | Schulze et al. | Aug 1990 | A |
4964559 | Deniega et al. | Oct 1990 | A |
5005754 | Van Overloop | Apr 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5100042 | Gravener et al. | Mar 1992 | A |
5116349 | Aranyi | May 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5172845 | Tejeiro | Dec 1992 | A |
5190203 | Rodak | Mar 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5368599 | Hirsch et al. | Nov 1994 | A |
5405073 | Porter | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5439155 | Viola | Aug 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5458279 | Plyley | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470008 | Rodak | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5497934 | Brady et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5558266 | Green | Sep 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5641111 | Ahrens et al. | Jun 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5810240 | Robertson | Sep 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5893506 | Powell | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5964394 | Robertson | Oct 1999 | A |
6045560 | McKean et al. | Apr 2000 | A |
6638285 | Gabbay | Oct 2003 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7204404 | Nguyen et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7275674 | Racenet et al. | Oct 2007 | B2 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7407076 | Racenet et al. | Aug 2008 | B2 |
7431190 | Hoffman | Oct 2008 | B2 |
7522854 | Kinouchi et al. | Apr 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7568605 | Kruszynski | Aug 2009 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7735704 | Bilotti | Jun 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7886953 | Schwemberger et al. | Feb 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8029520 | Korvick et al. | Oct 2011 | B2 |
8033439 | Racenet et al. | Oct 2011 | B2 |
8070038 | Kostrzewski | Dec 2011 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8292904 | Popovic et al. | Oct 2012 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8424738 | Kasvikis | Apr 2013 | B2 |
8499994 | D'Arcangelo | Aug 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8627994 | Zemlok et al. | Jan 2014 | B2 |
8646673 | Bilotti et al. | Feb 2014 | B2 |
8757467 | Racenet et al. | Jun 2014 | B2 |
8936185 | Racenet et al. | Jan 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
9022273 | Marczyk et al. | May 2015 | B1 |
9125651 | Mandakolathur Vasudevan et al. | Sep 2015 | B2 |
9192382 | Kostrzewski | Nov 2015 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9888923 | Chen et al. | Feb 2018 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20050247752 | Kelly et al. | Nov 2005 | A1 |
20050247753 | Kelly et al. | Nov 2005 | A1 |
20060163312 | Viola et al. | Jul 2006 | A1 |
20070187456 | Viola et al. | Aug 2007 | A1 |
20100048988 | Pastorelli et al. | Feb 2010 | A1 |
20100282820 | Kasvikis | Nov 2010 | A1 |
20110233261 | Rao | Sep 2011 | A1 |
20130206813 | Nalagatla | Aug 2013 | A1 |
20160249914 | Zhang et al. | Sep 2016 | A1 |
20170014134 | Chen et al. | Jan 2017 | A1 |
20170027571 | Nalagatla et al. | Feb 2017 | A1 |
20170027572 | Nalagatla et al. | Feb 2017 | A1 |
20170027573 | Nalagatla et al. | Feb 2017 | A1 |
20170027574 | Nalagatla et al. | Feb 2017 | A1 |
20170189022 | Adams et al. | Jul 2017 | A1 |
20170340324 | Gong et al. | Nov 2017 | A1 |
20180049739 | Kasvikis | Feb 2018 | A1 |
20190239886 | Jones | Aug 2019 | A1 |
Entry |
---|
Diameter Definition & Meaning—Merriam-Webster. URL https://www.merriam-webster.com/dictionary/diameter (Year: 2023). |
Integral Definition & Meaning—Merriam-Webster. URL https://www.merriam-webster.com/dictionary/integral (Year: 2023). |
Snap Definition & Meaning—Merriam-Webster. URL https://www.merriam-webster.com/dictionary/snap (Year: 2023). |
European Search Report dated Feb. 7, 2022, corresponding to counterpart European Application No. 21175798.4; 11 pages. |
Number | Date | Country | |
---|---|---|---|
20210378668 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63036693 | Jun 2020 | US |