The subject invention relates to the art of alignment systems, more particularly to an elastically averaged alignment system, and even more particularly to an elastically averaged alignment system providing alignment of mating parts having contoured features and on which the alignment system is incorporated.
Currently, components, particularly vehicular components such as those found in automotive vehicles, which are to be mated together in a manufacturing process are mutually located with respect to each other by alignment features that are oversized and/or undersized to provide spacing to freely move the components relative to one another to align them without creating an interference therebetween that would hinder the manufacturing process. One example includes two-way and/or four-way male alignment features, typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of holes or slots. There is a clearance between the male alignment features and their respective female alignment features which is predetermined to match anticipated size and positional variation tolerances of the male and female alignment features as a result of manufacturing (or fabrication) variances. As a result, significant positional variation can occur between the mated first and second components having the aforementioned alignment features, which may contribute to the presence of undesirably large variation in their alignment, particularly with regard to the gaps and spacing between them. In the case where these misaligned components are also part of another assembly, such misalignments can also affect the function and/or aesthetic appearance of the entire assembly. Regardless of whether such misalignment is limited to two components or an entire assembly, it can negatively affect function and result in a perception of poor quality.
Additionally, the alignment of first and second components having corresponding contoured mating edges may result in the inner edge of the second component being interferingly biased against the outer edge of a first component if the first component builds short and/or the second component builds long (or vice-versa depending on the profile of the contoured edges), which may result in an undesirable squeaky assembly or an assembly having a non-uniform fit.
Accordingly, the art of alignment systems can be enhanced by providing an alignment system or mechanism that can compensate for a manufacturing process where the first component builds short and/or the second component builds long via elastic averaging of a pair of elastically deformable alignment elements disposed in mating engagement with a corresponding pair of alignment features that slightly biases apart the mating components.
In one exemplary embodiment of the invention an elastically averaged alignment system includes a first component having a first alignment member and first and second elastically deformable alignment elements fixedly disposed with respect to the first alignment member, and a second component having a second alignment member and first and second alignment features fixedly disposed with respect to the second alignment member. The first and second elastically deformable alignment elements are configured and disposed to interferingly, deformably and matingly engage with respective ones of the first and second alignment features. The first alignment feature includes an elongated aperture having a first direction of elongation, and the second alignment feature includes an elongated aperture having a second direction of elongation, the second direction of elongation being oriented differently from the first direction of elongation. Portions of the first and second elastically deformable alignment elements when inserted into respective ones of the first and second alignment features elastically deform to an elastically averaged final configuration that aligns the first component relative to the second component in at least two of four planar orthogonal directions.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, the embodiments shown comprise vehicle components but the alignment system may be used with any suitable components to provide elastic averaging for precision location and alignment of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.
Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. In some embodiments, the elastically deformable component configured to have the at least one feature and associated mating feature disclosed herein may require more than one of such features, depending on the requirements of a particular embodiment. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, now U.S. Publication No. U.S. 2013-0019455, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of an elastically averaged alignment system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.
Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled, towed, or movable conveyance suitable for transporting or supporting a burden.
Reference is now made to
With reference now specifically to
In an embodiment, the first component 100 forms a decorative face for a portion of a dashboard 500 of a vehicle (depicted in
As can be seen from
With reference still to
With reference back to
While reference is made herein to contoured edges 108, 208 depicted with non-linear contours, it will be appreciated that the scope of the invention is not limited to mating components having only non-linear contoured edges, but also applies to mating components have linearly shaped edges that are angularly oriented relative to each other such that one edge is biased toward a second edge when one mating component is built short and/or the other built long. Any edge shape may benefit from the invention disclosed herein, and all such edge shapes are contemplated and considered to fall within the ambit of the invention disclosed herein.
With reference back to
While an embodiment of the invention has been described herein having two elongated alignment apertures 204.1, 204.2 aligned with respective major axes 206.1, 206.2 having an angle 20 therebetween to control the alignment of the contoured surfaces 108, 208, it will be appreciated that the scope invention is not so limited, and also encompasses an embodiment where the second alignment aperture 204.2 is contoured itself relative to the contour of the contoured edges 108, 208, which will now be described with reference to
In view of the embodiments depicted in
While an embodiment of the invention has been described herein employing a circular hollow tube for the second elastically deformable alignment element 104.2 disposed proximate the contoured edges 108, 208 of the first and second alignment members 102, 202, respectively, it will be appreciated that the scope of the invention is not so limited and also extends to other shapes that can be used to form an elastically deformable alignment element, which will now be described in connection with
In an embodiment, the alternative second elastically deformable alignment element 104.2A is a projection or tab having a rectangular cross-section (also herein referred to by reference numeral 104.2A), and in an embodiment is a solid rectangular tab.
With reference still to
As depicted in
With reference now to
By comparing the embodiment depicted in
As previously mentioned, in some embodiments the first component 100 may have more than one elastically deformable alignment element 104, and the second component 200 may have more than one corresponding alignment feature 204, depending on the requirements of a particular embodiment, where the plurality of elastically deformable alignment elements 104 are geometrically distributed in coordinated relationship to a geometrical distribution of the plurality of alignment features 204 such that each elastically deformable alignment element 104 is receivable into a respective alignment feature 204, as illustrated in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.