The disclosed systems and methods relate to the field of medical radiography. More particularly, the disclosed systems and methods relate to providing enhances visualization for ensuring that a prosthesis, fixture, and/or jig used in a surgical procedure is positioned properly.
Numerous surgical procedures use fluoroscopy to confirm a surgical plan and/or a placement of a surgical device, such as a fixture, prosthesis, and/or jig relative to a patient's anatomy. Ensuring proper alignment between a fluoroscopic device (e.g., an X-ray device supported by a C-arm) and an anatomical plane and/or surgical instrument is critical to ensuring that the information provided by fluoroscopy is accurate.
In some embodiments, a system includes a first component and a second component. The first component has a first body supporting a first alignment member. The second component has a second body supporting a second alignment member. The first and second alignment members are separated from another and are configured to provide an indication that a fluoroscopic device is properly aligned with an anatomical plane when viewed under fluoroscopy.
In some embodiments, a method includes placing a first component supporting a first alignment member and a second component supporting a second alignment member relative to a patent, and aligning a fluoroscopic device with an anatomical plane using the first and second alignment members.
In some embodiments, a system includes an alignment device having a body defining a first aperture and a second aperture. The first and second apertures are disposed at an angle with one another. The first and second apertures are in communication with one another such that light passes through the first and second apertures when a fluoroscopic device is aligned with an anatomical plane.
In some embodiments, a method includes receiving light emitted from a light source in a first aperture defined by an alignment device, and directing the light from the first aperture defined by the alignment device to a second aperture defined by the alignment device such that light exits the alignment device from the second aperture. The second aperture is disposed at an angle with respect to the first aperture. The second aperture is disposed at an angle with respect to the first aperture.
In some embodiments, a system includes a first surgical device and an alignment adapted. The first surgical device is configured to be coupled to a patient. The alignment adapter has a body including a planar surface and a coupling mechanism for coupling the alignment adapter to the first surgical device such that the planar surface is parallel to an anatomical plane when the first surgical device is coupled to the patient and the alignment adapter is coupled to the first surgical device.
In some embodiments, a method includes placing a first surgical device relative to a patient, coupling an alignment device to the first surgical device, and aligning a fluoroscopic device with the planar surface of the alignment device. The alignment device includes a planar surface.
The description of the exemplary embodiments disclosed herein are intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. All drawing figures are schematic illustrations and are not intended to show actual dimensions or proportions.
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. The drawing figures are not necessarily to scale, and certain features may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness. In the description, relative terms such as “horizontal,” “vertical,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms including “inwardly” versus “outwardly,” “longitudinal” versus “lateral” and the like are to be interpreted relative to one another or relative to an axis of elongation, or an axis or center of rotation, as appropriate. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. When only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship. In the claims, means-plus-function clauses, if used, are intended to cover the structures described, suggested, or rendered obvious by the written description or drawings for performing the recited function, including not only structural equivalents but also equivalent structures.
Fluoroscopy is commonly used during surgical procedures to ensure the proper alignment and/or orientation of prosthesis, fixture, and/or jig relative to a patient's anatomy. However, care must be taken to ensure that the fluoroscopic device (e.g., x-ray, C-arm) is properly aligned with the prosthesis, fixture, and/or jig.
Further, although first and second components 102, 110 are described as each including a single alignment member, or parallax cues, i.e., alignment members 106, 114, first and second components 102, 110 may include plural alignment members, which may be oriented in the same or different planes. For example, first and second components 102, 110 may include one or more alignment members 106, 114 disposed in a first plane (e.g., coronal plane) and may also include one or more alignment members disposed in a second plane (e.g., sagittal or transverse plane). The alignment members may communicate position in 3D space while accounting for 2D fluoroscopy and inherent parallax in the image processing.
In some embodiments, the first and second alignment members 106, 114 are formed from a radiopaque material such that the first and second alignment members may be visualized under fluoroscopy. As seen in
The manner in which the first and second alignment members 106, 114 are supported by the first and second components 102, 110 also may vary. For example, the alignment members 106, 114 may be embedded within the respective bodies 104, 112 of the first and second components 102, 110. In some embodiments, the alignment members 106, 114 are affixed to a surface of the first and second components 102, 110, such as by using an adhesive or mechanical coupling. It should be understood that the first and second alignment members 106, 114 may be supported by the first and second components 102, 110 through different means. For example, the first alignment member 106 may be embedded within body 104 of first component 102, and second alignment member 114 may be affixed to a surface of body 112 of second component 110.
In some embodiments, the first and second alignment members 206, 214 are formed from a radiopaque material such that the first and second alignment members may be visualized under fluoroscopy. As seen in
Although first and second components 202, 210 are described as each including a single alignment member, i.e., alignment members 206, 214, first and second components 202, 210 may include plural alignment members, which may be oriented in the same or different planes. For example, first and second components 202, 210 may include one or more alignment members 206, 214 disposed in a first plane (e.g., coronal plane) and may also include one or more alignment members disposed in a second plane (e.g., sagittal or transverse plane).
The manner in which the first and second alignment members 206, 214 are supported by the first and second components 202, 210 may also vary. For example, the alignment members 206, 214 may be embedded within the respective bodies 204, 212 of the first and second components 202, 210. In some embodiments, the alignment members 206, 214 are affixed to a surface of the first and second components 202, 210, such as by using an adhesive or mechanical coupling. It should be understood that the first and second alignment members 206, 214 may be supported by the first and second components 202, 210 through different means. For example, the first alignment member 206 may be embedded within body 204 of first component 202, and second alignment member 214 may be affixed to a surface of body 212 of second component 210.
In some embodiments, the first and second alignment members 306, 314 are formed from a radiopaque material such that the first and second alignment members may be visualized under fluoroscopy. As seen in
Further, although first and second components 302, 310 are described as each including a single alignment member, i.e., alignment members 306, 314, first and second components 302, 310 may include plural alignment members, which may be oriented in the same or different planes. For example, first and second components 302, 310 may include one or more alignment members 306, 314 disposed in a first plane (e.g., coronal plane) and may also include one or more alignment members disposed in a second plane (e.g., sagittal or transverse plane).
The manner in which the first and second alignment members 306, 314 are supported by the first and second components 302, 310 also may vary. For example, the alignment members 306, 314 may be embedded within the respective bodies 304, 312 of the first and second components 302, 210. In some embodiments, the alignment members 306, 314 are affixed to a surface of the first and second components 302, 310, such as by using an adhesive or mechanical coupling. It should be understood that the first and second alignment members 306, 314 may be supported by the first and second components 302, 310 through different means. For example, the first alignment member 306 may be embedded within body 304 of first component 302, and second alignment member 314 may be affixed to a surface of body 312 of second component 310.
Adapter 402 includes a body 404 that includes an enlarged planar surface 406 and a coupling mechanism 408. In some embodiments, planar surface 406 is enlarged with respect to the rest of the body 404 and provides for enhanced visualization such that the alignment between the surgical device 30 and the fluoroscopic device 50 may be checked or confirmed as described below. Coupling mechanism 408 may take a variety of forms to facilitate the coupling of adapter 402 to surgical device 30. For example and as depicted in
Coupling mechanism 408 is designed to engage device 30 such that planar surface 406 is oriented relative to device 30 in a predetermined manner. For example, in some embodiments, coupling mechanism 408 is sized and configured to engage device 30 such that planar surface is parallel to a longitudinal axis of a radiopaque member (e.g., radiopaque members 34a, 34b, 35 disclosed in U.S. Pat. No. 9,402,640) supported by device 30.
With adapter 402 coupled to device 30, a surgeon, radiographic technician, or other individual may align the fluoroscopic device 50 with device 30 by visually determining whether the planar surface 406 of adapter 302 is oriented parallel to fluoroscopic device 50. The enlarged surface 406 provided by adapter 402 is easier to align with fluoroscopic device 50 compared to a surface feature of device 30. In some embodiments, adapter 402 and surgical device 30 may include cooperative alignment members, such as the alignment members described above with reference to
Alignment device 500 has a body 502 that may be formed from a radiolucent material. In some embodiments, body 502 defines first and second apertures 504, 506 that are oriented at an angle with respect to one another. For example, apertures 504, 506 may be orthogonally oriented relative to one another such that aperture 504 is disposed parallel to a first plane (e.g., coronal, medial, sagittal, or transverse plane) and aperture 506 is disposed parallel to a second plane that is different from the first plane (e.g., another of the coronal, medial, sagittal, and transverse planes). However, it should be understood that apertures 504, 506 may be disposed at other angles (e.g., oblique or obtuse angles) relative to one another. As best seen in
In some embodiments, liners 508, 510 are disposed within apertures 504, 506, respectively. Liners 506, 508 may be formed from a reflective material and be configured to direct light 54, which is provided by a laser, light emitting diode (LED), or illuminating device 52, along their lengths. In some embodiments, the illuminating device 52 is supported by or coupled to an fluoroscopic device 50, which may be supported by or include a C-arm as will be understood by one of ordinary skill in the art.
In use, alignment device 500 is positioned either one a patient or coupled to another surgical instrument, such as a prosthetic, fixture, and/or jig. An illuminating device or light source 52, which is coupled to or provided by a C-arm and/or fluoroscopic device 50, directs light 54 into one of the apertures (e.g., aperture 504 as shown in
In some embodiments, a system includes a first component and a second component. The first component has a first body supporting a first alignment member. The second component has a second body supporting a second alignment member. The first and second alignment members are separated from another and are configured to provide an indication that a fluoroscopic device is properly aligned with an anatomical plane when viewed under fluoroscopy.
In some embodiments, the first component and the second component are respective portions of a common device.
In some embodiments, a shape of the first alignment member is the same as a shape of the second alignment member.
In some embodiments, a dimension of the first alignment member is the same as a dimension of the second alignment member.
In some embodiments, a radiopacity of the first alignment member is different from a radiopacity of the second alignment member.
In some embodiments, a shape of the first alignment member is different from a shape of the second alignment member.
In some embodiments, the shape of the first alignment member is complementary to the shape of the second alignment member.
In some embodiments, the shape of the first alignment member is circular.
In some embodiments, the second alignment member includes a crosshair.
In some embodiments, the shape of the second alignment member is a dot sized to fill an opening of the circular shape of the first alignment member.
In some embodiments, a method includes placing a first component supporting a first alignment member and a second component supporting a second alignment member relative to a patent, and aligning a fluoroscopic device with an anatomical plane using the first and second alignment members.
In some embodiments, aligning the fluoroscopic device with the anatomical plane includes viewing the first and second alignment members under fluoroscopy.
In some embodiments, the first and second alignment members appear as a single alignment member when the fluoroscopic device is aligned with the anatomical plane.
In some embodiments, the first and second alignment members have a complementary shape when the fluoroscopic device is aligned with the anatomical plane.
In some embodiments, a system includes an alignment device having a body defining a first aperture and a second aperture. The first and second apertures are disposed at an angle with one another. The first and second apertures are in communication with one another such that light passes through the first and second apertures when a fluoroscopic device is aligned with an anatomical plane.
In some embodiments, a first liner is disposed within the first aperture. The first liner is configured to direct light along a length of the first aperture.
In some embodiments, a second liner is disposed within the second aperture. The second liner is configured to direct light along a length of the second aperture.
In some embodiments, a system includes a light source configured to direct light into at least one of the first aperture and the second aperture.
In some embodiments, the light source is coupled to a C-arm of a radiographic device.
In some embodiments, a system includes an optical sensor coupled to a C-arm of a radiographic device. The optical detector is configured to detect light exiting at least one of the first aperture and the second aperture.
In some embodiments, a system includes a camera coupled to a C-arm of a radiographic device. The camera is configured to receive light from at least one of the first aperture and the second aperture.
In some embodiments, a method includes receiving light emitted from a light source in a first aperture defined by an alignment device, and directing the light from the first aperture defined by the alignment device to a second aperture defined by the alignment device such that light exits the alignment device from the second aperture. The second aperture is disposed at an angle with respect to the first aperture. The second aperture is disposed at an angle with respect to the first aperture.
In some embodiments, the light emitted from the light source is received within the first aperture when a fluoroscopic device is aligned with an anatomical axis.
In some embodiments, a method includes detecting light exiting the alignment device using an optical sensor.
In some embodiments, a method includes adjusting a position of a fluoroscopic device if light is not detected by the optical sensor.
In some embodiments, a method includes detecting light exiting the alignment device using a camera.
In some embodiments, a method includes adjusting a position of a fluoroscopic device if light is not detected by the camera.
In some embodiments, a system includes a first surgical device and an alignment adapted. The first surgical device is configured to be coupled to a patient. The alignment adapter has a body including a planar surface and a coupling mechanism for coupling the alignment adapter to the first surgical device such that the planar surface is parallel to an anatomical plane when the first surgical device is coupled to the patient and the alignment adapter is coupled to the first surgical device.
In some embodiments, the coupling mechanism includes a channel sized and configured to receive at least a portion of the first surgical device.
In some embodiments, the coupling mechanism includes a detent sized and configured to engage the first surgical device.
In some embodiments, the coupling mechanism includes a slot having a dovetail that is sized and configured to engage a corresponding feature of the first surgical device.
In some embodiments, a method includes placing a first surgical device relative to a patient, coupling an alignment device to the first surgical device, and aligning a fluoroscopic device with the planar surface of the alignment device. The alignment device includes a planar surface.
In some embodiments, a method includes adjusting a position of the fluoroscopic device until the fluoroscopic device is aligned with the planar surface of the alignment device.
In some embodiments, the planar surface of the alignment device is parallel to an anatomical plane of the patient.
Although the systems and methods have been described in terms of exemplary embodiments, they are not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the systems and methods, which may be made by those skilled in the art without departing from the scope and range of equivalents.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/208,572, filed Jun. 9, 2021, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3839742 | Link | Oct 1974 | A |
3872519 | Giannestras et al. | Mar 1975 | A |
3886599 | Schlein | Jun 1975 | A |
3889300 | Smith | Jun 1975 | A |
3896502 | Lennox | Jul 1975 | A |
3896503 | Freeman et al. | Jul 1975 | A |
3975778 | Newton, III | Aug 1976 | A |
3987500 | Schlein | Oct 1976 | A |
4021864 | Waugh | May 1977 | A |
4069518 | Groth, Jr. et al. | Jan 1978 | A |
4156944 | Schreiber et al. | Jun 1979 | A |
4166292 | Bokros | Sep 1979 | A |
4204284 | Koeneman | May 1980 | A |
4232404 | Samuelson et al. | Nov 1980 | A |
4309778 | Buechel et al. | Jan 1982 | A |
4470158 | Pappas et al. | Sep 1984 | A |
4578806 | Grass et al. | Mar 1986 | A |
4755185 | Tarr | Jul 1988 | A |
4968316 | Hergenroeder | Nov 1990 | A |
5041139 | Brånemark | Aug 1991 | A |
5312412 | Whipple | May 1994 | A |
5326365 | Alvine | Jul 1994 | A |
5354300 | Goble et al. | Oct 1994 | A |
5423825 | Levine | Jun 1995 | A |
5476466 | Barrette et al. | Dec 1995 | A |
5601563 | Burke et al. | Feb 1997 | A |
5628749 | Vendrely et al. | May 1997 | A |
5634927 | Houston et al. | Jun 1997 | A |
5667511 | Vendrely et al. | Sep 1997 | A |
5674223 | Cipolletti et al. | Oct 1997 | A |
5735904 | Pappas | Apr 1998 | A |
5766259 | Sammarco | Jun 1998 | A |
5776200 | Johnson et al. | Jul 1998 | A |
5782842 | Kloess et al. | Jul 1998 | A |
5817097 | Howard et al. | Oct 1998 | A |
5824106 | Fournal | Oct 1998 | A |
5879389 | Koshino | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5888203 | Goldberg | Mar 1999 | A |
5897559 | Masini | Apr 1999 | A |
5935132 | Bettuchi et al. | Aug 1999 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6102952 | Koshino | Aug 2000 | A |
6183519 | Bonnin et al. | Feb 2001 | B1 |
6245109 | Mendes et al. | Jun 2001 | B1 |
6342056 | Mac-Thiong et al. | Jan 2002 | B1 |
6344043 | Pappas | Feb 2002 | B1 |
6409767 | Pericéet al. | Jun 2002 | B1 |
6436146 | Hassler et al. | Aug 2002 | B1 |
6478800 | Fraser et al. | Nov 2002 | B1 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6530930 | Marino et al. | Mar 2003 | B1 |
6610067 | Tallarida et al. | Aug 2003 | B2 |
6610095 | Pope et al. | Aug 2003 | B1 |
6620168 | Lombardo et al. | Sep 2003 | B1 |
6645215 | McGovern et al. | Nov 2003 | B1 |
6663669 | Reiley | Dec 2003 | B1 |
6673116 | Reiley | Jan 2004 | B2 |
6679917 | Ek | Jan 2004 | B2 |
6719799 | Kropf | Apr 2004 | B1 |
6824567 | Tornier et al. | Nov 2004 | B2 |
6852130 | Keller et al. | Feb 2005 | B2 |
6860902 | Reiley | Mar 2005 | B2 |
6863691 | Short et al. | Mar 2005 | B2 |
6875222 | Long et al. | Apr 2005 | B2 |
6875236 | Reiley | Apr 2005 | B2 |
6926739 | O'Connor et al. | Aug 2005 | B1 |
6939380 | Guzman | Sep 2005 | B2 |
6942670 | Heldreth et al. | Sep 2005 | B2 |
7001394 | Gundlapalli et al. | Feb 2006 | B2 |
7011687 | Deffenbaugh et al. | Mar 2006 | B2 |
7025790 | Parks et al. | Apr 2006 | B2 |
7163541 | Ek | Jan 2007 | B2 |
7238190 | Schon et al. | Jul 2007 | B2 |
7252684 | Dearnaley | Aug 2007 | B2 |
7314488 | Reiley | Jan 2008 | B2 |
7323012 | Stone et al. | Jan 2008 | B1 |
7476227 | Tornier et al. | Jan 2009 | B2 |
7481814 | Metzger | Jan 2009 | B1 |
7485147 | Papps et al. | Feb 2009 | B2 |
7534246 | Reiley et al. | May 2009 | B2 |
7534270 | Ball | May 2009 | B2 |
7615082 | Naegerl et al. | Nov 2009 | B2 |
7618421 | Axelson, Jr. et al. | Nov 2009 | B2 |
7625409 | Saltzman et al. | Dec 2009 | B2 |
7641697 | Reiley | Jan 2010 | B2 |
7678151 | Ek | Mar 2010 | B2 |
7713305 | Ek | May 2010 | B2 |
7717920 | Reiley | May 2010 | B2 |
7763080 | Southworth | Jul 2010 | B2 |
7794144 | Windt | Sep 2010 | B2 |
7803158 | Hayden | Sep 2010 | B2 |
7850698 | Straszheim-Morley et al. | Dec 2010 | B2 |
7896883 | Ek et al. | Mar 2011 | B2 |
7896885 | Miniaci et al. | Mar 2011 | B2 |
7909882 | Stinnette | Mar 2011 | B2 |
7963996 | Saltzman et al. | Jun 2011 | B2 |
8002841 | Hasselman | Aug 2011 | B2 |
8012217 | Strzepa et al. | Sep 2011 | B2 |
8034114 | Reiley | Oct 2011 | B2 |
8034115 | Reiley | Oct 2011 | B2 |
8048164 | Reiley | Nov 2011 | B2 |
8083746 | Novak | Dec 2011 | B2 |
8110006 | Reiley | Feb 2012 | B2 |
8114091 | Ratron et al. | Feb 2012 | B2 |
8167888 | Steffensmeier | May 2012 | B2 |
8172850 | McMinn | May 2012 | B2 |
8177841 | Ek | May 2012 | B2 |
8268007 | Barsoum et al. | Sep 2012 | B2 |
8303667 | Younger | Nov 2012 | B2 |
8313492 | Wong et al. | Nov 2012 | B2 |
8317797 | Rasmussen | Nov 2012 | B2 |
8323346 | Tepic | Dec 2012 | B2 |
8337503 | Lian | Dec 2012 | B2 |
8361159 | Ek | Jan 2013 | B2 |
8475463 | Lian | Jul 2013 | B2 |
8491596 | Long et al. | Jul 2013 | B2 |
8808303 | Stemniski et al. | Aug 2014 | B2 |
8911444 | Bailey | Dec 2014 | B2 |
9566075 | Carroll et al. | Feb 2017 | B2 |
9672607 | Demri et al. | Jun 2017 | B2 |
9901353 | Carroll et al. | Feb 2018 | B2 |
9907561 | Luna et al. | Mar 2018 | B2 |
10034678 | Park et al. | Jul 2018 | B2 |
10039558 | Park et al. | Aug 2018 | B2 |
10206688 | Park et al. | Feb 2019 | B2 |
10433911 | Wang et al. | Oct 2019 | B2 |
10722200 | Kiraly | Jul 2020 | B2 |
20010053204 | Navab | Dec 2001 | A1 |
20020068977 | Jackson | Jun 2002 | A1 |
20020082607 | Heldreth et al. | Jun 2002 | A1 |
20020133164 | Williamson | Sep 2002 | A1 |
20020173853 | Corl, III et al. | Nov 2002 | A1 |
20030208280 | Tohidi | Nov 2003 | A1 |
20030236522 | Long et al. | Dec 2003 | A1 |
20040030399 | Asencio | Feb 2004 | A1 |
20040039394 | Conti et al. | Feb 2004 | A1 |
20040068322 | Ferree | Apr 2004 | A1 |
20040167631 | Luchesi et al. | Aug 2004 | A1 |
20040186585 | Feiwell | Sep 2004 | A1 |
20040216259 | Ponziani | Nov 2004 | A1 |
20040236431 | Sekel | Nov 2004 | A1 |
20050004676 | Schon et al. | Jan 2005 | A1 |
20050165408 | Puno et al. | Jul 2005 | A1 |
20050192674 | Ferree | Sep 2005 | A1 |
20060009857 | Gibbs et al. | Jan 2006 | A1 |
20060020345 | O'Connor et al. | Jan 2006 | A1 |
20060036257 | Steffensmeier | Feb 2006 | A1 |
20060116679 | Lutz et al. | Jun 2006 | A1 |
20060142870 | Robinson et al. | Jun 2006 | A1 |
20060235541 | Hodorek | Oct 2006 | A1 |
20060247788 | Ross | Nov 2006 | A1 |
20070038303 | Myerson et al. | Feb 2007 | A1 |
20070100346 | Wyss et al. | May 2007 | A1 |
20070112431 | Kofoed | May 2007 | A1 |
20070162025 | Tornier et al. | Jul 2007 | A1 |
20070173944 | Keller et al. | Jul 2007 | A1 |
20070173947 | Ratron | Jul 2007 | A1 |
20070203455 | Tremaglio, Jr. et al. | Aug 2007 | A1 |
20070213830 | Ammann et al. | Sep 2007 | A1 |
20070233129 | Bertagnoli et al. | Oct 2007 | A1 |
20070276400 | Moore et al. | Nov 2007 | A1 |
20070288030 | Metzger et al. | Dec 2007 | A1 |
20080015602 | Axelson | Jan 2008 | A1 |
20080097617 | Fellinger et al. | Apr 2008 | A1 |
20080103603 | Hintermann | May 2008 | A1 |
20080109081 | Bao et al. | May 2008 | A1 |
20080195233 | Ferrari et al. | Aug 2008 | A1 |
20080215156 | Duggal et al. | Sep 2008 | A1 |
20080287954 | Kunz et al. | Nov 2008 | A1 |
20080312745 | Keller et al. | Dec 2008 | A1 |
20090024131 | Metzger et al. | Jan 2009 | A1 |
20090043310 | Rasmussen | Feb 2009 | A1 |
20090054992 | Landes et al. | Feb 2009 | A1 |
20090082875 | Long | Mar 2009 | A1 |
20090105767 | Reiley | Apr 2009 | A1 |
20090105840 | Reiley | Apr 2009 | A1 |
20090182433 | Reiley et al. | Jul 2009 | A1 |
20090198341 | Choi et al. | Aug 2009 | A1 |
20090234360 | Alexander | Sep 2009 | A1 |
20090276052 | Regala et al. | Nov 2009 | A1 |
20100010493 | Dower | Jan 2010 | A1 |
20100023066 | Long et al. | Jan 2010 | A1 |
20100023126 | Grotz | Jan 2010 | A1 |
20100057216 | Gannoe et al. | Mar 2010 | A1 |
20100069910 | Hasselman | Mar 2010 | A1 |
20100198355 | Kofoed et al. | Aug 2010 | A1 |
20100241237 | Pappas | Sep 2010 | A1 |
20100305572 | Saltzman et al. | Dec 2010 | A1 |
20100318088 | Warne et al. | Dec 2010 | A1 |
20100331984 | Barsoum et al. | Dec 2010 | A1 |
20110029090 | Zannis et al. | Feb 2011 | A1 |
20110035018 | Deffenbaugh et al. | Feb 2011 | A1 |
20110035019 | Goswami et al. | Feb 2011 | A1 |
20110106268 | Deffenbaugh et al. | May 2011 | A1 |
20110125200 | Hanson et al. | May 2011 | A1 |
20110125275 | Lipman et al. | May 2011 | A1 |
20110125284 | Gabbrielli et al. | May 2011 | A1 |
20110152868 | Kourtis et al. | Jun 2011 | A1 |
20110152869 | Ek et al. | Jun 2011 | A1 |
20110166608 | Duggal et al. | Jul 2011 | A1 |
20110190829 | Duggal et al. | Aug 2011 | A1 |
20110218542 | Lian | Sep 2011 | A1 |
20110249793 | Lalena | Oct 2011 | A1 |
20110253151 | Tochigi et al. | Oct 2011 | A1 |
20110276052 | Hasselman | Nov 2011 | A1 |
20110295380 | Long | Dec 2011 | A1 |
20120010718 | Still | Jan 2012 | A1 |
20120046753 | Cook et al. | Feb 2012 | A1 |
20120053644 | Landry et al. | Mar 2012 | A1 |
20120083789 | Blakemore et al. | Apr 2012 | A1 |
20120109131 | Vasarhelyi et al. | May 2012 | A1 |
20120109326 | Perler | May 2012 | A1 |
20120130376 | Loring et al. | May 2012 | A1 |
20120136443 | Wenzel | May 2012 | A1 |
20120185057 | Abidi et al. | Jul 2012 | A1 |
20120191210 | Ratron et al. | Jul 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120245701 | Zak et al. | Sep 2012 | A1 |
20120271430 | Arnett et al. | Oct 2012 | A1 |
20120277745 | Lizee | Nov 2012 | A1 |
20130041473 | Rouyer et al. | Feb 2013 | A1 |
20130116797 | Coulange et al. | May 2013 | A1 |
20140275955 | Crawford et al. | Sep 2014 | A1 |
20160135815 | Loring et al. | May 2016 | A1 |
20190209080 | Gullotti et al. | Jul 2019 | A1 |
20210405378 | Choi | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2836651 | Mar 2016 | CA |
19501069 | Jul 1996 | DE |
2967697 | Apr 2018 | EP |
3607898 | Aug 2021 | EP |
2480846 | Dec 2011 | GB |
H11-500035 | Jan 1999 | JP |
2006150055 | Jun 2006 | JP |
2007518453 | Jul 2007 | JP |
2007519477 | Jul 2007 | JP |
2007536011 | Dec 2007 | JP |
2011526189 | Oct 2011 | JP |
2012518517 | Aug 2012 | JP |
2013500810 | Jan 2013 | JP |
2013511358 | Apr 2013 | JP |
2014131738 | Jul 2014 | JP |
WO 9625106 | Aug 1996 | WO |
WO 0166021 | Sep 2001 | WO |
WO 2005011523 | Feb 2005 | WO |
WO 2006022923 | Mar 2006 | WO |
WO 2006023824 | Mar 2006 | WO |
WO 2006099270 | Sep 2006 | WO |
WO 2007084846 | Jul 2007 | WO |
WO 2009158522 | Dec 2009 | WO |
WO 2010099142 | Sep 2010 | WO |
WO 2011015863 | Feb 2011 | WO |
WO 2011063281 | May 2011 | WO |
WO 2011151657 | Dec 2011 | WO |
WO 2012088036 | Jun 2012 | WO |
WO 2012116089 | Aug 2012 | WO |
2020124047 | Jun 2020 | WO |
Entry |
---|
Anonymous: “Angle bracket (fastener)—Wikipedia”, May 22, 2021, 1 page. |
Extended European Search Report issued in connection with European U.S. Appl. No. 22/172,072, filed May 4, 2023, 25 pages. |
Anonymous: Newtonian Telescope—Wikipedia, May 23, 2021, 6 pages. |
Anonymous: “Light Tube—Wikipedia”, Mar. 4, 2021, 11 pages. |
Search report issued for European patent application No. 13198280 dated Feb. 5, 2014. |
International Search Report for International patent application No. PCT/US2014/027448 dated Jul. 7, 2014. |
International Preliminary Report on Patentability issued for International patent application No. PCT/US2014/027448, Sep. 15, 2015, 8 pages. |
Partial European Search Report issued in connection with European patent application No. 14768333.8, Oct. 26, 2016, 6 pages. |
Patent Examination Report No. 1 issued in connection with Australian patent application No. 2015202080, Jul. 5, 2016, 4 pages. |
Office Action in corresponding Canadian Patent Application No. 2,904,652, Jun. 2, 2020, 6 pages. |
First Examination Report issued in corresponding Australian Patent Application No. 2019213412, Sep. 3, 2020, 5 pages. |
First Office Action in corresponding Canadian Patent Application No. 2,904,652, Jan. 28, 2020, 5 pages. |
Final Office Action issued in connection with corresponding Japanese Patent Application No. 206-502443, May 15, 2018, 3 pages. |
Extended European Search Report issued in connection with corresponding European Patent Application No. 18160378.8, Jun. 29, 2018, 7 pages. |
Examination Report No. 1 issued in connection with corresponding Australian Patent Application No. 20182000073, Dec. 24, 2018, 3 pages. |
Extended European Search Report and Opinion in connection with European Patent Application No. 14768333.8, dated Jan. 30, 2017, 10 pages. |
Partial European Search Report issued in connection with Application No. 22172072.5, Jan. 23, 2023, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20220397670 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
63208572 | Jun 2021 | US |