Alignment sub and perforating gun assembly with alignment sub

Information

  • Patent Grant
  • 11988049
  • Patent Number
    11,988,049
  • Date Filed
    Thursday, September 29, 2022
    a year ago
  • Date Issued
    Tuesday, May 21, 2024
    29 days ago
Abstract
A perforating gun assembly may include a first perforating gun housing, a first shaped charge provided within the first perforating gun housing, and an alignment sub coupled to the first perforating gun housing. The alignment sub may include a first sub body and a second sub body rotatably coupled to the first sub body.
Description
BACKGROUND OF THE DISCLOSURE

Wellbore tools used in oil and gas operations, including perforation guns housing shaped charges, are often sent down a wellbore in tool strings connected together to reduce time and costs associated with the operation. Sub-assemblies connect adjacent wellbore tools to one another to form the tool string.


Hydraulic fracturing produces optimal results when perforations are oriented in the direction of maximum principle stress or the preferred fracture plane (PFP). Perforations oriented in the direction of the PFP create stable perforation tunnels and transverse fractures (perpendicular to the wellbore) that begin at the wellbore face and extend far into the formation. However, if fractures are not oriented in the direction of maximum stress, tortuous, non-transverse fractures may result, creating a complex near-wellbore flow path that can affect the connectivity of the fracture network, increase the chance of premature screen-out, and impede hydrocarbon flow. A wellbore tool string including perforating guns may frequently rest on a lower horizontal surface of a wellbore casing. This positioning may result in larger perforations being formed by shaped charges oriented toward the nearby horizontal surface, and smaller perforations being formed by shaped charges oriented away from the nearby horizontal surface.


Accordingly, there is a need for an alignment sub that allows alignment of the phasing of shaped charges in two or more adjacent perforation guns connected on a tool string. Further, there is a need for an orienting alignment sub assembly for orienting a wellbore tool with aligned shaped charges in a wellbore so consistently sized perforations may be formed by shaped charges oriented in different directions.


BRIEF DESCRIPTION

An exemplary embodiment of an alignment sub may include a first sub body, a bulkhead body, a first bulkhead pin and a second bulkhead pin, a bulkhead retainer, and a second sub body. The first sub body may have a first sub body first end and a first sub body second end opposite the first sub body first end. The first sub body may include a first sub body first inner surface, a first sub body second inner surface, and a first sub body recess wall. T first sub body first inner surface may define a first sub body first bore extending from the first sub body second end towards the first sub body first end. The first sub body second inner surface may define a first sub body second bore extending from the first sub body first bore toward the first sub body first end. The first sub body recess wall may extend radially between the first sub body first inner surface and the first sub body second inner surface. The bulkhead body may be in the first sub body second bore. The bulkhead body may include a bulkhead o-ring compressively engaged with an interior surface of the first sub body radially adjacent to the first sub body second bore. A first bulkhead pin and a second bulkhead pin may extend from either end of the bulkhead body. A bulkhead retainer positioned in the first sub body first bore adjacent the first sub body recess wall. The bulkhead retainer may be dimensionally configured to secure the bulkhead body within the first sub body second bore. The second sub body may have a second sub body first end and a second sub body second end opposite the second sub body first end. The second sub body may further include a second sub body first inner surface defining a second sub body first bore extending from the second sub body second end toward the second sub body first end. The first sub body may be rotatably coupled to the second sub body and a portion of the first sub body is positioned within the second sub body first bore.


An exemplary embodiment of a perforating gun assembly may include a first perforating gun housing, a first shaped charge provided within the first perforating gun housing, and an alignment sub coupled to the first perforating gun housing. The alignment sub may include a first sub body and a second sub body rotatably coupled to the first sub body.





BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description will be rendered by reference to exemplary embodiments that are illustrated in the accompanying figures. Understanding that these drawings depict exemplary embodiments and do not limit the scope of this disclosure, the exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a cross-sectional view of an alignment sub according to an embodiment;



FIG. 2 is a perspective view of an alignment sub according to the embodiment shown in FIG. 1;



FIG. 3 is a side elevated view of an alignment sub according to the embodiment shown in FIG. 1;



FIG. 4 is a front elevated view of an alignment sub according to the embodiment shown in FIG. 1;



FIG. 5 is a rear elevated view of an alignment sub according to the embodiment shown in FIG. 1;



FIG. 6 is a front side perspective view of a first sub body part of an alignment sub according to an embodiment;



FIG. 7 is a rear side perspective view of a first sub body part of an alignment sub according to the embodiment shown in FIG. 6;



FIG. 8 is a front side perspective view of a second sub body part of an alignment sub according to an embodiment;



FIG. 9 is a rear side perspective view of a second sub body part of an alignment sub according to the embodiment shown in FIG. 8;



FIG. 10 is a cross-sectional side view of a second sub body part of an alignment sub according to the embodiment shown in FIGS. 8 and 9;



FIG. 11 is a cross-sectional side view of a partially assembled alignment sub according to an embodiment, showing a first sub body part;



FIG. 12 is a cross-section side view of a partially assembled alignment sub according to the embodiment shown in FIG. 11, showing a first sub body part and a second sub body part;



FIG. 13 is a perspective view of an alignment sub according to an embodiment;



FIG. 14 is a side elevated view of an alignment sub according to the embodiment shown in FIG. 13;



FIG. 15 is a front elevated view of an alignment sub according to the embodiment shown in FIG. 13;



FIG. 16 is a rear elevated view of an alignment sub according to the embodiment shown in FIG. 13;



FIG. 17 is a front side perspective view of a first sub body part of an alignment sub according to an embodiment;



FIG. 18 is a rear side perspective view of a first sub body part of an alignment sub according to the embodiment shown in FIG. 17;



FIG. 19 is a front side perspective view of a second sub body part of an alignment sub according to an embodiment;



FIG. 20 is a rear side perspective view of a second sub body part of an alignment sub according to the embodiment shown in FIG. 19;



FIG. 21 is a cross-sectional side view of a second sub body part of an alignment sub according to the embodiment shown in FIGS. 19 and 20;



FIG. 22 is a cross-sectional side view of an orienting tandem seal adapter according to an embodiment;



FIG. 23 is a perspective view of an orienting tandem seal adapter according to the embodiment shown in FIG. 22;



FIG. 24 is a front elevated view of an orienting tandem seal adapter according to the embodiment shown in FIG. 22;



FIGS. 25 and 26 are perspective views of a perforating gun string according to an embodiment, including an orienting tandem seal adapter and alignment sub;



FIG. 27A shows a wellbore tool string positioned inside a wellbore casing according to an embodiment; and



FIG. 27B shows a wellbore tool string positioned inside a wellbore casing according to an embodiment.





Various features, aspects, and advantages of the exemplary embodiments will become more apparent from the following detailed description, along with the accompanying drawings in which like numerals represent like components throughout the figures and detailed description. The various described features are not necessarily drawn to scale in the drawings but are drawn to emphasize specific features relevant to some embodiments.


The headings used herein are for organizational purposes only and are not meant to limit the scope of the disclosure or the claims. To facilitate understanding, reference numerals have been used, where possible, to designate like elements common to the figures.


DETAILED DESCRIPTION

Reference will now be made in detail to various embodiments. Each example is provided by way of explanation and is not meant as a limitation and does not constitute a definition of all possible embodiments.



FIGS. 1-10 show an exemplary embodiment of an alignment sub 100. The alignment sub 100 may include a first sub body part 101 and a second sub body part 118 rotatably coupled to the first sub body part 101.


With reference to FIGS. 1-4 and 6-7, the first sub body part 101 is shown in greater detail. The first sub body part 101 in the exemplary embodiment includes a first sub body part first end 102 and a first sub body part second end 103 spaced apart from the first sub body part first end 102. The first sub body part 101 includes an insertable portion 104 axially adjacent the first sub body part first end 102. A first sub body part bore 105 may extend in an x-direction along a central axis of rotation X (see FIG. 1) through a first sub body part insertable portion 104, between the first sub body part first end 102 and the first sub body part second end 103. According to an aspect, the first sub body part bore 105 has a bore longitudinal axis that is the central axis of rotation X of the alignment sub 100. In the exemplary embodiment shown in FIGS. 1-2, for example, a first sub body part recess 111 may extend from the first sub body part second end 103 to the first sub body part bore 105. The first sub body part bore 105 is defined on a first end by the first sub body part first end 102, and on a second end by a first sub body part recess wall 112. The first sub body part recess wall 112 extends radially between the first sub body part recess 111 and the first sub body part bore 105.


The first sub body part bore 105 may be dimensionally configured to receive an electrical assembly 136 for providing electrical conductivity through the length of the alignment sub 100. According to an aspect, the electrical assembly 136 is positioned in the first sub body part bore 105. The electrical assembly 136 may be, for example and not limitation, an electrically contactable bulkhead assembly including a bulkhead body 137 that is sealingly secured in the first sub body part bore 105. According to an aspect, the bulkhead body 137 may include a sealing element, such as a bulkhead o-ring (not labeled), for frictionally and compressively engaging with an interior surface 177 of the first sub body part 101 radially adjacent to the first sub body part bore 105. The frictional engagement pressure seals the bulkhead body 137 in the first sub body part bore 105.


The electrical assembly 136, e.g., the bulkhead assembly 137, may include a bulkhead first end 138 including a first end bulkhead pin 139, and a bulkhead second end 140 including a second end bulkhead pin 141. The first end bulkhead pin 139 may be in electrical connection with the second end bulkhead pin 141. Each of the first end bulkhead pin 139 and second end bulkhead pin 141 are electrically contactable components. When used in a wellbore tool string to align a first wellbore tool 201 with a second wellbore tool 202 (see, e.g., FIG. 25), the first sub body part 101 may be non-rotatably coupled to a first wellbore tool 201, the second sub body part 118 may be non-rotatably coupled to a second wellbore tool 202, and the second sub body part 118 may be rotatably coupled to the first sub body part 101. The electrical assembly 136 positioned in the alignment sub 100 provides electrical conductivity through the alignment sub 100 from the first wellbore tool 201 to the second wellbore tool 202. The electrical assembly 136 provides electrical communication along a wellbore tool string when the first end bulkhead pin 139 is in contact with an electrically contactable component in a wellbore tool coupled to the second sub body part first end 119, and when the second end bulkhead pin 141 is in contact with an electrically contactable component in a wellbore tool coupled to the first sub body part second end 103.


A bulkhead retainer nut 142 is positioned in the first sub body part recess 111 to secure the bulkhead assembly 137 in position in the first sub part bore 105. The bulkhead retainer nut 142 is positioned in the first sub body part recess 111 adjacent each of the first sub body part recess wall 112 and the first sub body part bore 105, and is dimensionally configured to contact an interior surface of the first sub body part 101 radially adjacent to the first sub body part recess 111. In the exemplary embodiment as shown in FIG. 1, the first sub body part 101 includes a threaded surface interior portion 113 that receives a threaded side surface 143 of the bulkhead retainer nut 142 in a threaded engagement so that the bulkhead retainer nut 142 is threadedly secured to the first sub body part 101. A bulkhead retainer nut aperture 144 is formed through the bulkhead retainer nut 142 such that the second end bulkhead pin 141 extends through the bulkhead retainer nut aperture 144. According to an aspect, the first sub body part recess 111 may be dimensionally configured to receive and house an end of an adjacent wellbore tool component, such as, for example and not limitation, an end of a shaped charge positioning device housed in a first wellbore tool 201 (see, e.g., FIG. 26). The second end bulkhead pin 141 of the bulkhead assembly 137 extends into the first sub body part recess 111. In the embodiment shown in FIG. 26, the first wellbore tool 201 is coupled to the first sub body part second end 103, such that an electrically contactable portion of the first wellbore tool 201 is in electrical contact with the second end bulkhead pin 141.


With continued reference to FIGS. 1-3 and 6-7, the first sub body part 101 in the exemplary embodiment includes on its first end 102 a first sub body part shoulder 106 formed adjacent the first end of the first sub body part bore 105. A first sub body part aperture 107 may be formed in the first sub body part shoulder 106, which may extend from the first sub body part bore 105 through the first sub body part shoulder 106. The first sub body part aperture 107 may have a diameter that is smaller than a diameter of the bulkhead body 137, so as to prevent the bulkhead body 137 from passing through the first sub body part bore 105. According to an aspect, the first sub body part aperture 107 is formed in the first sub body part shoulder 106 in alignment with the bulkhead first end 138, and the first end bulkhead pin 139 has a diameter that is less than the diameter of the first sub body part aperture 107 such that the first end bulkhead pin 139 extends through the first sub body part aperture 107 and into an interior of the second sub body part 118. According to an aspect, each of the bulkhead first end 138 and the first end bulkhead pin 139 may extend through the first sub body part aperture 107.


The second sub body part 118 in an exemplary embodiment is shown in FIGS. 1 and 8-10. The second sub body part 118 may include a second sub body part first end 119 and a second sub body part second end 120 spaced apart from the second sub body part first end 119. A second sub body part cavity 121 extends axially from the second sub body part second end 120 toward the second sub body part first end 119. According to an aspect, the second sub body part cavity 121 has a cavity longitudinal axis that is a central axis of rotation X of the alignment sub 100, such that the first sub body part bore 105 and the second sub body part cavity 121 are axially aligned. According to an aspect, a portion of the first sub body 101 is positioned within the second sub body part cavity 121.


In the exemplary embodiment, the second sub body part 118 may include a second sub body part medial channel 123 provided axially adjacent the second sub body part cavity 121 and away from the second sub body part second end 120. A second sub body part cavity wall 122 positioned away from the second sub body part second end 120 and extending inward in the second sub body part cavity 121 may separate the second sub body part cavity 121 from the second sub body part medial channel 123, such that the second sub body part cavity 121 has a first diameter D1, and the second sub body part medial channel 123 has a second diameter D2. According to an aspect, the first diameter D1 of the second sub body part cavity 121 is greater than the second diameter D2 of the second sub body part medial channel 123. The second sub body part 118 in an exemplary embodiment includes a second sub body part recess 124 formed adjacent the sub body part medial channel 123, extending in a x-direction from the second sub body part first end 119 toward the second sub body part second end 120 and the second sub body part cavity 121. The second sub body part recess 124 is separated from the second sub body part medial channel 123 by a second sub body part recess wall 125. According to an aspect, the diameter of the second sub body part recess 124 is greater than the second diameter D2 of the second sub body part medial channel 123. The second wellbore tool 202 is coupled to the second sub body part first end 119, such that an electrically contactable portion of the second wellbore tool 202 is in electrical contact with the first end bulkhead pin 139 (see FIG. 26).


In the exemplary embodiment, a second sub body part retainer ring 130 retains the first sub body part 101 inside the second sub body part 118. The second sub body part retainer ring 130 is engaged with an inner surface of the second sub body part 118 and with the first sub body part 101 to retain the position of the first sub body part 101 inside the second sub body part 118. The second sub body part retainer ring 130 extends from the second sub body part first end 119 to the second sub body part recess wall 125, and may include a retainer ring shoulder 134 that abuts the first sub body part first end 102. According to an aspect, the second sub body part retainer ring 130 is dimensionally configured to secure the first sub body part insertable portion 104 to the second sub body part 118. In the embodiment shown in FIGS. 1-10, the second sub body part retainer ring 130 includes a contoured inner wall 135 extending from the second sub body part first end 119 to the retainer ring shoulder 134. In a further embodiment, as shown in FIGS. 11-21, the second sub body part retainer ring shoulder 134 and the first sub body part first end 102 are abutting. According to an aspect, the first sub body part insertable portion 104 includes a threaded surface portion 110 positioned in the second sub body part recess 124.


The second sub body part retainer ring 130 includes a threaded collar 133 extending from the second sub body retainer ring shoulder 134 toward the second sub body part recess wall 125, wherein the threaded collar 133 is threadedly engaged with the threaded surface portion 110 to threadedly secure the first sub body part 101 in the second sub body part 118. With reference to FIGS. 1, 5, 12, and 16, a socket screw 131 is positioned in a second sub body part retainer ring screw socket 132 formed in the second sub body part retainer ring 130. According to an aspect, the second sub body part retainer ring screw socket 132 may rotationally fix the retainer ring 130 to the first sub body part 101. The retainer ring screw socket 132 in the exemplary embodiment at least partially abuts one of the first sub body part first end 102 and the first sub body part insertable portion 104.


A locking mechanism, such as a sub locking screw 129, in the alignment sub 100 is used to fix the relative angular/rotational position of the first sub body part 101 relative to an angular/rotational position of the second sub body part 118. According to an aspect, more than one sub locking screw 129 may be used to lock the position of the first sub body part 101 relative to the position of the second sub body part 118. According to an aspect, the sub locking screw 129 may be switchable between an unlocked state and a locked state such that, when the sub locking screw 129 is in the locked state, the angular position of the first sub body part 101 is fixed relative to an angular position of the second sub body part 118, and when the sub locking screw 129 is in the unlocked state, the second sub body part 118 is able to rotate relative to the first sub body part 101.


According to an aspect, the sub locking screw 129 is dimensionally configured to be secured in a locking screw socket 128 formed in a second sub body part rib 147. In the exemplary embodiment shown in FIG. 1, the second sub body part second end 120 is defined by a second sub body part rib 147 projecting from an outer surface of the second sub body part 118 and a sub locking screw socket 128 is formed in and extends through the second sub body part rib 147. The second sub body part second end 120/second sub body part rib 147 are positioned around a sub locking screw channel 114 formed in the first sub body part 101. The sub locking screw channel 114 in the exemplary embodiment overlaps with the sub locking screw socket 128 in an axial direction. In an unlocked state, the first sub body part 101 is able to rotate within the second sub body part cavity 121. In a locked state, the sub locking screw 129 is secured in the sub locking screw socket 128, such that an end of the sub locking screw 129 is secured in the sub locking screw channel. According to an aspect, the alignment sub 100 may include a plurality of locking screw sockets 128 spaced equidistantly about the second sub body part rib 147.


In the exemplary embodiment, the locking screw channel 114 includes a channel lip 115 that is formed on the first sub body part 101 axially adjacent to the locking screw channel 114. The channel lip 115 defines a boundary of the locking screw channel 114 in which the sub locking screw 129 is received and secured when the alignment sub 100 is in the locked state. According to an aspect, a diameter of the first sub body part 101 at the channel lip 115 is larger than a diameter of the first sub body part 101 at the locking screw channel 114. In the exemplary embodiment, the channel lip 115 extends outward from the first sub body part 101 and abuts the second sub body part cavity wall 122 to align the locking screw channel 114 with the sub locking screw socket 128 in the second sub body part rib 147 for locking the alignment sub 100 in the locked state.


The first sub body part 101 according to the exemplary embodiment is secured in the second sub body part cavity 121 and the second sub body part medial channel 123. According to an aspect, the first sub body part 101 includes an interior o-ring 109 positioned in an interior o-ring channel 108 extending around the first sub body part 101 at an axial position between the channel lip 115 and the sub body part first end 102, wherein the one o-ring 109 contacts and frictionally engages a surface of the second sub body part medial channel 123. The first sub body part 101 may also include a first sub body part rib 146 formed adjacent the locking screw channel 114, such that the first sub body part rib 146 abuts the second sub body part rib 147. The first sub body part rib 146 and second sub body part rib 147 together form a central alignment sub rib 145, and a placement tool hole 175 may be formed in each of the first sub body part rib 146 and the second sub body part rib 147 for positioning of the alignment sub 100 when coupled to adjacent wellbore tools as part of the wellbore tool string. According to an aspect, the placement tool holes 175 may be dimensioned and positioned on the first sub body part rib 146 and the second sub body part rib 147 as required by the particular application. The placement tool holes may be circular in shape, as shown in the embodiment of FIGS. 11-21. Alternatively, some or all of the placement tool holes 175 may be shaped in a horseshoe or arc-shaped configuration as shown in the embodiment of FIGS. 1-10.


In an exemplary embodiment, each of the first sub body part 101 and the second sub body part 118 include external threading for coupling to an adjacent wellbore tool to form a wellbore tool string. The first sub body part 101 includes a threaded exterior portion 116 that is dimensionally configured to couple to a first perforating gun housing of a first wellbore tool 201 (see FIG. 26). The second sub body part 118 includes a second sub body part threaded exterior portion 127 that is dimensionally configured to couple to a second perforating gun housing of a second wellbore tool 202.


In the exemplary embodiment, the first sub body part 101 includes a first sub body part external o-ring channel 117 having a first sub body part external o-ring 148 positioned therein, wherein the first sub body part external o-ring channel 117 is formed between the first sub body part rib 146 and the first sub body part threaded exterior portion 116. The second sub body part 118 may include a second sub body part external o-ring channel 126 having a second sub body part external o-ring 149 positioned therein, wherein the second sub body part external o-ring channel 126 is formed between the second sub body part rib 147 and the second sub body part threaded exterior portion 127.


With reference to FIGS. 22-26, a tandem seal adapter (TSA) 150 may be used in conjunction with one or more alignment subs 100, 100′ in a wellbore tool string 200 to align adjacent wellbore tools 201, 202 and to provide orientation of the wellbore tool string 200 while in a wellbore. In an exemplary embodiment and as shown in FIG. 22, the TSA 150 includes an adapter body 151. The adapter body 151 may be a solid cylindrical body including a first end 152, a second end 156 spaced apart from the first end 152, and an adapter bore 160 extending axially through the adapter body 151. A first adapter body recess 154 defined by a first adapter body recess wall 155 extends inwardly from the first end 152, and a second adapter body recess 158 defined by a second adapter body recess wall 159 extends inwardly from the second end 156. The first adapter body recess 154 may have an inner threaded surface 153 for threaded engagement with an adjacent wellbore tool or sub, and the second adapter body recess 158 may have an inner threaded surface 157 for threaded engagement with an adjacent wellbore tool or sub. The adapter bore 160 extends from the first adapter body recess wall 155 to the second adapter body recess wall 159.


A feedthrough rod/contact rod 162 is positioned in the axial bore 160 of the adapter body 151. When the contact rod 162 is positioned in the bore 160, it is held in position by a retainer nut 165. Each of the contact rod 162 and the retainer nut 165 is formed from an electrically conductive material. With continued reference to FIG. 22, a contact rod first end 163 is positioned adjacent the first adapter body recess 154, and a contact rod second end 164 is positioned adjacent the second adapter body recess 158. In the exemplary embodiment shown in FIG. 24, the retainer nut 165 includes a retainer nut recession dimensionally configured to receive a bulkhead pin (e.g., a first end bulkhead pin 139 or a second end bulkhead pin 141 of the alignment sub 100) from an adjacent wellbore tool or an adjacent alignment sub 100. The contact rod second end 164 may include a contact rod recession 166 dimensionally configured to receive a bulkhead pin from an adjacent wellbore tool.


The contact rod 162 is electrically isolated from electrical contact with the adapter body 151 by a non-conductive 3-piece insulator 167 that extends around the contact rod between the contact rod first end 163 and the contact rod second end 164. The insulator/insulating jacket 167 in the exemplary embodiment includes a first end piece 168 positioned around the contact rod first end 163, a second end piece 169 positioned around the contact rod second end 164, and a medial piece 170 extending between the contact rod first end 163 and the contact rod second end 164.


In an embodiment and with reference to FIGS. 27A and 27B, two or more fins 171 are secured to an outer surface of the adapter body 151 to space the wellbore tool string 200 apart from a surface of a wellbore casing and to assist in orienting the tool-string and thereby the direction of the perforations in a specific desired direction. The fins 171 orient the wellbore tool string 200 in the wellbore so that when the wellbore tool string 200 is laying horizontally in a wellbore casing 203, the wellbore tool string 200 is spaced apart from a horizontal surface 204 of the wellbore casing 203 by the fins 171 so that the tool string 200 and the shaped charges housed in the tool string 200 are oriented in a desired direction. The fins 171 adjust the axial positioning of the wellbore tool string 200 in the wellbore by moving the wellbore tool string 200 away from the horizontal surface 204 of the wellbore casing 203. According to an aspect, the fins 171 space apart the wellbore tool string 200 from the wellbore casing 203 such that an unwanted or unintentional rotation or rolling of the tool-string 200 downhole is prevented so that the perforations are always oriented or aligned in a desired specific direction within certain degrees of accuracy. The accuracy or degree of limitation which the fins can hold the tool string 200 in the desired location depends on the overall tool string 200 design, as well as the height H of the fins 171 compared to the inner-diameter ID of the wellbore casing 203.


In the exemplary embodiment, the two or more fins 171 are positioned on the outer surface of the TSA 150 on a top side of the TSA 150. The two or more fins 171 may be positioned generally in alignment with the firing path of the shaped charges housed in the housings 201, 202 of the wellbore tool string 200. In an embodiment, the firing path of the shaped charges may be aligned with a top side of the perforating gun housing and the TSA, such that the pitch of the firing path is 0 degrees. Alternatively, the firing path of the shaped charges may be aligned with a bottom side of the perforating gun housing, such that the pitch of the firing path is 180 degrees. In such an embodiment, the two or more fins 171 are positioned generally about 180 degrees from the firing path of the shaped charges, such that the two or more fins 171 maintain an orientation of the wellbore tool string 200 for firing the shaped charges in a downward direction. According to an aspect, fin screw holes 173 may be formed in the adapter body 151 extending from the outer surface of the adapter body 151 toward the center of the adapter body 151 for receiving a screw 172 that passes through the fin 171 for attachment of the fin 171 to the adapter body 151. In the exemplary embodiment, three fins are included in the TSA 150. However, any number of fins 171 in accordance with this disclosure may be used to provide the desired axial positioning of the wellbore tool string in the wellbore casing. In an embodiment, the fins 171 may be spaced apart from one another about the adapter body 151. For example, the fins 171 may be mounted at a distance of about 60 degrees from one another. In an embodiment, the TSA 150 may include a circumferential recess 174 formed around the exterior surface of the adapter body 151. According to an aspect, the circumferential recess 174 may receive a support structure, for example a lifting plate, make-up plate, or rig-up plate, for use in lifting up the tool string 200 for vertical assembly of the tool string components (e.g., gun housing 201, gun housing 202, TSA 150, and/or alignment sub 100).


The wellbore tool string 200, such as a perforating gun string, may include an orienting alignment sub assembly, which includes each of the alignment sub 100 and the TSA 150 as described above and shown in FIGS. 25-26. The first perforating gun housing 201 houses a shaped charge holder with an electrically contactable component, and includes a threaded end. The first sub body part 101 of the alignment sub 100 includes a first sub body part first end, a first sub body part insertable portion 104 axially adjacent to the first sub body part first end, and a first sub body part bore 105 extending from the first sub body part first end 102 in a x-direction through the first sub body part insertable portion 104. An electrical component 136 (e.g., an electrically contactable bulkhead assembly 137) is positioned in the first sub body part bore 105.


A second sub body part 118 is positioned around and rotatably engaged with the first sub body part insertable portion 104. The second sub body part 118 includes a second sub body part recess 124 extending in a x-direction from a second sub body part first end 119 toward a second sub body part second end 120, a second sub body part cavity 121 extending in a x-direction from the second sub body part second end 120 toward the second sub body part first end 119, and a second sub body part medial channel 123 extending from the second sub body part recess 124 to the second sub body part cavity 121, wherein the first sub body part insertable portion 104 is positioned in the second sub body part cavity 121 and the second sub body part medial channel 123.


A tandem sub assembly 150 is connected to the second sub body part 118, and includes an adapter body 151 having a first adapter body recess 154 extending in a x-direction from a first adapter body end 152, wherein the first adapter body recess 154 is defined by a first adapter body recess wall 155, a second adapter body recess 158 extending in a x-direction from a second adapter body end 156, wherein the second adapter body recess 158 is defined by a second adapter body recess wall 159, and an adapter bore 160 extending in a x-direction from the first adapter body recess wall 155 to the second adapter body recess wall 159. A contact rod 162 is positioned in the adapter bore 160 and is electrically connected to the electrical assembly 136. The tandem sub assembly 150 includes a plurality of fins 171 positioned externally on the adapter body 151.


A second alignment sub 100′ as described above is coupled to the tandem sub assembly 150, and includes a second electrical assembly 136 that is electrically connected to the contact rod 162. A second perforating gun housing 202 housing a shaped charge holder with an electrically contactable component that is electrically connected to the second electrical assembly 136′ has a threaded end that is coupled to the second alignment sub 100′.


According to an aspect, the first gun housing 201 includes surface scallops 203, and the second gun housing 202 includes surface scallops 204, wherein the first gun housing surface scallops 203 and the second gun housing surface scallops 204 align with a firing path of an internal shaped charge. Rotation of the first sub body part 101 in the second sub body part 118 aligns the first gun housing surface scallops 203 with the second gun housing surface scallops 204. When the first gun housing surface scallops 203 are aligned with the second gun housing surface scallops 204, the alignment sub 100 may be locked as described above with a lock screw to fix the angular position of the first gun housing 201 relative to the second gun housing 202.


The two or more fins 171 orient the rotational position of the perforating gun string 200 in a wellbore. According to an aspect, the two or more fins 171 are positioned on the adapter body 151 in a spaced apart configuration. In the exemplary embodiment, each of the two or more fins 171 are radially offset from the surface scallops 203, 204 when the gun housing 201, 202 are aligned, such that the fins 171 are offset from the shaped charge firing path by about 30 degrees.


Embodiments of the disclosure are further associated with a method of aligning a pitch of shaped charges in a wellbore tool string. A first wellbore tool 201 is coupled to a first end 119 of an alignment sub 100 comprising a first sub body part 101 rotatably coupled to a second sub body part 118. According to an aspect, the first sub body part 101 is rotatably coupled to the second sub body part 118 by inserting an insertable portion 104 of the first sub body part 101 into a cavity 121 of the second sub body part 118. A second wellbore tool 202 is coupled to a second end 102 of the alignment sub 100. According to an aspect, the first wellbore tool 201 is coupled to the alignment sub first end 119 by threadedly coupling, and the second wellbore tool 202 is coupled to the alignment sub second end 102 by threadedly coupling.


The first wellbore tool 201 is rotated relative to the second wellbore tool 202 to align a wellbore housing scallop 203 on the first wellbore tool 201 with a wellbore housing scallop 204 on the second wellbore tool 202. The alignment sub 100 is locked to retain the alignment of the first wellbore housing scallop 203 relative to the second wellbore housing scallop 204. According to an aspect, locking the alignment sub 100 may include at least one of inserting a sub locking screw 129 through the second sub body part 118 into the second sub body part cavity 121 to contact the first sub body part insertable portion 104, and inserting a second sub body part retainer ring 130 into the recess 124 of the second sub body part to secure the first sub body part insertable portion 104 to the second sub body part recess 124 and to retain the first sub body part first end 102 within the second sub body part recess 124.


This disclosure, in various embodiments, configurations and aspects, includes components, methods, processes, systems, and/or apparatuses as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. This disclosure contemplates, in various embodiments, configurations and aspects, the actual or optional use or inclusion of, e.g., components or processes as may be well-known or understood in the art and consistent with this disclosure though not depicted and/or described herein.


The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.


In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The terms “a” (or “an”) and “the” refer to one or more of that entity, thereby including plural referents unless the context clearly dictates otherwise. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.


As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”


As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that the appended claims should cover variations in the ranges except where this disclosure makes clear the use of a particular range in certain embodiments.


The terms “determine”, “calculate” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.


This disclosure is presented for purposes of illustration and description. This disclosure is not limited to the form or forms disclosed herein. In the Detailed Description of this disclosure, for example, various features of some exemplary embodiments are grouped together to representatively describe those and other contemplated embodiments, configurations, and aspects, to the extent that including in this disclosure a description of every potential embodiment, variant, and combination of features is not feasible. Thus, the features of the disclosed embodiments, configurations, and aspects may be combined in alternate embodiments, configurations, and aspects not expressly discussed above. For example, the features recited in the following claims lie in less than all features of a single disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this disclosure.


Advances in science and technology may provide variations that are not necessarily express in the terminology of this disclosure although the claims would not necessarily exclude these variations.

Claims
  • 1. An alignment sub, comprising: a first sub body having a first sub body first end and a first sub body second end opposite the first sub body first end, the first sub body comprising: a first sub body first inner surface defining a first sub body first bore extending from the first sub body second end towards the first sub body first end;a first sub body second inner surface defining a first sub body second bore extending from the first sub body first bore toward the first sub body first end, the first sub body second bore having a smaller diameter than the first sub body first bore; anda first sub body recess wall extending radially between the first sub body first inner surface and the first sub body second inner surface;a bulkhead body provided in the first sub body second bore;bulkhead retainer dimensionally configured to secure the bulkhead body within the first sub body second bore, the bulkhead retainer being positioned within the first sub body first bore adjacent the first sub body recess wall; anda second sub body having a second sub body first end and a second sub body second end opposite the second sub body first end, the second sub body comprising: a second sub body first inner surface defining a second sub body first bore; anda sub locking screw switchable between an unlocked state and a locked state such that, when the sub locking screw is in the locked state, a rotational position of the first sub body is fixed relative to a rotational position of the second sub body;wherein the first sub body is rotatably coupled to the second sub body and a portion of the first sub body is positioned within the second sub body first bore,the first sub body further comprises a channel provided on the outer surface of the first sub body;the second sub body further comprises a socket extending through the second sub body at a position radially overlapping with the channel;the sub locking screw is secured in the socket;the outer surface of the first sub body includes a channel lip axially adjacent to the channel; andan outer diameter of the first sub body at the channel lip is greater than an outer diameter of the first sub body at the channel.
  • 2. The alignment sub of claim 1, wherein: the second sub body first bore extends from the second sub body second end toward the second body first end, andthe second sub body further comprises:a second sub body second inner surface defining a second sub body second bore axially displaced from the second sub body first bore toward the second sub body first end,wherein the first sub body first end is positioned in the second sub body second bore.
  • 3. The alignment sub of claim 1, wherein the first sub body further comprises: a first sub body third inner surface defining a first sub body third bore extending from the first sub body second bore to the first sub body first end, wherein the first sub body third bore is dimensionally configured to receive a first bulkhead pin of the bulkhead body.
  • 4. The alignment sub of claim 1, further comprising: a first bulkhead pin extending from a first end of the bulkhead body, anda second bulkhead pin extending from a second end of the bulkhead body, wherein:the bulkhead body includes a bulkhead o-ring compressively engaged with the first sub body second inner surface radially adjacent to the first sub body second bore;the bulkhead retainer further comprises a bulkhead retainer aperture and an outer surface in threaded engagement with the first sub body first inner surface; andthe second bulkhead pin extends through the bulkhead retainer aperture.
  • 5. The alignment sub of claim 1, wherein a longitudinal axis of the bulkhead body is a central axis of rotation of the second sub body around the first sub body.
  • 6. A perforating gun assembly comprising: a first perforating gun housing;a first shaped charge provided within the first perforating gun housing;an alignment sub coupled to the first perforating gun housing, the alignment sub comprising: a first sub body; anda second sub body rotatably coupled to the first sub body via a non-threaded interface between an outer surface of the first sub body and an inner surface of the second sub body; anda sub locking screw switchable between an unlocked state and a locked state such that, when the sub locking screw is in the locked state, a rotational position of the first sub body is fixed relative to a rotational position of the second sub body;wherein the first sub body further comprises a channel provided on the outer surface of the first sub body;the second sub body further comprises a socket extending through the second sub body at a position radially overlapping with the channel;the sub locking screw is secured in the socket;the outer surface of the first sub body includes a channel lip axially adjacent to the channel; andan outer diameter of the first sub body at the channel lip is greater than an outer diameter of the first sub body at the channel.
  • 7. The perforating gun assembly of claim 6, wherein: in the unlocked state, the sub locking screw is radially spaced apart from the outer surface of the first sub body radially adjacent the channel; andin the locked state, the sub locking screw is in frictional contact with the outer surface of the first sub body radially adjacent the channel.
  • 8. The perforating gun assembly of claim 6, wherein the socket is one of a plurality of sockets spaced apart about the second sub body.
  • 9. The perforating gun assembly of claim 6, wherein the second sub body comprises: a second sub body first end; anda second sub body second end spaced apart from the second sub body first end, the inner surface of the second sub body defining a second sub body first bore extending from the second sub body second end toward the second sub body first end,wherein the first sub body has a first sub body first end positioned in the second sub body first bore.
  • 10. The perforating gun assembly of claim 9, further comprising: a second sub body retainer ring provided in the second sub body first bore,wherein the second sub body retainer ring is engaged with each of the inner surface of the second sub body and the first sub body to prevent axial movement of the first sub body relative to the second sub body.
  • 11. The perforating gun assembly of claim 10, wherein: the first sub body first end further comprises a threaded surface portion; andthe second sub body retainer ring is threadedly engaged with the first sub body threaded surface portion.
  • 12. The perforating gun assembly of claim 6, wherein the first sub body comprises: a first sub body first inner surface defining a first sub body first bore extending between a first sub body first end and a first sub body second end, wherein a longitudinal axis of the first sub body bore is a central axis of rotation of the alignment sub.
  • 13. The perforating gun assembly of claim 6, wherein: the first sub body includes a first sub body threaded exterior portion that is coupled to the first perforating gun housing.
  • 14. The perforating gun assembly of claim 13, further comprising: a second perforating gun housing; anda second shaped charge provided within the second perforating gun housing;wherein the second sub body is coupled to the second perforating gun housing.
  • 15. The perforating gun assembly of claim 14, wherein the second sub body includes a second sub body threaded exterior portion coupled to the second perforating gun housing.
  • 16. The perforating gun assembly of claim 6, further comprising: a second sub body retainer ring provided in the second sub body,wherein the second sub body comprises: a second sub body first end; anda second sub body second end spaced apart from the second sub body first end, the inner surface of the second sub body defining a second sub body first bore extending from the second sub body second end toward the second sub body first end, the first sub body first end is positioned in the second sub body, and the second sub body retainer ring is engaged with each of the inner surface of the second sub body and with the first sub body to prevent axial movement of the first sub body relative to the second sub body.
  • 17. The perforating gun assembly of claim 6, wherein: the first sub body comprises: a first sub body first inner surface defining a first sub body first bore extending from a first sub body second end towards a first sub body first end;a first sub body second inner surface defining a first sub body second bore extending from the first sub body first bore toward the first sub body first end; anda first sub body recess wall extending radially between the first sub body first inner surface and the first sub body second inner surface; andthe second sub body comprises:a second sub body first inner surface defining a second sub body first bore extending from a second sub body second end toward a second sub body first end.
  • 18. The perforating gun assembly of claim 17, further comprising: a bulkhead body provided in the first sub body second bore, wherein the bulkhead body includes a bulkhead o-ring compressively engaged with the first sub body second inner surface radially adjacent to the first sub body second bore; anda first bulkhead pin and a second bulkhead pin extending from either end of the bulkhead body.
  • 19. The perforating gun assembly of claim 18, further comprising: a bulkhead retainer positioned in the first sub body first bore adjacent the first sub body recess wall, wherein the bulkhead retainer is dimensionally configured to secure the bulkhead body within the first sub body second bore, the bulkhead retainer having an outer surface in threaded engagement with the first sub body first inner surface and defining a central aperture through which the first bulkhead pin extends.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a bypass continuation application of International Application No. PCT/EP2021/058182 filed Mar. 29, 2021, which claims priority to U.S. patent application Ser. No. 17/206,416, filed Mar. 19, 2021 (issued as U.S. Pat. No. 11,339,614 on May 24, 2022) and U.S. Provisional Application No. 63/002,507 filed Mar. 31, 2020, the contents of each of which are incorporated herein by reference.

US Referenced Citations (484)
Number Name Date Kind
2147544 Potts Feb 1939 A
2216359 Spencer Oct 1940 A
2228873 Hardt et al. Jan 1941 A
2296346 Hearn Sep 1942 A
2326406 Lloyd Aug 1943 A
2358466 Miller Sep 1944 A
2418486 Smylie Apr 1947 A
2439394 Lanzalotti et al. Apr 1948 A
2519116 Crake Aug 1950 A
2543814 Thompson et al. Mar 1951 A
2598651 Spencer May 1952 A
2621744 Toelke Dec 1952 A
2655993 Lloyd Oct 1953 A
2696258 Greene Dec 1954 A
2734456 Sweetman Feb 1956 A
2755863 Stansbury et al. Jul 1956 A
2785631 Blanchard Mar 1957 A
2889775 Owen Jun 1959 A
2906339 Griffin Sep 1959 A
2946283 Udry Jul 1960 A
2982210 Andrew et al. May 1961 A
3040659 Mcculleugh Jun 1962 A
RE25407 Lebourg Jun 1963 E
3125024 Hicks et al. Mar 1964 A
3155164 Keener Nov 1964 A
3158680 Lovitt et al. Nov 1964 A
3170400 Nelson Feb 1965 A
3173992 Boop Mar 1965 A
RE25846 Campbell Aug 1965 E
3246707 Bell Apr 1966 A
3264989 Rucker Aug 1966 A
3264994 Kurt Aug 1966 A
3336054 Blount et al. Aug 1967 A
3374735 Moore Mar 1968 A
3426849 Brumble, Jr. Feb 1969 A
3426850 Mcduffie, Jr. Feb 1969 A
3504723 Cushman et al. Apr 1970 A
3565188 Hakala Feb 1971 A
3859921 Stephenson Jan 1975 A
3923105 Lands, Jr. Dec 1975 A
4007790 Henning Feb 1977 A
4007796 Boop Feb 1977 A
4039239 Cobaugh et al. Aug 1977 A
4058061 Mansur, Jr. et al. Nov 1977 A
4100978 Boop Jul 1978 A
4107453 Erixon Aug 1978 A
4132171 Pawlak et al. Jan 1979 A
4140188 Vann Feb 1979 A
4172421 Regalbuto Oct 1979 A
4182216 DeCaro Jan 1980 A
4191265 Bosse-Platiere Mar 1980 A
4208966 Hart Jun 1980 A
4220087 Posson Sep 1980 A
4266613 Boop May 1981 A
4290486 Regalbuto Sep 1981 A
4312273 Camp Jan 1982 A
4363529 Loose Dec 1982 A
4411491 Larkin et al. Oct 1983 A
4457383 Boop Jul 1984 A
4485741 Moore et al. Dec 1984 A
4491185 McClure Jan 1985 A
4496008 Pottier et al. Jan 1985 A
4512418 Regalbuto et al. Apr 1985 A
4523649 Stout Jun 1985 A
4523650 Sehnert et al. Jun 1985 A
4534423 Regalbuto Aug 1985 A
4574892 Grigar et al. Mar 1986 A
4598775 Vann et al. Jul 1986 A
4609057 Walker et al. Sep 1986 A
4621396 Walker et al. Nov 1986 A
4629001 Miller et al. Dec 1986 A
4643097 Chawla et al. Feb 1987 A
4650009 McClure et al. Mar 1987 A
4657089 Stout Apr 1987 A
4660910 Sharp et al. Apr 1987 A
4730793 Thurber, Jr. et al. Mar 1988 A
4744424 Lendermon et al. May 1988 A
4747201 Donovan et al. May 1988 A
4753170 Regalbuto et al. Jun 1988 A
4762067 Barker et al. Aug 1988 A
4776393 Forehand et al. Oct 1988 A
4790383 Savage et al. Dec 1988 A
4796708 Lembcke Jan 1989 A
4800815 Appledorn et al. Jan 1989 A
4852494 Williams Aug 1989 A
4869171 Abouav Sep 1989 A
4889183 Sommers et al. Dec 1989 A
5006833 Marlowe et al. Apr 1991 A
5027708 Gonzalez et al. Jul 1991 A
5033553 Miszewski et al. Jul 1991 A
5038682 Marsden Aug 1991 A
5050691 Moses Sep 1991 A
5052489 Carisella et al. Oct 1991 A
5060573 Montgomery et al. Oct 1991 A
5088413 Huber Feb 1992 A
5105742 Sumner Apr 1992 A
5159145 Carisella et al. Oct 1992 A
5159146 Carisella et al. Oct 1992 A
5204491 Aureal et al. Apr 1993 A
5237136 Langston Aug 1993 A
5241891 Hayes et al. Sep 1993 A
5322019 Hyland Jun 1994 A
5334801 Mohn Aug 1994 A
5347929 Lerche et al. Sep 1994 A
5358418 Carmichael Oct 1994 A
5392851 Arend Feb 1995 A
5392860 Ross Feb 1995 A
5436791 Turano et al. Jul 1995 A
5490563 Wesson et al. Feb 1996 A
5503077 Motley Apr 1996 A
5531164 Mosley Jul 1996 A
5603384 Bethel et al. Feb 1997 A
5648635 Lussier et al. Jul 1997 A
5671899 Nicholas et al. Sep 1997 A
5703319 Fritz et al. Dec 1997 A
5756926 Bonbrake et al. May 1998 A
5775426 Snider et al. Jul 1998 A
5778979 Burleson et al. Jul 1998 A
5785130 Wesson et al. Jul 1998 A
5791914 Loranger et al. Aug 1998 A
5803175 Myers, Jr. et al. Sep 1998 A
5816343 Markel et al. Oct 1998 A
5820402 Chiacchio et al. Oct 1998 A
5823266 Burleson et al. Oct 1998 A
5837925 Nice Nov 1998 A
5911277 Hromas et al. Jun 1999 A
5964294 Edwards et al. Oct 1999 A
5992289 George et al. Nov 1999 A
6006833 Burleson et al. Dec 1999 A
6012525 Burleson et al. Jan 2000 A
6056058 Gonzalez May 2000 A
6062310 Wesson et al. May 2000 A
6070662 Ciglenec et al. Jun 2000 A
6112666 Murray et al. Sep 2000 A
6196325 Connell et al. Mar 2001 B1
6263283 Snider et al. Jul 2001 B1
6269875 Harrison, III et al. Aug 2001 B1
6297447 Burnett et al. Oct 2001 B1
6298915 George Oct 2001 B1
6305287 Capers et al. Oct 2001 B1
6315461 Cairns Nov 2001 B1
6333699 Zierolf Dec 2001 B1
6354374 Edwards et al. Mar 2002 B1
6385031 Lerche et al. May 2002 B1
6386108 Brooks et al. May 2002 B1
6408758 Duguet Jun 2002 B1
6412388 Frazier Jul 2002 B1
6412415 Kothari et al. Jul 2002 B1
6418853 Duguet et al. Jul 2002 B1
6419044 Tite et al. Jul 2002 B1
6439121 Gillingham Aug 2002 B1
6464511 Watanabe et al. Oct 2002 B1
6467415 Menzel et al. Oct 2002 B2
6474931 Austin et al. Nov 2002 B1
6487973 Gilbert, Jr. et al. Dec 2002 B1
6497285 Walker Dec 2002 B2
6506083 Bickford et al. Jan 2003 B1
6516901 Falgout Feb 2003 B1
6582251 Burke et al. Jun 2003 B1
6595290 George et al. Jul 2003 B2
6618237 Eddy et al. Sep 2003 B2
6651747 Chen et al. Nov 2003 B2
6659180 Moss Dec 2003 B2
6675896 George Jan 2004 B2
6719061 Muller et al. Apr 2004 B2
6739265 Badger et al. May 2004 B1
6742602 Trotechaud Jun 2004 B2
6752083 Lerche et al. Jun 2004 B1
6773312 Bauer et al. Aug 2004 B2
6776668 Scyoc et al. Aug 2004 B1
6779605 Jackson Aug 2004 B2
6822542 Clark et al. Nov 2004 B2
6837310 Martin Jan 2005 B2
6843317 Mackenzie Jan 2005 B2
6851471 Barlow et al. Feb 2005 B2
6851476 Gray et al. Feb 2005 B2
6902414 Dopf et al. Jun 2005 B2
7013977 Nordaas Mar 2006 B2
7044230 Starr et al. May 2006 B2
7074064 Wallace Jul 2006 B2
7093664 Todd et al. Aug 2006 B2
7107908 Forman et al. Sep 2006 B2
7114564 Parrott et al. Oct 2006 B2
7147068 Vail, III Dec 2006 B2
7168494 Starr et al. Jan 2007 B2
7182625 Machado et al. Feb 2007 B2
7193156 Alznauer et al. Mar 2007 B2
7193527 Hall Mar 2007 B2
7210524 Sloan et al. May 2007 B2
7237626 Gurjar et al. Jul 2007 B2
7243722 Oosterling et al. Jul 2007 B2
7278491 Scott Oct 2007 B2
7297004 Shuhart et al. Nov 2007 B1
7306038 Challacombe Dec 2007 B2
7347278 Lerche et al. Mar 2008 B2
7347279 Li et al. Mar 2008 B2
7350448 Bell et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7357083 Takahara et al. Apr 2008 B2
7360487 Myers, Jr. et al. Apr 2008 B2
7364451 Ring et al. Apr 2008 B2
7387162 Mooney, Jr. et al. Jun 2008 B2
7404725 Hall et al. Jul 2008 B2
7441601 George et al. Oct 2008 B2
7473104 Wertz Jan 2009 B1
7476132 Xu Jan 2009 B2
7493945 Doane et al. Feb 2009 B2
7493961 Scott Feb 2009 B2
7510017 Howell et al. Mar 2009 B2
7540758 Ho Jun 2009 B2
7544102 Oda Jun 2009 B2
7565927 Gerez et al. Jul 2009 B2
7568429 Hummel et al. Aug 2009 B2
7591212 Myers, Jr. et al. Sep 2009 B2
7690925 Goodman Apr 2010 B2
7726396 Briquet et al. Jun 2010 B2
7735578 Loehr et al. Jun 2010 B2
7752971 Loehr Jul 2010 B2
7762172 Li et al. Jul 2010 B2
7762331 Goodman et al. Jul 2010 B2
7762351 Vidal Jul 2010 B2
7775279 Marya et al. Aug 2010 B2
7778006 Stewart et al. Aug 2010 B2
7789153 Prinz et al. Sep 2010 B2
7810430 Chan et al. Oct 2010 B2
7815440 Hsieh et al. Oct 2010 B2
7901247 Ring Mar 2011 B2
7908970 Jakaboski et al. Mar 2011 B1
7929270 Hummel et al. Apr 2011 B2
7934453 Moore May 2011 B2
7980874 Finke et al. Jul 2011 B2
8028624 Mattson Oct 2011 B2
8061425 Hales et al. Nov 2011 B2
8066083 Hales et al. Nov 2011 B2
8069789 Hummel et al. Dec 2011 B2
8074713 Ramos et al. Dec 2011 B2
8074737 Hill et al. Dec 2011 B2
8079296 Barton et al. Dec 2011 B2
8091477 Brooks et al. Jan 2012 B2
8127846 Hill et al. Mar 2012 B2
8136439 Bell Mar 2012 B2
8141434 Kippersund et al. Mar 2012 B2
8151882 Grigar et al. Apr 2012 B2
8157022 Bertoja et al. Apr 2012 B2
8181718 Burleson et al. May 2012 B2
8182212 Parcell May 2012 B2
8186259 Burleson et al. May 2012 B2
8230788 Brooks et al. Jul 2012 B2
8256337 Hill et al. Sep 2012 B2
8336437 Barlow et al. Dec 2012 B2
8387533 Runkel Mar 2013 B2
8388374 Grek et al. Mar 2013 B2
8395878 Stewart et al. Mar 2013 B2
8413727 Holmes Apr 2013 B2
D682384 Jaureguizar May 2013 S
8439114 Parrott et al. May 2013 B2
8451137 Bonavides et al. May 2013 B2
8468944 Givens et al. Jun 2013 B2
8596378 Mason et al. Dec 2013 B2
D698904 Milligan et al. Feb 2014 S
8661978 Backhus et al. Mar 2014 B2
8678666 Scadden et al. Mar 2014 B2
8684083 Torres et al. Apr 2014 B2
8695506 Lanclos Apr 2014 B2
8807003 Le et al. Aug 2014 B2
8833441 Fielder et al. Sep 2014 B2
8863665 DeVries et al. Oct 2014 B2
8869887 Deere et al. Oct 2014 B2
8875787 Tassaroli Nov 2014 B2
8875796 Hales et al. Nov 2014 B2
8881816 Glenn et al. Nov 2014 B2
8884778 Lerche et al. Nov 2014 B2
8943943 Tassaroli Feb 2015 B2
8960093 Preiss et al. Feb 2015 B2
8960288 Sampson Feb 2015 B2
9065201 Borgfeld et al. Jun 2015 B2
9080433 Lanclos et al. Jul 2015 B2
9145763 Sites, Jr. Sep 2015 B1
9145764 Burton et al. Sep 2015 B2
9157718 Ross Oct 2015 B2
9181790 Mace et al. Nov 2015 B2
9194219 Hardesty et al. Nov 2015 B1
9206675 Hales et al. Dec 2015 B2
9284819 Tolman et al. Mar 2016 B2
9284824 Fadul et al. Mar 2016 B2
9297242 Zhang et al. Mar 2016 B2
9317038 Ozick et al. Apr 2016 B2
9347755 Backhus et al. May 2016 B2
9359863 Streich et al. Jun 2016 B2
9383237 Wiklund et al. Jul 2016 B2
9441438 Allison et al. Sep 2016 B2
9466916 Li et al. Oct 2016 B2
9476289 Wells Oct 2016 B2
9484646 Thomas Nov 2016 B2
9494021 Parks et al. Nov 2016 B2
9523265 Upchurch et al. Dec 2016 B2
9523271 Bonavides et al. Dec 2016 B2
9581422 Preiss et al. Feb 2017 B2
9593548 Hill et al. Mar 2017 B2
9598942 Wells et al. Mar 2017 B2
9605937 Eitschberger et al. Mar 2017 B2
D783133 Fitzhugh et al. Apr 2017 S
9617814 Seals et al. Apr 2017 B2
9634427 Lerner et al. Apr 2017 B2
9677363 Schacherer et al. Jun 2017 B2
9689223 Schacherer et al. Jun 2017 B2
9702211 Tinnen Jul 2017 B2
9702680 Parks et al. Jul 2017 B2
9709373 Hikone et al. Jul 2017 B2
9784549 Eitschberger Oct 2017 B2
D807991 Fitzhugh et al. Jan 2018 S
9903192 Entchev et al. Feb 2018 B2
10060234 Robey et al. Aug 2018 B2
10066921 Eitschberger Sep 2018 B2
10077641 Rogman et al. Sep 2018 B2
10125561 Cramm et al. Nov 2018 B2
10138713 Tolman et al. Nov 2018 B2
10151180 Robey et al. Dec 2018 B2
10188990 Burmeister et al. Jan 2019 B2
10190398 Goodman et al. Jan 2019 B2
10352144 Entchev et al. Jul 2019 B2
10385629 Spence et al. Aug 2019 B2
10400558 Shahinpour et al. Sep 2019 B1
10435960 Stokes Oct 2019 B2
10458213 Eitschberger et al. Oct 2019 B1
10472938 Parks et al. Nov 2019 B2
10683703 Faircloth et al. Jun 2020 B2
11008817 Stokes et al. May 2021 B2
11078762 Mauldin et al. Aug 2021 B2
11339614 Mulhern May 2022 B2
11492854 Langford et al. Nov 2022 B2
11555385 Ursi Jan 2023 B2
20020020320 Lebaudy et al. Feb 2002 A1
20020062991 Farrant et al. May 2002 A1
20020185275 Yang et al. Dec 2002 A1
20030000411 Cernocky et al. Jan 2003 A1
20030001753 Cernocky et al. Jan 2003 A1
20030098158 George et al. May 2003 A1
20040141279 Amano et al. Jul 2004 A1
20040211862 Elam Oct 2004 A1
20050139352 Mauldin Jun 2005 A1
20050167101 Sugiyama Aug 2005 A1
20050178282 Brooks et al. Aug 2005 A1
20050183610 Barton et al. Aug 2005 A1
20050186823 Ring et al. Aug 2005 A1
20050194146 Barker et al. Sep 2005 A1
20050218260 Corder et al. Oct 2005 A1
20050229805 Myers, Jr. et al. Oct 2005 A1
20050230099 Thomson et al. Oct 2005 A1
20050257710 Monetti et al. Nov 2005 A1
20050279513 Eppink Dec 2005 A1
20060075889 Walker Apr 2006 A1
20070084336 Neves Apr 2007 A1
20070125540 Gerez et al. Jun 2007 A1
20070158071 Mooney, Jr. et al. Jul 2007 A1
20080029302 Scott Feb 2008 A1
20080047456 Li et al. Feb 2008 A1
20080047716 McKee et al. Feb 2008 A1
20080110612 Prinz et al. May 2008 A1
20080134922 Grattan et al. Jun 2008 A1
20080149338 Goodman et al. Jun 2008 A1
20080173204 Anderson et al. Jul 2008 A1
20080173240 Furukawahara et al. Jul 2008 A1
20080264639 Parrott et al. Oct 2008 A1
20090050322 Hill et al. Feb 2009 A1
20090151588 Burleson et al. Jun 2009 A1
20090159285 Goodman Jun 2009 A1
20090272519 Green et al. Nov 2009 A1
20090272529 Crawford Nov 2009 A1
20090301723 Gray Dec 2009 A1
20090308589 Bruins et al. Dec 2009 A1
20100000789 Barton et al. Jan 2010 A1
20100012774 Fanucci et al. Jan 2010 A1
20100022125 Burris et al. Jan 2010 A1
20100024674 Peeters et al. Feb 2010 A1
20100089643 Vidal Apr 2010 A1
20100096131 Hill et al. Apr 2010 A1
20100107917 Moser May 2010 A1
20100163224 Strickland Jul 2010 A1
20100206064 Estes Aug 2010 A1
20100230104 Nölke et al. Sep 2010 A1
20100230163 Hales et al. Sep 2010 A1
20100286800 Lerche et al. Nov 2010 A1
20100300750 Hales et al. Dec 2010 A1
20110024116 McCann et al. Feb 2011 A1
20110042069 Bailey et al. Feb 2011 A1
20110100627 Hales et al. May 2011 A1
20110301784 Oakley et al. Dec 2011 A1
20120006217 Anderson Jan 2012 A1
20120080202 Greenlee et al. Apr 2012 A1
20120085538 Guerrero et al. Apr 2012 A1
20120094553 Fujiwara et al. Apr 2012 A1
20120160483 Carisella Jun 2012 A1
20120199031 Lanclos Aug 2012 A1
20120199352 Lanclos et al. Aug 2012 A1
20120241169 Hales et al. Sep 2012 A1
20120242135 Thomson et al. Sep 2012 A1
20120247769 Schacherer et al. Oct 2012 A1
20120247771 Black et al. Oct 2012 A1
20120298361 Sampson Nov 2012 A1
20130008639 Tassaroli et al. Jan 2013 A1
20130008669 Deere et al. Jan 2013 A1
20130037255 Kash et al. Feb 2013 A1
20130043074 Tassaroli Feb 2013 A1
20130048375 Rodgers et al. Feb 2013 A1
20130062055 Tolman et al. Mar 2013 A1
20130112396 Splittstoeßer May 2013 A1
20130118342 Tassaroli May 2013 A1
20130168083 McCarter et al. Jul 2013 A1
20130199843 Ross Aug 2013 A1
20130220614 Torres et al. Aug 2013 A1
20130248174 Dale et al. Sep 2013 A1
20130256464 Belik et al. Oct 2013 A1
20140000877 Robertson et al. Jan 2014 A1
20140033939 Priess et al. Feb 2014 A1
20140053750 Lownds et al. Feb 2014 A1
20140127941 Lu May 2014 A1
20140131035 Entchev et al. May 2014 A1
20140148044 Balcer et al. May 2014 A1
20150075783 Angman et al. Mar 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150226044 Ursi et al. Aug 2015 A1
20150308208 Capps et al. Oct 2015 A1
20150330192 Rogman et al. Nov 2015 A1
20150345922 Lanclos et al. Dec 2015 A1
20160040520 Tolman et al. Feb 2016 A1
20160061572 Eitschberger et al. Mar 2016 A1
20160069163 Tolman et al. Mar 2016 A1
20160084048 Harrigan et al. Mar 2016 A1
20160168961 Parks et al. Jun 2016 A1
20160178333 Biggs et al. Jun 2016 A1
20160208587 Hardesty et al. Jul 2016 A1
20160273902 Eitschberger Sep 2016 A1
20160290084 LaGrange et al. Oct 2016 A1
20160333675 Wells et al. Nov 2016 A1
20160356132 Burmeister et al. Dec 2016 A1
20160365667 Mueller et al. Dec 2016 A1
20170030693 Preiss et al. Feb 2017 A1
20170052011 Parks et al. Feb 2017 A1
20170145798 Robey et al. May 2017 A1
20170211363 Bradley et al. Jul 2017 A1
20170241244 Barker et al. Aug 2017 A1
20170268317 Kaenel et al. Sep 2017 A1
20170268860 Eitschberger Sep 2017 A1
20170314372 Tolman et al. Nov 2017 A1
20180030334 Collier et al. Feb 2018 A1
20180087330 Bradley et al. Mar 2018 A1
20180119529 Goyeneche May 2018 A1
20180135398 Entchev et al. May 2018 A1
20180202789 Parks et al. Jul 2018 A1
20180209251 Robey et al. Jul 2018 A1
20180252054 Stokes Sep 2018 A1
20180274342 Sites Sep 2018 A1
20180299239 Eitschberger et al. Oct 2018 A1
20180318770 Eitschberger et al. Nov 2018 A1
20180347324 Langford et al. Dec 2018 A1
20190032470 Harrigan Jan 2019 A1
20190040722 Yang et al. Feb 2019 A1
20190048693 Henke et al. Feb 2019 A1
20190049225 Eitschberger Feb 2019 A1
20190153827 Goyeneche May 2019 A1
20190162056 Sansing May 2019 A1
20190186241 Yang et al. Jun 2019 A1
20190195054 Bradley et al. Jun 2019 A1
20190211655 Bradley et al. Jul 2019 A1
20190234188 Goyeneche Aug 2019 A1
20190257158 Langford et al. Aug 2019 A1
20190284889 LaGrange et al. Sep 2019 A1
20190292887 Austin et al. Sep 2019 A1
20190316449 Schultz et al. Oct 2019 A1
20190330947 Mulhern et al. Oct 2019 A1
20200063553 Zemla et al. Feb 2020 A1
20200088011 Eitschberger et al. Mar 2020 A1
20200182025 Brady Jun 2020 A1
20200217635 Eitschberger Jul 2020 A1
20200248536 Holodnak et al. Aug 2020 A1
20200256166 Knight et al. Aug 2020 A1
20200256168 Knight et al. Aug 2020 A1
20200284104 Holmberg et al. Sep 2020 A1
20200362652 Eitschberger et al. Nov 2020 A1
20200362654 Eitschberger et al. Nov 2020 A1
20200378731 Mcnelis Dec 2020 A1
20200399995 Preiss et al. Dec 2020 A1
20210277753 Ursi et al. Sep 2021 A1
Foreign Referenced Citations (63)
Number Date Country
2003166 May 1991 CA
2821506 Jan 2015 CA
2824838 Feb 2015 CA
2888787 Oct 2015 CA
2980935 Oct 2016 CA
85107897 Sep 1986 CN
2661919 Dec 2004 CN
2821154 Sep 2006 CN
101397890 Apr 2009 CN
101691837 Apr 2010 CN
101892822 Nov 2010 CN
201620848 Nov 2010 CN
201764910 Mar 2011 CN
102878877 Jan 2013 CN
103993861 Aug 2014 CN
104278976 Jan 2015 CN
104989335 Oct 2015 CN
102007007498 Oct 2015 DE
0088516 Sep 1983 EP
0160449 Nov 1985 EP
0416915 Mar 1991 EP
0180520 May 1991 EP
679859 Nov 1995 EP
0482969 Aug 1996 EP
694157 Aug 2001 EP
2702349 Nov 2015 EP
2310616 Oct 2017 EP
3245380 Apr 2020 EP
2383236 Jan 2004 GB
2534484 Apr 2020 GB
2003329399 Nov 2003 JP
2295694 Mar 2007 RU
78521 Nov 2008 RU
93521 Apr 2010 RU
100552 Dec 2010 RU
2434122 Nov 2011 RU
2579307 Apr 2016 RU
2633904 Oct 2017 RU
8802056 Mar 1988 WO
1994009246 Apr 1994 WO
9905390 Feb 1999 WO
0133029 May 2001 WO
0159401 Aug 2001 WO
2001059401 Aug 2001 WO
2008067771 Jun 2008 WO
2008098052 Oct 2008 WO
2009091422 Jul 2009 WO
2009091422 Mar 2010 WO
2010104634 Sep 2010 WO
2012006357 Jan 2012 WO
2012106640 Nov 2012 WO
2012149584 Nov 2012 WO
2014046670 Mar 2014 WO
2014089194 Jun 2014 WO
2015006869 Jan 2015 WO
2015028204 Mar 2015 WO
2015134719 Sep 2015 WO
2016100269 Jun 2016 WO
2018009223 Jan 2018 WO
2018057949 Mar 2018 WO
2019148009 Aug 2019 WO
2021116338 Jun 2021 WO
2022084363 Apr 2022 WO
Non-Patent Literature Citations (250)
Entry
Schlumberger & Said Abubakr, Combining and Customizing Technologies for Perforating Horizontal Wells in Algeria, Presented at 2011 MENAPS, Nov. 28-30, 2011, 20 pages.
Schlumberger; Field Test Database Print Out Showing uses of the SafeJet System; dated May 11, 2015; 10 pages.
Schlumberger; Selective Perforation: A Game Changer in Perforating Technology—Case Study; issued 2012; 14 pages.
Sharma, Gaurav; Hunting Plc Is Not In A Race To The Bottom, Says Oilfield Services Firm's CEO; dated Sep. 10, 2019; retrieved on Nov. 18, 2020; 6 pages.
SIPO, Search Report dated Mar. 29, 2017, in Chinese: See Search Report for CN App. No. 201480040456.9, 12 pgs. (English Translation 3 pgs.).
Smithson, Anthony; Declaration Declaration for IPR2021-00082; dated Oct. 16, 2020; 2 pages.
Smylie, Tom, New Safe and Secure Detonators for the Industry's consideration, presented at Explosives Safety & Security Conference, Marathon Oil Co, Houston; Feb. 23-24, 2005, 20 pages.
State Intellectual Property Office People's Republic of China; First Office Action for Chinese App. No. 201811156092.7; dated Jun. 16, 2020; 6 pages (Eng Translation 8 pages).
State Intellectual Property Office, P.R. China; First Office Action for Chinese App No. 201580011132.7; dated Jun. 27, 2018; 5 pages (Eng. Translation 9 pages).
State Intellectual Property Office, P.R. China; First Office Action for CN App. No. 201480047092.7; dated Apr. 24, 2017.
State Intellectual Property Office, P.R. China; First Office Action with full translation for CN App. No. 201480040456.9; dated Mar. 29, 2017; 12 pages (English translation 17 pages).
State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for Chinese App. No. 201580011132.7; dated Apr. 3, 2019; 2 pages (Eng. Translation 2 pages).
State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for CN App. No. 201480040456.9; dated Jun. 12, 2018; 2 pages (English translation 2 pages).
State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480040456.9; dated Nov. 29, 2017; 5 pages (English translation 1 page).
State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480047092.7; dated Jan. 4, 2018; 3 pages.
Stifel; Why the Big Pause? Balancing Long-Term Value with Near-Term Headwinds. Initiating Coverage of Oilfield Svcs and Equipment; dated Sep. 10, 2018; 207 pages.
SWM International, LLC and Nextier Oil Completion Solutions, LLC; Petition for Post Grant Review PGR No. 2021-00097; dated Jul. 20, 2021; 153 pages.
SWM International, LLC; Exhibit B: DynaEnergetics' Infringement of U.S. Pat. No. 11,078,762 for Civil Action No. 6:21-cv-00804; dated Aug. 3, 2021; 22 pages.
SWM International; Drawing of SafeJet System; dated Jul. 20, 2021; 1 page.
SWM International; Photographs of SafeJet System; dated Jul. 20, 2021; 9 pages.
U.S. Patent Trial and Appeal Board, Institution of Inter Partes Review of U.S. Pat. No. 9,581,422, Case IPR2018-00600, Aug. 21, 2018, 9 pages.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiff's Complaint and Exhibits, dated May 2, 2019, 26 pgs.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Defendant's Answers, Counterclaims and Exhibits, dated May 28, 2019, 135 pgs.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiffs' Motion to Dismiss and Exhibits, dated Jun. 17, 2019, 63 pgs.
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 29/729,981, dated Sep. 18, 2020, 9 pages.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Reply In Support of Patent Owner's Motion to Amend, dated Mar. 21, 2019, 15 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Decision of Precedential Opinion Panel, Granting Patent Owner's Request for Hearing and Granting Patent Owner's Motion to Amend, dated Jul. 6, 2020, 27 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, DynaEnergetics GmbH & Co. KG's Patent Owner Preliminary Response, dated May 22, 2018, 47 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Order Granting Precedential Opinion Panel, Paper No. 46, dated Nov. 7, 2019, 4 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Motion to Amend, dated Dec. 6, 2018, 53 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Opening Submission to Precedential Opinion Panel, dated Dec. 20, 2019, 21 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Request for Hearing, dated Sep. 18, 2019, 19 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Responsive Submission to Precedential Opinion Panel, dated Jan. 6, 2020, 16 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Sur-reply, dated Mar. 21, 2019, 28 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Additional Briefing to the Precedential Opinion Panel, dated Dec. 20, 2019, 23 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Opposition to Patent Owner's Motion to Amend, dated Mar. 7, 2019, 30 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply Briefing to the Precedential Opinion Panel, dated Jan. 6, 2020, 17 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply in Inter Partes Review of Patent No. 9,581,422, dated Mar. 7, 2019, 44 pgs.
United States Patent and Trademark Office, Final Office Action of U.S. Appl. No. 16/359,540, dated Aug. 14, 2019, 9 pages.
United States Patent and Trademark Office, Final Written Decision of Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Paper No. 42, dated Aug. 20, 2019, 31 pgs.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/451,440, dated Oct. 24, 2019, 22 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 14/767,058, dated Jul. 15, 2016, 9 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/117,228, dated May 31, 2018, 9 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/617,344, dated Jan. 23, 2019, 5 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/788,367, dated Oct. 22, 2018, 6 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/920,800, dated Dec. 27, 2019, 6 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/920,812, dated Dec. 27, 2019, 6 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 15/920,812, dated May 27, 2020, 5 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/026,431, dated Jul. 30, 2019, 10 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/359,540, dated May 3, 2019, 11 pages.
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/EP2015/059381; dated Nov. 23, 2015; 14 pages.
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/EP2019/072064; dated Nov. 20, 2019; 15 pages.
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/US2015/018906; dated Jul. 10, 2015; 12 pages.
International Searching Authority; International Search Report and Written Opinion for PCT Application No. EP2020066327; dated Jan. 11, 2021; 17 pages.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2021/079019; dated Feb. 28, 2022; 14 pages.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2021/058182; dated Aug. 26, 2021; 16 pages.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2020/085624; dated Apr. 12, 2021; 11 pages.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2020/085622; dated Apr. 1, 2021; 10 pages.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2021/057148; dated Jul. 5, 2021; 11 pages.
Jet Research Center Inc., JRC Catalog, 2008, 36 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Books_Catalogs/06_Dets.pdf.
Jet Research Center Inc., Red RF Safe Detonators Brochure, 2008, 2 pages, www.jetresearch.com.
Jet Research Centers, Capsule Gun Perforating Systems, Alvarado, Texas, 27 pgs., Jun. 12, 2019 https://www.jetresearch.com/content/dam/jrc/Documents/Books_Catalogs/07_Cap_Gun.pdf.
Johnson, Bryce; Citation of Prior Art and Written Statements in Patent Files for U.S. Pat. No. 10,844,697; dated Apr. 29, 2021; 2 pages.
Johnson, Bryce; Rule 501 citation of prior art and written “claim scope statements” in U.S. Pat. No. 10,844,697; dated Apr. 29, 2021; 18 pages.
Markel, Dan; Declaration regarding the SafeJet System for PGR2021-00097; dated Jul. 15, 2021; 21 pages.
Mcnelis et al.; High-Performance Plug-and-Perf Completions in Unconventional Wells; Society of Petroleum Engineers Annual Technical Conference and Exhibition; Sep. 28, 2015.
merriam-webster.com, Insulator Definition, https://www.merriam-webster.com/dictionary/insulator, Jan. 31, 2018, 4 pages.
Nextier Completion Solutions; Plaintiffs Preliminary Invalidity Contentions for Civil Action No. 4:21-cv-01328; dated Jun. 30, 2021; 19 pages.
Nextier Oilfield Solutions Inc; Petition for Inter Partes Review No. IPR2021-00082; dated Oct. 21, 2020; 111 pages.
Nexus Perforating LLC; Answer to DynaEnergetics Europe GMBH and DynaEnergetics US Inc/'s Complaint and Counterclaims; dated Apr. 15, 2021; 10 pages.
Nexus Perforating LLC; Complaint and Demand for Jury Trial for Civil Case No. 4:20-cv-01539; dated Apr. 30, 2020; 11 pages.
Nexus Perforating LLC; Invalidity Contentions for Civil Action No. 4:21-cv-00280; dated Jun. 30, 2021; 44 pages.
Norwegian Industrial Property Office; Notice of Allowance for No. 20171759; dated Apr. 23, 2021; 2 pages.
Norwegian Industrial Property Office; Office Action and Search Report for No. 20160017; dated Jun. 15, 2017; 5 pages.
Norwegian Industrial Property Office; Office Action and Search Report for No. 20171759; dated Jan. 14, 2020; 6 pages.
Norwegian Industrial Property Office; Office Action for No. 20160017; dated Dec. 4, 2017; 2 pages.
Norwegian Industrial Property Office; Office Action for No. 20171759; dated Oct. 30, 2020; 2 pages.
Norwegian Industrial Property Office; Opinion for No. 20171759; dated Apr. 5, 2019; 1 page.
Oilfield Glossary; Definition of Perforating Gun; dated Feb. 26, 2013; 2 pages.
oilgasglossary.com; Definition of “sub”; dated Nov. 20, 2008; 1 page.
Olsen, Steve; Declaration regarding the SafeJet System for PGR2021-00097; dated Jul. 16, 2021; 25 pages.
Owen Oil Tools & Pacific Scientific; RF-Safe Green Det, Side Block for Side Initiation, Jul. 26, 2017, 2 pgs.
Owen Oil Tools, E & B Select Fire Side Port, Tandem Sub, Apr. 2010, 2 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_eandbsystem-01.0-c.pdf.
Owen Oil Tools, Expendable Perforating Guns, Jul. 2008, 7 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf.
Owen Oil Tools, Recommended Practice for Oilfield Explosive Safety, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 6 pages.
Owens Oil Tools, E & B Select Fire Side Port Tandem Sub Assembly Man-30-XXX-0002-96, revised Dec. 2012, 9 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/MAN-30-XXX-0002-96-R00.pdf.
Parrot, Robert; Declaration, PGR 2020-00080; dated Aug. 11, 2020; 400 pages.
Parrott, Robert; Declaration for IPR2021-00082; dated Oct. 20, 2020; 110 pages.
Parrott, Robert; Declaration for PGR No. 2021-00078; dated May 10, 2021; 182 pages.
Patent Trial and Appeal Board; Decision Granting Patent Owner's Request for Rehearing and Motion to Amend for IPR2018-00600; dated Jul. 6, 2020; 27 pages.
PCT Search Report and Written Opinion, dated May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065752, 12 pgs.
Preiss Frank et al.; Lowering Total Cost of Operations Through Higher Perforating Efficiency while simultaneously enhancing safety; May 10, 2016; 26 pages.
Resilience Against Market Volatility Results Presentation; Exhibit 2015 of PGR No. 2020-00080; dated Jun. 30, 2020; 26 pages.
Robert Parrott, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Declaration regarding Patent Invalidity, dated Jun. 29, 2020, 146 pages.
Rodgers, John; Declaration for Civil Action No. 3:21-cv-00192-M; dated May 27, 2021; 42 pages.
Rodgers, John; Declaration for PGR2020-00072; dated Oct. 23, 2020; 116 pages.
Rodgers, John; Declaration for PGR2020-00080; dated Nov. 18, 2020; 142 pages.
Salt Warren et al.; New Perforating Gun System Increases Safety and Efficiency; dated Apr. 1, 2016; 11 pages.
Scharf Thilo; Declaration for PGR2020-00080; dated Nov. 16, 2020; 16 pages.
Scharf, Thilo; Declaration for PGR2020-00072; dated Oct. 22, 2020; 13 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/455,816, dated Nov. 5, 2019, 17 pages.
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 15/920,800, dated Jul. 7, 2020, 7 pages.
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 16/585,790, dated Jun. 19, 2020, 16 pages.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/540,484, dated Oct. 4, 2019, 12 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/585,790, dated Nov. 12, 2019, 9 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/809,729, dated Jun. 19, 2020, 9 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 29/733,080, dated Jun. 26, 2020, 8 pgs.
United States Patent and Trademark Office, U.S. Pat. No. 438,305A, dated Oct. 14, 1890 to T.A. Edison, 2 pages.
United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/809,729, dated Nov. 3, 2020; 19 pages.
United States Patent and Trademark Office; Ex Parte Quayle Action for U.S. Appl. No. 29/729,981; dated Jun. 15, 2020; 6 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/540,484; dated Feb. 19, 2021; 12 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 17/004,966; dated Mar. 12, 2021; 18 pages.
United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/540,484; dated Mar. 30, 2020; 12 pgs.
United States Patent and Trademark Office; U.S. Pat. No. 9,581,422 as of Aug. 23, 2017.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/542,890; dated Nov. 4, 2019; 16 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 15/920,812; dated Feb. 3, 2021; 7 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/809,729; dated Jun. 22, 2021; 15 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/819,270; dated Feb. 10, 2021; 13 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated Jan. 29, 2021; 11 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/181,280; dated Apr. 19, 2021; 18 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Jun. 17, 2021; 10 pages.
United States Patent and Trademark Office; Non-Final Office Action of U.S. Appl. No. 15/920,800; dated Dec. 9, 2020; 6 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 29/733,080; dated Oct. 20, 2020; 9 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/858,041; dated Oct. 22, 2020; 10 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 29/733,325; dated Oct. 23, 2020; 7 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,812, dated Aug. 18, 2020; 5 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/387,696; dated Jan. 29, 2020; 7 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 14/904,788; dated Jul. 6, 2016; 8 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/379,341; dated Jan. 19, 2021; 8 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/423,789; dated Jul. 23, 2020 7 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/511,495; dated Dec. 15, 2020; 9 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/585,790, dated Aug. 5, 2020; 15 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Jan. 26, 2021; 9 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/007,574; dated May 21, 2021; 8 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 29/759,466; dated Feb. 11, 2021; 9 pages.
United States Patent and Trademark Office; Office Action for U.S. Appl. No. 17/004,966; dated Dec. 8, 2020; 30 pages.
United States Patent and Trademark Office; Office Action of U.S. Appl. No. 16/540,484, dated Aug. 20, 2020, 10 pgs.
United States Patent and Trademark Office; Prosecution History for U.S. Pat. No. 10,352,136 dated Jul. 16, 2019; 206 pages.
United States Patent and Trademark Office; Restriction Requirement for U.S. Appl. No. 17/007,574; dated Oct. 23, 2020; 6 pages.
United States Patent and Trial Appeal Board; Final Written Decision on IPR2018-00600; dated Aug. 20, 2019; 31 pages.
United States Patent Trial and Appeal Board; Decision Denying Institution of Post-Grant Review; PGR No. 2020-00072; dated Jan. 19, 2021; 38 pages.
United States Patent Trial and Appeal Board; Institution Decision for PGR 2020-00080; dated Feb. 12, 2021; 15 pages.
Vigor Petroleum; Perforating Gun Accessories Product Description; https://www.vigordrilling.com/completion-tools/perforating-gun-accessories.html; 2021; 1 page.
WIPO, International Search Report for International Application No. PCT/CA2014/050673, dated Oct. 9, 2014, 3 pgs.
WIPO, Written Opinion of International Searching Authority for PCT Application No. PCT/CA2014/050673, dated Oct. 9, 2014, 4 pgs.
Wooley, Gary R.; Declaration in Support of Petition for Post Grant Review of U.S. Pat. No. 10,844,697 for PGR2021-00097; dated Jul. 17, 2021; 90 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Defendants' Preliminaray Invalidity Contentions for Civil Action No. 6:20-cv-01110-ADA; dated May 6, 2021; 20 pages.
Amit Govil, Selective Perforation: A Game Changer in Perforating Technology—Case Study, presented at the 2012 European and West African Perforating Symposium, Schlumberger, Nov. 7-9. 2012, 14 pgs.
Austin Powder Company; A—140 F & Block, Detonator & Block Assembly; Jan. 5, 2017; 2 pgs.; https://www.austinpowder.com/wp-content/uploads/2019/01/OilStar_A140Fbk-2.pdf.
Baker Hughes, Long Gun Deployment Systems IPS-12-28; 2012 International Perforating Symposium; Apr. 26-27, 2011; 11 pages.
Baker Hughes; SurePerf Rapid Select-Fire System Perforate production zones in a single run; 2012; 2 pages.
Bear Manufacturing, LLC; Defendant Bear Manufacturing, LLC's Answer, Affirmative Defenses and Counterclaim in response to Plaintiffs' Complaint for Civil Action No. 3:21-cv-00185-M; dated Mar. 22, 2021; 14 pages.
Brazilian Patent and Trademark Office; Search Report for BR Application No. BR112015033010-0; dated May 5, 2020; (4 pages).
Buche & Associates, P.C.; Rule 501 Citation of Prior Art and Written “Claim Scope Statements” in U.S. Pat. No. 10,844,697; dated Mar. 3, 2021; 24 pages.
Burndy, Bulkhead Ground Connector, Mechanical Summary Sheet, The Grounding Superstore, Jul. 15, 2014, 1 page, https://www.burndy.com/docs/default-source/cutsheets/bulkhead-connect.
C&J Energy Services; Gamechanger Perforating System Description; 2018; 1 pages.
C&J Energy Services; Gamechanger Perforating System Press Release; 2018; 4 pages.
Canadian Intellectual Property Office, Office Action for CA App. No. 2923860 dated Jul. 14, 2017, 3 pages.
Canadian Intellectual Property Office, Office Action for CA App. No. 2923860 dated Nov. 25, 2016, 3 pages.
Canadian Intellectual Property Office; Notice of Allowance for CA Appl. No. 2,821,506; dated Jul. 31, 2019; 1 page.
Canadian Intellectual Property Office; Office Action for CA Appl. No. 2,821,506; dated Mar. 21, 2019; 4 pages.
Canadian Intellectual Property Office; Office Action for CA Application No. 2,941,648; dated Mar. 15, 2021; 3 pages.
Canadian Intellectual Property Office; Office Action for CA Application No. 3,070,118; dated Mar. 16, 2021; 3 pages.
Canadian Intellectual Property Office; Office Action for CA Application No. 3040648; dated Nov. 18, 2020; 4 pages.
ControlFire User Manual; Exhibit No. 2005 of PGR No. 2020-00072; 2014; 56 pages.
Corelab Owen Oil Tools; Expendable Perforating Guns Description; https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf; 2008; 7 pages.
Dalia Abdallah et al., Casing Corrosion Measurement to Extend Asset Life, Dec. 31, 2013, 14 pgs., https://www.slb.com/-/media/files/oilfield-review/2-casing-corr-2-english.
Djresource, Replacing Signal and Ground Wire, May 1, 2007, 2 pages, http://www.djresource.eu/Topics/story/110/Technics-SL-Replacing-Signal-and-Ground-Wire/.
drillingmatters.org; Definition of “sub”; dated Aug. 25, 2018; 2 pages.
Dynaenergetics Europe GMBH; Complaint and Demand for Jury Trial for Civil Action No. 4:21-cv-00280; dated Jan. 28, 2021; 55 pages.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00072; dated Oct. 23, 2020; 108 pages.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00080; dated Nov. 18, 2020; 119 pages.
Dynaenergetics Europe GMBH; Principal and Response Brief of Cross-Appellant for United States Court of Appeals case No. 2020-2163, -2191; dated Jan. 11, 2021; 95 pages.
Dynaenergetics Europe; Defendants' Preliminary Infringement Contentions for Civil Action No. 3:20-CV-00376; dated Mar. 25, 2021; 22 pages.
Dynaenergetics Europe; DynaEnergetics Celebrates Grand Opening of DynaStage Manufacturing and Assembly Facilities in Blum, Texas; dated Nov. 16, 2018; 3 pages.
Dynaenergetics Europe; DynaEnergetics Europe GMBH and DynaEnergetics US, Inc.'s Answer to Complaint and Counterclaim Civil Action No. 3:20-cv-000376; dated Mar. 8, 2021; 23 pages.
Dynaenergetics Europe; Exhibit B Invalidity Claim Chart for Civil Action No. 4:19-cv-01611; dated May 2, 2019; 52 pages.
Dynaenergetics Europe; Petition to Correct Inventorship in Patent under 37 C.F.R § 1.324; dated Oct. 13, 2020; 21 pages.
Dynaenergetics Europe; Plaintiffs' Local Patent Rule 3-1 Infringement Contentions for Civil Action No. 4:19-cv-01611; dated May 25, 2018; 10 Pages.
Dynaenergetics Europe; Plaintiffs' Pending Motion For Reconsideration for Civil Action No. 4:17-cv-03784; dated Jan. 21, 2021; 4 pages.
Dynaenergetics Europe; Plaintiffs' Preliminary Claim Constructions and Identification of Extrinsic Evidence Civil Action No. 4:17-cv-03784; dated Aug. 3, 2018; 9 pages.
Dynaenergetics Europe; Plaintiffs' Preliminary Infringement Contentions, Civil Action No. 6:20-cv-00069-ADA; dated Apr. 22, 2020; 32 pages.
Dynaenergetics Europe; Plaintiff's Preliminary Infringment Contentions Civil Action No. 3:21-cv-00192-M; dated Jun. 18, 2021; 15 pages.
Dynaenergetics Europe; Plaintiffs' Reply in Support of Motion to Dismiss and Strike for Civil Action No. 6:20-cv-00069-ADA; dated Apr. 29, 2020; 15 pages.
Dynaenergetics Europe; Plaintiffs Response to Defendant Hunting Titan Ins' Inoperative First Amended Answer, Affirmative Defenses, and Counterclaims for Civil Action No. 6:20-cv-00069-ADA; dated May 13, 2020.
Dynaenergetics Europe; Plaintiffs' Response to Defendants' Answer to Second Amended Complaint Civil Action No. 6:20-cv-00069-ADA; dated May 26, 2020; 18 pages.
DynaEnergetics exhibition and product briefing; Exhibit 2006 of PGR No. 2020-00072; dated 2013; 15 pages.
Dynaenergetics GMBH & Co. KG, Patent Owner's Response to Hunting Titan's Petition for Inter Parties Review—Case IPR2018-00600, filed Dec. 6, 2018, 73 pages.
Dynaenergetics GmbH & Co. KG; Patent Owner's Precedential Opinion Panel Request for Case IPR2018-00600; Sep. 18, 2019, 2 pg.
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4B, Product Information, Dec. 16, 2011, 1 pg.
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4S, Product Information, Dec. 16, 2011, 1 pg.
Dynaenergetics, DYNAselect System, information downloaded from website, Jul. 3, 2013, 2 pages, http://www.dynaenergetics.com/.
Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013, 1 pg.
Dynaenergetics, Gun Assembly, Product Summary Sheet, May 7, 2004, 1 page.
Dynaenergetics, Selective Perforating Switch, information downloaded from website, Jul. 3, 2013, 2 pages, http://www.dynaenergetics.com/.
Dynaenergetics, Selective Perforating Switch, Product Information Sheet, May 27, 2011, 1 pg.
DynaStage Gun System; Exhibit 2009 of PGR No. 2020-00080; dated May 2014; 2 pages.
Entchev et al., Autonomous Perforating System for Multizone Completions, SPE 147296, Prepared for Presentation at Society of Petroleum Engineers (SPE) Annual Technical Conference and Exhibition held Oct. 30, 2011-Nov. 2, 2011, 7 pgs. https://www.onepetro.org/conference-paper/SPE-147296-MS.
EP Patent Office—International Searching Authority, PCT Search Report and Written Opinion for PCT Application No. PCT/EP2014/065752, dated May 4, 2015, 12 pgs.
Eric H. Findlay, Jury Trial Demand in Civil Action No. 6:20-cv-00069-ADA, dated Apr. 22, 2020, 32 pages.
European Patent Office; Invitation to Correct Deficiencies noted in the Written Opinion for European App. No. 15721178.0; dated Dec. 13, 2016; 2 pages.
European Patent Office; Office Action for EP App. No. 15721178.0; dated Sep. 6, 2018; 5 pages.
Federal Institute of Industrial Property; Decision of Granting for RU Appl. No. 2016104882/03(007851); dated May 17, 2018; 15 pages (English translation 4 pages).
Federal Institute of Industrial Property; Decision on Granting a Patent for Invention Russian App. No. 2016139136/03(062394); dated Nov. 8, 2018; 20 pages (Eng Translation 4 pages); Concise Statement of Relevance: Search Report at 17-18 of Russian-language document lists several ‘A’ references based on RU application claims.
Federal Institute of Industrial Property; Inquiry for RU App. No. 2016104882/03(007851); dated Feb. 1, 2018; 7 pages, English Translation 4 pages.
Federal Institute of Industrial Property; Inquiry for RU Application No. 2016110014/03(015803); dated Feb. 1, 2018; 6 pages (Eng. Translation 4 pages).
G&H Diversified Manufacturing LP; Petition for Post Grant Review PGR No. 2021-00078; dated May 10, 2021; 122 pages.
GB Intellectual Property Office, Combined Search and Examination Report for GB App. No. 1717516.7, dated Feb. 27, 2018, 6 pgs.
GB Intellectual Property Office, Combined Search and Examination Report for GB App. No. GB1700625.5, dated Jul. 7, 2017, 5 pages.
GB Intellectual Property Office, Examination Report for GB App. No. GB1600085.3, dated Mar. 9, 2016, 1 pg.
GB Intellectual Property Office, Search Report for App. No. GB 1700625.5; dated Jul. 7, 2017; 5 pgs.
GB Intellectual Property Office; Examination Report for GB Appl. No. 1717516.7; dated Apr. 13, 2018; 3 pages.
GB Intellectual Property Office; Notification of Grant for GB Appl. No. 1717516.7; dated Oct. 9, 2018; 2 pages.
GB Intellectual Property Office; Office Action for GB App. No. 1717516.7; dated Feb. 27, 2018; 6 pages.
GB Intellectual Property Office; Search Report for GB. Appl. No. 1700625.5; dated Dec. 21, 2017; 5 pages.
Geodynamics; Perforating Catalog; dated Mar. 5, 2020; 218 pages; https://www.perf.com/hubfs/PDF%20Files/PerforatingCatalog_03272020_SMS.pdf.
German Patent Office, Office Action for German Patent Application No. 10 2013 109 227.6, which is in the same family as PCT Application No. PCT/EP2014/065752, see p. 5 for references cited, dated May 22, 2014, 8 pgs.
Gilliat et al.; New Select-Fire System: Improved Reliability and Safety in Select Fire Operations; 2012; 16 pgs.
Global Wireline Market; Exhibit 2010 of PGR 2020-00072; dated Oct. 15, 2019; 143 pages.
Horizontal Wireline Services, Presentation of a completion method of shale demonstrated through an example of Marcellus Shale, Pennsylvania, USA, Presented at 2012 International Perforating Symposium (Apr. 26-28, 2012), 17 pages.
Hunting Energy Service, ControlFire RF Safe ControlFire® RF-Safe Manual, 33 pgs., Jul. 2016, http://www.hunting-intl.com/media/2667160/ControlFire%20RF_Assembly%20Gun%20Loading_Manual.pdf.
Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,429,161; dated Jun. 30, 2020; 109 pages.
Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,472,938; dated Aug. 12, 2020; 198 pages.
Hunting Titan Ltd,; Defendants' Answer and Counterclaims, Civil Action No. 4:19-cv-01611, consolidated to Civil Action No. 4:17-cv-03784; dated May 28, 2019; 21 pages.
Hunting Titan Ltd.; Petition for Inter Partes Review of U.S. Pat. No. 9,581,422 Case No. IPR2018-00600; dated Feb. 16, 2018; 93 pages.
Hunting Titan Ltd.; Defendants' Answer and Counterclaims, Civil Action No. 6:20-cv-00069; dated Mar. 17, 2020; 30 pages.
Hunting Titan Ltd.; Defendants' Answer to First Amended Complaint and Counterclaims, Civil Action No. 6:20-cv-00069; dated Apr. 6, 2020; 30 pages.
Hunting Titan Ltd.; Defendants' Answer to Second Amended Complaint and Counterclaims, Civil Action No. 6:20-cv-00069; dated May 12, 2020; 81 pages.
Hunting Titan Ltd.; Defendants Invalidity Contentions Pursuant to Patent Rule 3-3, Civil Action No. 4:17-cv-03784; dated Jul. 6, 2018; 29 pages.
Hunting Titan Ltd.; Defendants' Objections and Responses to Plaintiffs' First Set of Interrogatories, Civil Action No. 4:17-cv-03784; dated Jun. 11, 2018.
Hunting Titan Ltd.; Defendants' Opposition to Plaintiffs' Motion to Dismiss and Strike Defendants' Amended Counterclaim and Affirmative Defenses for Unenforceability due to Inequitable Conduct for Civil Action No. 4:17-cv-03784; dated Apr. 24, 2018; 8 pages.
Hunting Titan, H-1 Perforating System, Sep. 1, 2017, 3 pgs., http://www.hunting-intl.com/titan/perforating-guns-and-setting-tools/h-1%C2%AE-perforating-system.
Hunting Titan, Wireline Top Fire Detonator Systems, Nov. 24, 2014, 2 pgs, http://www.hunting-intl.com/titan/perforating-guns-and-setting-tools/wireline-top-fire-detonator-systems.
Hunting Titan; Response to Canadian Office Action for CA App. No. 2,933,756; dated Nov. 23, 2017; 18 pages.
Industrial Property Office, Czech Republic; Office Action for CZ App. No. PV 2017-675; dated Jul. 18, 2018; 2 pages; Concise Statement of Relevance: Examiner's objection of CZ application claims 1, 7, and 16 based on US Pub No. 20050194146 alone or in combination with WO Pub No. 2001059401.
Industrial Property Office, Czech Republic; Office Action for CZ App. No. PV 2017-675; dated Oct. 26, 2018; 2 pages.
Industrial Property Office, Czech Republic; Office Action; CZ App. No. PV 2017-675; dated Dec. 17, 2018; 2 pages.
Intellectual Property India, Office Action of IN Application No. 201647004496, dated Jun. 7, 2019, 6 pgs.
International Bureau; International Preliminary Report on Patentability for PCT Application #PCT/EP2019/063214; dated Dec. 24, 2020; 9 pages.
International Searching Authority, International Preliminary Report on Patentability for PCT App. No. PCT/EP2014/065752; dated Mar. 1, 2016, 10 pgs.
International Searching Authority, International Search and Written Opinion of International App. No. PCT/EP2020/058241, dated Aug. 10, 2020, 18 pgs.
International Searching Authority; Communication Relating to the Results of the Partial International Search for PCT/EP2020/070291; dated Oct. 20, 2020; 8 pages.
International Searching Authority; International Preliminary Report on Patentability for PCT Appl. No. PCT/CA2014/050673; dated Jan. 19, 2016; 5 pages.
International Searching Authority; International Preliminary Report on Patentability for PCT Application No. PCT/EP2019/069165; dated Jan. 28, 2021; 9 pages.
International Searching Authority; International Preliminary Report on Patentability for PCT Application No. PCT/IB2019/000569; dated Jan. 28, 2021; 8 pages.
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/CA2014/050673; dated Oct. 9, 2014; 7 pages.
G & H Diversified Manufacturing; Yellow Jacket Oil Tools Orienting Sub; Dec. 18, 2022; 6 pages; https://ghdiv.com/orienting-sub/.
International Searching Authority; International Preliminary Report on Patentability of the International Searching Authority for PCT/EP2021/057148; dated Sep. 29, 2022; 8 pages.
International Searching Authority; International Preliminary Report on Patentability of the International Searching Authority for PCT/EP2021/058182; dated Oct. 13, 2022; 10 pages.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2022/055191; dated May 20, 2022; 10 pages.
Related Publications (1)
Number Date Country
20230016759 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
63002507 Mar 2020 US
Continuations (2)
Number Date Country
Parent PCT/EP2021/058182 Mar 2021 US
Child 17955815 US
Parent 17206416 Mar 2021 US
Child PCT/EP2021/058182 US