This application claims the benefit of Taiwan patent application No. 100121708, filed on Jun. 21, 2011, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The invention relates to a lighting source module and an alignment method, and more particularly, to a laser lighting source module and an optical alignment method.
2. Description of the Related Art
With the development of technology, various optical modules become miniaturized. As the optical modules are getting smaller and smaller, the precision in the manufacturing of optical modules must be further increased.
The researchers found that the factors affecting the precision of optical modules at least include the alignment inaccuracies of the element fabricating and the variation in the manufacturing process.
The assembly equipments used for fabricating elements usually cannot achieve high level of precision condition. The researchers found that although the precision of the fabricating equipments has been calibrated to achieve the best condition, it is still hard to meet the precision requirement in the alignment of optical modules.
Taking full color (RGB) laser lighting source module as an example, the conventional module structure includes three (i.e., red, green, and blue) transistor outline-can (TO-can) elements and several optical filters. The optical axes of the three laser lighting sources must be located at the same position for mixing the light of full color lighting sources. Due to the size limit of the TO-Can elements, the volume of the lighting source module of the above-mentioned structure is about 5 to 7 cm3 and this cannot be further reduced. Furthermore, since the optical axes of the lighting source modules must be located at the same position, the fabricating precision requirements of the lighting source modules thus will be very high. Particularly, since the light coupling alignment needs to be applied to the red, blue, and green lighting sources, respectively, the fabricating process becomes more difficult and time-consuming, and a solution must be provided thereby.
Besides, the element fabricating includes several processes such as reflowing process, packaging process, and cleaning process. The researchers found that these processes will also severely affect the alignment precision of optical modules.
These factors severely affect the alignment precision of optical modules, and become a giant bottleneck to the miniaturization technology. Therefore, the researchers are dedicated to conducting relevant research so as to further improve the miniaturization technology of optical modules.
An object of the invention is to provide a laser lighting source module and an optical alignment method. The substrate is able to engage with the laser carrier through the design of their surface structure, so that the laser carrier can be easily aligned on the substrate. In addition, the alignment precision may be improved and the complicated alignment procedures between the elements may be simplified.
Another object of the present invention is to provide a laser lighting source module. The laser lighting source module includes a substrate and a laser carrier. The substrate includes a first body and a first surface structure. The first surface structure is disposed on a surface of the first body. The laser carrier is used for carrying a laser emitter which includes a second body and a second surface structure. The second surface structure is disposed on a surface of the second body. At least a portion of the second surface structure is correspondingly engaged with at least a portion of the first surface structure so that the laser carrier may be aligned on the substrate.
An alternative object of the present invention is to provide an optical alignment method. The optical alignment method includes the following steps. A first surface structure is formed on a surface of a substrate. A first portion and a second portion of the first surface structure are extended along a first direction and a second direction respectively. The first direction and the second direction are not parallel to each other. A second surface structure is formed on a surface of at least one optical element. At least a portion of the second surface structure is correspondingly engaged with at least a portion of the first surface structure. At least one optical element is located on the substrate so that the at least one optical element may be aligned on the substrate.
A further object of the present invention is to provide an alignment structure used in a laser lighting source module. The laser lighting source module includes a substrate and a laser carrier. The alignment structure includes a first surface structure and a second surface structure. The first surface structure is disposed on a surface of the substrate, and the second surface structure is disposed on a surface of the laser carrier. At least a portion of the second surface structure is correspondingly engaged with at least a portion of the first surface structure so that the laser carrier may be aligned on the substrate.
The detailed technology and the preferred embodiment(s) implemented for the present invention are described in the following paragraphs accompanying the drawings for people skilled in this field to well appreciate the features of the present invention.
A number of embodiments are disclosed below for detailed descriptions of the invention. The embodiments utilize the design of using the surface structures between specific optical elements as alignment structures so that the specific optical elements (e.g., the substrate and the laser carrier) may be engaged with each other. Therefore, the specific optical elements may be aligned precisely, and the alignment precision of the elements may be significantly improved by a simple way. However, the embodiments are used for exemplification purpose only, not for limiting the scope of the invention. In addition, in some embodiments, parts of the elements are omitted to highlight the technical features of the invention.
In the embodiment, the substrate 110 includes a first body 111 and a first surface structure 112. The first surface structure 112 may be, for example, a first concave-convex structure disposed on a surface 111a of the first body 111. On the other hand, the laser carrier 120 includes a second body 121 and a second surface structure 122. The second surface structure 122 may be, for example, a second concave-convex structure disposed on a surface 121a of the second body 121. Besides, the first body 111 and the second body 121 usually have a thickness of about 200 μm, but not limited thereto. Also, the alignment structure of the laser lighting source module 10 includes the first surface structure 112 and the second surface structure 122. It is noted that at least a portion of the second surface structure 122 is corresponding engaged with at least a portion of the first surface structure 112 so that the laser carrier 120 may be easily and precisely aligned on the substrate 110. In one embodiment, the second surface structure 122 may be substantially similar or identical to the first surface structure 112 in an opposite direction so that all or a portion of the second surface structure 122 may be engaged with all or a portion of the first surface structure 112.
As shown in
As shown in
More specifically, in the embodiment, a plurality of first grooves G1 are interspaced by identical intervals W13, and a plurality of first convex ribs B1 are also interspaced by identical intervals W23. The intervals W13 between the first grooves G1 are substantially identical to the intervals W23 between the first convex ribs B1 so that each first convex rib B1 may be capable of engaging with the first groove G1.
Besides, the first groove G1 and the first convex rib B1 are extended along the first direction D1, so that the laser carrier 120 is limited by the first groove G1 and the first convex rib B1 and is only able to move along the first direction D1.
Furthermore, in the embodiment, the first surface structure 112 (exemplified by the first concave-convex structure) further includes at least one second groove G2 substantially extended along a second direction D2. The second surface structure 122 (exemplified by the second concave-convex structure) further includes at least one second convex rib B2 substantially extended along the second direction D2. The cross section of the second groove G2 may be a trapezoid, and the cross section of the second convex rib B2 may also be a trapezoid. The cross section of the second groove G2 is substantially similar to the cross section of the second convex rib B2 but in an opposite direction. A length W12 of the second groove G2 is substantially not shorter than a length W22 of the second convex rib B2. Thus, the second groove G2 may be capable of containing the second convex rib B2 for enabling the laser carrier 120 to be easily and precisely aligned on the substrate 110. In one embodiment, the depth of the second groove G2 and that of the second convex rib B2 may be, for example, about 25 to 75 μm, but not limited thereto.
In the embodiment, a plurality of second groove G2 are interspaced by identical intervals W14, and a plurality of second convex ribs B2 are also interspaced by identical intervals W24. The intervals W14 between the second grooves G2 are substantially identical to the intervals W24 between the second convex ribs B2 so that each second convex rib B2 may be capable of engaging with the second groove G2.
In addition, the second groove G2 and the second convex rib B2 are extended along the second direction D2, so that the laser carrier 120 is limited by the second groove G2 and the second convex rib B2 and is only able to move along the second direction D2.
To achieve the goal of precise alignment, the first direction D1 and the second direction D2 are not parallel to each other and must have an angle more than 0° therebetween. For example, the angle between the first direction D1 and the second direction D2 may be more than 45° or substantially equal to 90°. Therefore, a two dimensional limiting effect between the first surface structure 112 and the second surface structure 122 may be obtained, and the laser carrier 120 may be easily and precisely aligned on the substrate 110.
Please refer to
In step S101, a first surface structure 111 is formed on the surface 111a of the substrate 110. A first portion (exemplified by the first groove G1 of the first concave-convex structure) of the first surface structure 111 and a second portion (exemplified by the second groove G2 of the second concave-convex structure) of the first surface structure 111 are extended along the first direction D1 and the second direction D2 respectively. The first direction D1 and the second direction D2 are not parallel to each other and have an angle more than 0° therebetween.
In step S103, a second surface structure 122 is formed on a surface 121a of at least one optical element (exemplified by the laser carrier 120). At least a portion of the second surface structure 122 is correspondingly engaged with at least a portion of the first surface structure 112.
In step S105, the optical element (exemplified by the laser carrier 120) is located on the substrate 110 so that the optical element may be aligned on the substrate 110.
Prior to step S105, the solder metal layer 130 may be disposed on the first surface structure 112 and/or the second surface structure 122 so that the optical element (exemplified by the laser carrier 120) may be soldered and permanently fixed on the substrate 110.
The laser lighting source module and the optical alignment method disclosed in the above embodiments utilize the surface alignment technology of the silicon optical bench (SiOB) and the passive alignment so that the optical element (exemplified by the laser carrier) and the substrate may be easily engaged with each other. Therefore, the alignment precision may be improved and the complicated alignment procedures between the elements may be simplified.
While the invention has been described by way of example and in terms of the preferred embodiment(s), it should be understood that the invention is not limited thereto. People skilled in this field may proceed with a variety of modifications and replacements based on the disclosures and suggestions of the invention as described without departing from the characteristics thereof. Nevertheless, although such modifications and replacements are not fully disclosed in the above descriptions, they have substantially been covered in the following claims as appended.
Number | Date | Country | Kind |
---|---|---|---|
100121708 | Jun 2011 | TW | national |