The present disclosure generally relates to articles and methods of forming vias in substrates. In particular, the present disclosure is directed to articles and methods of forming through vias in substrates that include etching processes that preserve the surface roughness (Ra) of a substrate.
Glass substrates with vias are desirable for many applications, including for use as an interposer used as an electrical interface. Glass interposers have become an attractive alternative to silicon and fiber reinforced polymers. But, some of the processes used in producing glass substrates with vias lead to undesirable surface roughness.
Accordingly, a need exists for methods for forming vias in substrates while preserving low surface roughnesses (Ra).
In a first embodiment, an article comprises a glass substrate. The glass substrate has a first surface having a plurality of vias therein, and a second surface parallel to the first surface. At least one of the first surface and the second surface is an etched surface having a surface roughness (Ra) of 0.75 nm or less. The glass substrate comprises, in mol percent on an oxide basis:
In a second embodiment, the glass substrate comprises, in mol percent on an oxide basis:
In a third embodiment, for the article of any of the first through second embodiments, the article of the first embodiment is the glass substrate.
In a fourth embodiment, for the article of any of the first through third embodiments, the plurality of vias are through vias extending from the first surface to the second surface.
In a fifth embodiments, for the article of any of the first through third embodiments, the plurality of vias are blind vias extending from the first surface toward the second surface without reaching the second surface.
In a sixth embodiment, for the article of any of the first through fifth embodiments, the article further comprises a carrier. At least one of the first surface and the second surface is etched, has a surface roughness (Ra) of 0.75 nm or less and is bonded to the carrier.
In a seventh embodiment, for the article of the sixth embodiment, the carrier has a surface roughness (Ra) of 0.2 nm to 0.4 nm.
In an eighth embodiment, for the article of any of the first through seventh embodiments, the glass substrate has a post-etch thickness of 150 μm or less.
In a ninth embodiment, for the article of any of the first through eighth embodiments, the glass substrate has a thickness of 90 μm to 110 μm.
In a tenth embodiment, for the article of any of the first through ninth embodiments, 69 mol %≤SiO2≤72 mol %.
In eleventh through thirteenth embodiments, for the article of any of the first through tenth embodiments, 26.5 mol %≤RO+Al2O3−B2O3, or 26.75 mol %≤RO+Al2O3−B2O3, or 27.0 mol %≤RO+Al2O3−B2O3.
In a fourteenth and fifteenth embodiments, for the article of any of the first through thirteenth embodiments, 0 mol %≤R2O≤1 mol %, or 0 mol %≤R2O≤0.5 mol %.
In a sixteenth embodiment, a method comprises forming a plurality of vias in a glass substrate having a first surface and a second surface. The method includes etching at least one of the first surface and the second surface to form an etched surface. The glass substrate comprises, in mol percent on an oxide basis:
In a seventeenth embodiment, the glass substrate comprises, in mol percent on an oxide basis:
In an eighteenth embodiment, for the method of any of the sixteenth through seventeenth embodiments, the etched surface has a surface roughness (Ra) of 0.75 nm or less.
In a nineteenth embodiment, for the method of any of the sixteenth through eighteenth embodiments, the etching is performed with an etchant comprising hydrofluoric acid.
In a twentieth embodiment, for the method of any of the sixteenth through nineteenth embodiments, the method further comprises bonding one of the etch surfaces of the glass substrate to a carrier.
The limitations of the fourth through fifteenth embodiments may be combined with the embodiments of the sixteenth through twentieth embodiments in any permutation.
The embodiments set forth in the specification and drawings are illustrative and exemplary in nature, and are not intended to limit the subject matter defined by the claims.
Embodiments of articles and methods of creating vias in substrates described herein allow for the preservation of surface roughness (Ra) of substrates. This allows the substrates, for example, to be removably bonded to carriers for further processing using Van der Waals bonding, which works best with low surface roughness substrates. The embodiments and methods disclosed herein may be used in other contexts where a low surface roughness etches surface is desirable.
An interposer may be used as an electrical interface in an electronic device, including devices having a radio frequency (RF) filter, to spread an electrical connection to a wider pitch or to reroute an electrical connection to a different electrical connection. Glass interposers, i.e., a glass substrate having vias through which electrical connections may be made, have become an attractive alternative to silicon and fiber reinforced polymers. This is due, in part, to the ability of glass to be formed in large thin sheets. However, with continuously thinner electronic devices, many applications require interposers to the have thicknesses of 300 μm or less. Such thin glass can be difficult to handle in fabrication procedures because of the glass's fragility and lack of stiffness. To counteract a glass substrate's fragility and lack of stiffness, fabrication methods using a carrier to which the glass substrate is bonded are needed.
Van der Waals forces may be used to temporarily bond glass articles to carriers. The energy of the temporary bond is sufficient to survive flat panel fabrication, while remaining de-bondable. However, Van der Waals forces may produce weak bonds, if any, when the surface roughness (Ra) of the glass article is too high.
Typically, glass interposers require vias (holes) to be filled with electrically conductive material to provide electrical interfacing. A known method of creating vias in glass interposers is by creating a damage region through the thickness of the glass interposer and then submerging to substrate into an etchant. The etchant may then remove material from the damage region to enlarge the hole. However, the etching process may also remove material from both faces of the glass interposer as well as enlarging the hole. This etching may create a glass interposer surface roughness (Ra) outside of the range which Van der Waals bonds can be appropriately formed.
Glass compositions are disclosed herein which can be etched while preserving a low surface roughness suitable for Van der Waals bonding, and for other applications.
One way to reduce the post etch surface roughness of a glass substrate is to increase the alkali oxide (R2O) content of the glass composition. But, alkali oxides are undesirable for certain applications. For example, a glass interposer having a glass composition that includes too much alkali oxide may detrimentally affect or “poison” some of the devices typically placed near the interposer. So, using alkali oxides to achieve lower post etch surface roughness is unsuitable for some applications.
Another way to reduce the post etch surface roughness of a glass substrate is to increase the Al2O3 content of the glass composition. But, too much alumina can have undesirable effects, such as a too-large increase in the liquidus temperature of the glass composition. Alkali oxides may be used to lower the liquidus temperature. But, alkali oxides are undesirable for some applications as described above.
It has been unexpectedly and surprisingly found that, for low alkali oxide glasses, a specific glass content of SiO2, Al2O3, B2O3 and RO results in a low post etch surface roughness, where RO is the sum of the glass content of MgO+CaO+SrO+BaO+ZnO. In particular, the glass substrate comprises, in mol percent on an oxide basis:
The articles disclosed herein may be used, for example, as an interposer in a semiconductor package, the articles having etched holes (e.g., vias) and surface attributes which allow for successful downstream processing including, but not limited to, via metallization and application of redistribution layers (RDL) for semiconductor devices, radio-frequency (RF) devices (e.g., antennae, switches, and the like), interposer devices, microelectronic devices, optoelectronic devices, microelectronic mechanical system (MEMS) devices and other applications where vias may be leveraged.
Substrates with Vias
A “via” as used herein refers to a hole or opening in a substrate. While
For an application where low surface roughness is desired for removable bonding to a carrier, post-etch thickness T is typically in the range 50 μm to 250 μm. At higher thickness, substrate 110 may be sufficiently thick that a carrier is not needed. At lower thicknesses, substrate 110 may break in any event. Thickness T may be 150 μm or less, 100 μm, or 90 μm to 110 μm, which are thicknesses that balances the desire for thin devices against the desire for structural integrity and insulating properties. Thickness T may be 50 μm, 100 μm, 150 μm, 200 μm, 250 μm, or any range having any two of the preceding values as endpoints. Other thicknesses may be used as well. For example, there may be applications for the low surface roughness substrates described herein other than removable bonding to a carrier. So, thickness T may depend on the application and is not necessarily limited by this disclosure.
First surface 112 and second surface 114 have a pre-etch surface roughness (Ra). As used herein, “surface roughness” refers to arithmetic mean surface roughness. The literature often uses the notation “Ra” to arithmetic mean surface roughness. Surface roughness Ra is defined as the arithmetic average of the differences between the local surface heights and the average surface height, and can be described by the following equation:
where yi is the local surface height relative to the average surface height. Surface roughness (Ra) may be measured and/or calculated from measurements using a variety of techniques. Unless otherwise specified, surface roughness as described herein is measured using a Veeco Dimension Icon atomic force microscope (AFM) with the following parameters: 1 Hz, 512 scans/line, and 2 micron image size.
Glass Composition
The glass compositions described herein are alkali free borosilicate glasses that generally include a combination of SiO2, Al2O3, and RO, where RO=MgO+CaO+SrO+BaO+ZnO. Alkali free means that the glasses include at most a small amount of alkali oxides (R2O), where R2O=Li2O+Na2O+K2O+Rb2O+Cs2O. In addition, the glass compositions described herein meet the condition 26.25≤RO+Al2O3−B2O3. When etched with HF and similar etchants, the glass compositions exhibit a particularly low post-etch surface roughness for alkali free glass compositions.
In some embodiments, the glass compositions may include additional oxides such as P2O5, B2O3. These components may be added, for example, to modify the liquidus viscosity and/or improve the mechanical durability of the glass. In some embodiments the glass compositions may further one or more additional oxides such as, for example, SnO2, As2O3, Sb2O3 or the like, as described herein. These components may be added as fining agents.
Substrate 110 may be formed from various glass compositions. In a first embodiment, the glass substrate comprises, in mol percent on an oxide basis:
In the embodiments of the glass compositions described herein, SiO2 is the largest constituent of the composition and, as such, is the primary constituent of the resulting glass network. SiO2 enhances the chemical durability of the glass and, in particular, the resistance of the glass composition to decomposition in acid and the resistance of the glass composition to decomposition in water. If the content of SiO2 is too low, the chemical durability and chemical resistance of the glass may be reduced and the glass may be susceptible to corrosion. Accordingly, a high SiO2 concentration is generally desired. However, if the content of SiO2 is too high, the formability of the glass may be diminished as higher concentrations of SiO2 increase the difficulty of melting the glass which, in turn, adversely impacts the formability of the glass. In the first embodiment, the silica content of substrate 110 is 65 mol %≤SiO2≤75 mol %. In a tenth embodiment, 69 mol %≤SiO2≤72 mol %. The SiO2 content may be 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 or 75 mol %, or any range having any two of the preceding values as endpoints.
Many methods of forming vias in glass involve the use of acid to etch the glass. For example, one method involves forming a damage track through the glass with a laser, and exposing the glass to acid. The acid permeates the damage track, removing the glass from the volume of the damage track. But, the acid may also etch and remove undamaged regions of the glass. A high silica content helps slow this etching of undamaged regions, which may be desirable.
Al2O3
The glass compositions described herein further include Al2O3. Al2O3, in conjunction with alkaline earth oxides and ZnO (RO) present in the glass compositions, leads to a low surface roughness glass surface after etching with etchants such as HF. Al2O3 may also increase the hardness and damage resistance of the glass. However, the liquidus viscosity of the glass decreases with increasing concentration of the Al2O3 in the glass compositions. If the concentration of Al2O3 in the glass compositions is too great, the liquidus viscosity of the glass composition decreases, which may cause the glass composition to crystallize during production in a fusion downdraw process. In addition, including too much Al2O3 may make it difficult to have a desirably high SiO2 content while also including all other desirable glass components. In the first embodiment, the Al2O3 content of substrate 110 is 7 mol %≤Al2O3≤15 mol %. The Al2O3 content may be 7, 8, 9, 10, 11, 12, 13, 14 or 15 mol %, or any range having any two of the preceding values as endpoints.
RO
The glass compositions described herein further include alkaline earth oxides and ZnO. Alkaline earth oxides include MgO, CaO, SrO, and BaO. ZnO, while technically not an alkaline earth oxide, is believed to have a similar effect on the glass composition for purposes of this disclosure. “RO” is used to refer collectively to MgO, CaO, SrO, BaO and ZnO. And, the RO content of the glass composition is the sum of the glass content of MgO, CaO, SrO, BaO and ZnO, in mol %. Increasing the RO content is one way to decrease the post etch roughness of the glass surface after etching with etchants such as HF. And, the use of RO does not have the poisonous effect of R2O. In the first embodiment, 26.25 mol %≤RO+Al2O3−B2O3. Because the maximum amount of Al2O3 is 15 mol %, this means that the RO content is at least 11.25 mol %. In some embodiments, the parameter RO+Al2O3−B2O3 is greater than or equal to 26.25, 26.5, 26.75 or 27.0 mol %. Even higher values for this parameter may be used. But, at values higher than 27.5 mol %, it is believed that the parameter may increase the coefficient of thermal expansion (CTE) of the material to undesirably high levels for some applications.
RO oxides are added to improve the melting properties of the glass composition during processing, while also adjusting properties of the glass such as coefficient of thermal expansion (CTE) and density to desirable values. Small amounts of CaO and MgO can help with glass melting and improve the glass liquidus viscosity. But, above 6 mol %, CaO and MgO can detrimentally affect glass liquidus performance, and lead to devitrification during glass melting. ZnO improves glass hardness and modulus. But, ZnO also increases glass density and, in amounts higher than 4 mol %, can deteriorate glass compaction. BaO and SrO are both good for glass formability and thermal stability. But, BaO and SrO are relatively expensive, and also increase glass density. For these reasons, BaO and SrO are not above 10 mol %.
BeO and RaO are also alkaline earth oxides that should affect glass properties in a way similar to the other RO. But, they are generally not deliberately included in glass compositions due to their high cost.
R2O
The amount of alkali oxides in the glass composition is minimized. Alkali oxides may include one or more of Li2O, Na2O, K2O, Rb2O, and Cs2O. “R2O” is used to generally refer to the alkali oxides. And, the R2O content of the glass composition is the sum of the glass content of Li2O, Na2O, K2O, Rb2O, and Cs2O, in mol %. Increasing the content of alkali oxides is one way to decrease the post etch roughness of the glass surface after etching with etchants such as HF, which is desirable. But, alkali oxides may have detrimental effects for some applications. For example, where a glass substrate is used to provide through glass vias (TGV), the presence of alkali oxides may poison the types of devices typically connected by the TGV. For one type of device where TGV shows promise, RF (radio frequency) devices such as RF antennae, the presence of R2O undesirably lowers the transmittance of the glass. High transmittance is desired for better signal transfer. In the first embodiment, the R2O content is 0 mol %≤R2O≤2 mol %. The R2O content may be 0 mol %≤R2O≤2 mol %, 0 mol %≤R2O≤1 mol %, or 0 mol %≤R2O≤0.5 mol %. In some embodiments, the glass composition is free of R2O—R2O may be present only in tramp amounts.
Other Components
The glass compositions may also include phosphorous oxide (P2O5). The presence of P2O5 increases the liquidus viscosity of the glass compositions by suppressing the crystallization of mullite in the glass compositions. The liquidus temperature of the glass compositions increases rapidly when the amount of Al2O3 exceeds the sum of the amounts of alkali oxides (R2O mol. %) and alkaline earth oxides (RO mol. %) in the glass composition by more than 2 mol. %, or even by more than 1 mol. %. This issue is particularly acute for the compositions described herein, which have a limited amount of R2O. When Al2O3 (mol. %) is greater than (R2O (mol. %)+RO (mol. %)) by more than 1 mol. %, the presence of P2O5 in the glass composition compensates for the excess Al2O3 by decreasing the liquidus temperature, thus, increasing the liquidus viscosity of the glass composition. In some embodiments, the glass compositions may have an amount of P2O5 sufficient to compensate for the excess Al2O3. For example, in some embodiments, the glass compositions may have an amount of P2O5 sufficient so that (Al2O3 (mol. %)−R2O (mol. %)−RO (mol. %)−P2O5 (mol. %)) is less than or equal to 2 or even less than or equal to 1. In some embodiments, the glass compositions do not include P2O5. In this case, it may be that the amounts of Al2O3 and RO are such that the liquidus temperature does not increase rapidly. Or, it may be that a higher liquidus temperature is tolerable for the application. But, if the P2O5 content of the glass is too high, it may result in undesirable compaction, which is permanent shrinkage of the glass when heated. Some via fill processes use temperatures of 600 C or higher, so compaction can be a serious issue. In the second embodiment, the P2O5 content is 0 mol %≤P2O5≤2 mol %. The P2O5 content may be 0, 1 or 2 mol %, or any range having any two of the preceding values as endpoints.
Boron oxide (B2O3) is a flux which may be added to glass compositions to reduce the viscosity of the glass at a given temperature (e.g., the temperature corresponding to the viscosity of 200 poise, at which glass is melted and which is usually the highest temperature in the glass melting furnace) thereby improving the quality and formability of the glass. The presence of B2O3 may also improve damage resistance of the glass made from the glass composition. In the first embodiment, the B2O3 content is 0.1 mol %≤B2O3≤2 mol %. As with P2O5, too much B2O3 may result in undesirable compaction if the glass is heated. The B2O3 content may be 0.1, 0.5, 1, 1.5 or 2 mol %, or any range having any two of the preceding values as endpoints.
In addition to the components described elsewhere, the glass compositions described herein may optionally further include one or more fining agents such as, for example, SnO2, As2O3 or Sb2O3 The fining agents may be included in the glass composition to minimize or eliminate bubbles in the glass composition during formation. However, the fining agents generally have low solubility in the glass composition. Thus, if the amount of fining agents in the glass composition is too great, devitrification of the fining agents may occur during fusion forming. And, fining agents may be relatively expensive. So, when fining agents are included, it is desirable to include them in the lowest amounts needed to achieve the desired result. When a fining agent is present in the glass composition, the fining agent may be present in an amount less than or equal to 0.5 mol. %, less than or equal to 0.2 mol. %, or even less than or equal to 0.1 mol. %. In the second embodiment, the SnO2 content is 0 mol %≤SnO2≤0.5 mol %. The SnO2 content may be 0, 0.1, 0.2, 0.3, 0.4, or 0.5 mol %, or any range having any two of the preceding values as endpoints. In the second embodiment, the As2O3 content is 0≤As2O3≤0.5 mol %. The As2O3 content may be 0, 0.1, 0.2, 0.3, 0.4, or 0.5 mol %, or any range having any two of the preceding values as endpoints. In the second embodiment, the Sb2O3 content is 0≤Sb2O3≤0.5 mol %. The Sb2O3 content may be 0, 0.1, 0.2, 0.3, 0.4, or 0.5 mol %, or any range having any two of the preceding values as endpoints.
The glass compositions may include less than 0.05 mol. % tramp compounds, such as manganese compounds, cerium compounds, halfnium compounds, or other compounds, that may make it into the glass composition as impurities in the metal oxides deliberately included in the composition. Tramp compounds may also enter the glass composition through contact with processing equipment, such as refractory components of a fusion downdraw forming process, or the like.
Creation of Vias in Substrates
Process 310 comprises, in order:
Step 312: Form damage regions in substrate
Step 314: Etch damage regions to form via
Damage Region Formation
In step 310, damage regions 120 are formed in substrate 100. Damage regions 120 may be formed in the substrate 110 in a variety of ways.
In some embodiments, a high energy laser pulse may be applied to create damage regions 120 through the substrate 110. Damage regions 120 allows etchant to flow therein during downstream etching processes. In some embodiments, damage regions 120 may be a line of laser-induced damage formed by a pulsed laser. The pulsed laser may form the damage line by non-linear multi-photon absorption, for example. When subsequently etched, the rate of material removal within such a damage region 120 is faster than the rate of material removal outside damage region 120. Exemplary ways for performing the laser damage creation and subsequent etching are disclosed in U.S. Pat. No. 9,278,886 and U.S. Pub. No. 2015/0166395, each of which is hereby incorporated by reference in its entirety. In some embodiments, a laser may be used to form an ablated hole instead of damage regions, and the ablated hole may be widened by etching.
Etching
In step 320, damage regions 120 are etched to form vias 124 (or vias with other geometries, for example vias 224). Etching processes may include submerging the glass article 100 in an etchant 180 bath. Additionally or alternatively, the etchant 180 may be sprayed onto the glass article 100. The etchant 180 may remove material of the substrate 110 to enlarge damage regions 120. Any suitable etchants and etching methods may be utilized. Non-limiting examples of etchants include strong mineral acids such as nitric acid, hydrochloric acid, acylic acid or phosphoric acid; fluorine containing etchants such as hydrofluoric acid, ammonium bifluoride, sodium fluoride, and the like; and mixtures thereof. In some embodiments, the etchant is hydrofluoric acid.
The etching of step 320 may expose parts of substrate 100 other than damage regions 120 to etchant, including one or both first surface 112 and second surface 114. This exposure may lead to etching of these other parts, which can cause an increased surface roughness (Ra). When using conventional alkali-free glass materials for substrate 110, surface roughness (Ra) may be undesirably increased to values higher than 0.75 nm, or even higher than 1.0 nm. This high surface roughness may render substrate 100 unsuitable for the Van der Waals bonding process described below.
Unexpectedly, the alkali-free glass compositions described herein exhibit a low post-etch roughness, notwithstanding the absence or low amounts of alkali oxide in the compositions. This low post-etch roughness is suitable for the Van der Waals bonding process described below. And, because the glass compositions have a low alkali (R2O) content, they are particularly well suited for use in applications the presence of alkali may be undesirable or damaging to the final product. For example, a substrate 100 made from the compositions described herein may have first surface 112 and/or second surface 114 with a post-etch surface roughness (Ra) of 0.75 nm or less, 0.7 nm or less, 0.65 nm or less, 0.6 nm or less, 0.55 nm or less, or 0.5 nm or less. This low surface roughness may enable the use of the Van der Waals bonding process described below, even though the glass composition is low-alkali or alkali-free.
A glass surface that has been etched has distinctive structural characteristics, and one of skill in the art can tell from inspecting a glass surface whether that surface has been etched. Etching often changes the surface roughness of the glass. So, if one knows the source of the glass and the roughness of that source, a measurement of surface roughness can be used to determine whether the glass has been etched. In addition, etching generally results in differential removal of different materials in the glass. This differential removal can be detected by techniques such as electron probe microanalysis (EPMA).
Bonding and Post-Etch Processing
Step 352: Bond article 100 to a carrier
Step 354: Perform further processing
Step 356: Debond article 100 from the carrier
For example, substrate 110 may be destined for use as an interposer, and may be subjected to further processing steps (step 320) to impart additional interposer properties.
Glass interposers may be very thin (e.g., anywhere from less than 300 μm to 700 μm). Such thin material may be difficult to handle during fabrication procedures because of the fragility and lack of stiffness of the substrate 110. To counteract the fragility and lack of stiffness, it is desirable to removably bond (step 352) substrate 110 to a carrier 200 after vias 124 have been formed, so that damage to substrate 110 may be avoided during further processing (step 354).
Van der Waals Bonding
One exemplary method of removably bonding a substrate 110 to a carrier is by using Van der Waals bonding such as disclosed by U.S. patent Publication No. 2014/0170378, which is incorporated by reference in its entirety. For example, Van der Waals bonding may include disposing a surface of an article on a bonding surface of a carrier and raising a temperature of the article followed by cooling the article to room temperature. The result is the article and the carrier being removably bonded together. Van der Waals bonding is beneficial to downstream processing because of its ability to form bonds that are capable of withstanding processing (e.g., high temperature processing), while allowing the entire area of the substrate to be debonded (step 356) from the carrier 200 when desired, either all at once or in sections. After substrate 110 has been debonded, carrier 200 may be re-used for processing additional substrates.
The challenge of using Van der Waals surface bonding techniques for bonding substrates is that the roughness of the surfaces' being bonded together impacts the ability of the surfaces to be bonded. As a non-limiting example, surface roughness (Ra) greater than 0.75 nm or 1.0 nm may substantially prevent spontaneous bonding, result in weak bonding of the substrate 110 to the carrier 200. Weak bonding may permit liquids from one or more processes to infiltrate between the substrate 110 and the carrier 200, thereby leading to de-lamination or to process contamination as residue from one process may impact later processes. In the configuration shown in
Carrier
Carrier 200 may be of any suitable material, such as glass, for example. Carrier 200 need not be glass, but instead may be ceramic, glass-ceramic, or metal, for example. If made of glass, carrier 200 may be of any suitable composition including, but not limited to, aluminosilicate, borosilicate, aluminoborosilicate, soda lime silicate, and may be either alkali containing or alkali-free depending upon its ultimate application. Carrier 200 may have any suitable thickness. Carrier 200 may be made of one layer, as shown, or multiple layers (including multiple thin sheets) that are bonded together (e.g., by lamination). The coefficient of thermal expansion of the carrier 200 may be substantially matched with that of substrate 110 to prevent warping of substrate 110 or decoupling of substrate 110 from carrier 200 during processing at elevated temperatures. Carrier 200 is not necessarily exposed to the same etching process as substrate 110, because the purpose of 200 is to provide support to substrate 100 during post-etch processing-carrier 200 typically does not have vias, and need not be exposed to the etching processes used to create vias. So, bonding surface 210 of carrier 200 may have a lower surface roughness (Ra) than that of first surface 112 and second surface 114 of substrate 110, which are exposed to etchant.
When considering the ability to form a suitable Van der Waals bond, the surface roughness (Ra) of the substrate 110 is additive to the surface roughness of the carrier 200. For good Van der Waals bonding, the sum of the surface roughness of the carrier and the substrate should be 0.95 nm or less, and preferably 0.9 nm or less. Fusion drawn glass, which is among the lowest roughness glasses that may be obtained at reasonable cost, has a typical surface roughness of 0.2 nm to 0.4 nm. Fusion drawn glass with a surface roughness of 0.2 nm may be obtained by appropriately selecting the glass composition. So, it is recommended to select a carrier with a surface roughness as low as possible that may be achieved at reasonable cost, which at the present time, is about 0.2 nm. So, for Van der Waals bonding between a substrate and a carrier to work well, where the carrier has a surface roughness of about 0.2 nm, the surface roughness of the substrate should be 0.75 nm or less, and preferably 0.7 nm or less.
Further Processing
The further processing of step 354 may include steps such as applying alkaline cleaning solutions to the substrate 110, wet etching the substrate 110, polishing the substrate 110, metal plating the substrate 110, metal patterning the substrate 110 by wet etching, depositing material onto the substrate 110 by deposition, and annealing the substrate 110. If substrate 110 were not bonded to carrier 200, this robust further processing would likely damage substrate 110. But, because substrate 110 is bonded to carrier 200, this further processing is far less likely to damage substrate 110.
De-Bonding
Debonding may be accomplished by any suitable means. For example, a wedge may be used at an outer portion of the bonded substrate 110 and carrier 200 to initiate debonding, followed by peeling. Examples of suitable debonding techniques are described in PCT Publication WO 2017/127489, “Methods for Processing a Substrate.”
The following Comparative Examples and Examples compare changes in surface roughness (Ra) as a result of acid etching.
Sixteen glass samples prepared by the fusion draw process were obtained. Each glass sample was 0.7 mm thick and did not have damage regions. The surface roughness (Ra) of each sample was measured prior to etching, as shown in Table 1. Unless otherwise specified, surface roughness in the examples was measured by a Veeco Dimension ICON AFM with the following parameters: 1 Hz, 512 scans/line, and 2 micron image size.
Table 1 and
None of the samples tested satisfied the criteria: 26.25 mol %≤RO+Al2O3−B2O3. But, the tested samples do show the trend in post-HF surface roughess that occurs as the parameter 26.25 mol %≤RO+Al2O3−B2O3 is varied.
The glass samples were then cleaned with a high pH detergent wash (2% Semiclean-KG, 60° C. for 4 minutes) and a deionized (DI) water rinse. The cleaned glasses were etched in 2.5 wt % HF (or 1.45M HF) to remove 5 microns of glass surface. The etched glasses were cleaned by a second high pH detergent wash and DI water rinse.
After etching and cleaning, the surface roughness of each sample was measured again, as shown in Table 1.
Compositions that satisfy the criteria 26.25 mol %≤RO+Al2O3−B2O3 include the following:
The compositions of Table 2 are provided as prophetic examples. The values in Table 2 are in mol %.
It should be understood that embodiments described herein provide for forming vias in substrates without substantially increasing the surface roughness (Ra) of the substrate. By preserving the low surface roughness of the substrate during via formation, the substrate may be removably bonded to a carrier for further processing. After processing, the substrate may be removed from the carrier, such that the carrier may be reused for processing further substrates. Furthermore, the through vias may be made substantially cylindrical because they may be etched from both ends.
While specific procedures involving the etching of vias and the use of a carrier are described herein, the glass compositions described herein may be advantageously used with a variety of different processes involving etching where a low post-etch surface roughness is desired.
As used herein, the term “about” means that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. When the term “about” is used in describing a value or an end-point of a range, the specific value or end-point referred to is included. Whether or not a numerical value or end-point of a range in the specification recites “about,” two embodiments are described: one modified by “about,” and one not modified by “about.” It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
The terms “free” and “substantially free,” when used to describe the concentration and/or absence of a particular constituent component in a glass composition, means that the constituent component is not intentionally added to the glass composition. However, the glass composition may contain traces of the constituent component as a contaminant or tramp in amounts of less than 0.05 mol. %.
The term “tramp,” when used to describe a particular constituent component in a glass composition, refers to a constituent component that is not intentionally added to the glass composition and is present in amounts less than 0.05 mol. %. Tramp components may be unintentionally added to the glass composition as an impurity in another constituent component or through migration of the tramp component into the composition during processing of the glass composition.
The embodiments illustrated in the figures are not necessarily to scale. Relative sizes and widths may have been selected for ease of illustration.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority to U.S. Provisional Application Ser. No. 62/633,835 filed on Feb. 22, 2018, the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
108387 | Pike | Oct 1870 | A |
208387 | George | Sep 1878 | A |
237571 | Messier | Feb 1881 | A |
1790397 | Woods et al. | Jan 1931 | A |
2682134 | Stookey | Jun 1954 | A |
2749794 | O'Leary | Jun 1956 | A |
3647410 | Heaton et al. | Mar 1972 | A |
3695497 | Dear | Oct 1972 | A |
3695498 | Dear | Oct 1972 | A |
3713921 | Fleischer et al. | Jan 1973 | A |
3729302 | Heaton | Apr 1973 | A |
3775084 | Heaton | Nov 1973 | A |
3798013 | Hasegawa et al. | Mar 1974 | A |
4226607 | Domken | Oct 1980 | A |
4395271 | Beall et al. | Jul 1983 | A |
4441008 | Chan | Apr 1984 | A |
4546231 | Gresser et al. | Oct 1985 | A |
4547836 | Anthony | Oct 1985 | A |
4564579 | Morita et al. | Jan 1986 | A |
4646308 | Kafka et al. | Feb 1987 | A |
4764930 | Bille et al. | Aug 1988 | A |
4891054 | Bricker et al. | Jan 1990 | A |
4907586 | Bille et al. | Mar 1990 | A |
4918751 | Pessot et al. | Apr 1990 | A |
4929065 | Hagerty et al. | May 1990 | A |
4948941 | Altman et al. | Aug 1990 | A |
5022959 | Itoh et al. | Jun 1991 | A |
5035918 | Vyas | Jul 1991 | A |
5040182 | Spinelli et al. | Aug 1991 | A |
5089062 | Pavlik et al. | Feb 1992 | A |
5102498 | Itoh et al. | Apr 1992 | A |
5104210 | Tokas | Apr 1992 | A |
5108857 | Kitayama et al. | Apr 1992 | A |
5112722 | Tsujino et al. | May 1992 | A |
5114834 | Nachshon | May 1992 | A |
5166493 | Inagawa et al. | Nov 1992 | A |
5208068 | Davis et al. | May 1993 | A |
5265107 | Delfyett, Jr. | Nov 1993 | A |
5314522 | Kondo et al. | May 1994 | A |
5374291 | Yabe et al. | Dec 1994 | A |
5400350 | Galvanauskas | Mar 1995 | A |
5434875 | Rieger et al. | Jul 1995 | A |
5436925 | Lin et al. | Jul 1995 | A |
5457836 | Wiedeck | Oct 1995 | A |
5493096 | Koh | Feb 1996 | A |
5553093 | Ramaswamy et al. | Sep 1996 | A |
5574597 | Kataoka | Nov 1996 | A |
5575291 | Hayakawa et al. | Nov 1996 | A |
5575936 | Goldfarb | Nov 1996 | A |
5586138 | Yokoyama | Dec 1996 | A |
5696782 | Harter et al. | Dec 1997 | A |
5736709 | Neiheisel | Apr 1998 | A |
5745236 | Haga | Apr 1998 | A |
5746884 | Gupta et al. | May 1998 | A |
5776220 | Allaire et al. | Jul 1998 | A |
5844200 | Leader et al. | Dec 1998 | A |
5879424 | Nishii et al. | Mar 1999 | A |
5909284 | Nakamura | Jun 1999 | A |
5919607 | Lawandy | Jul 1999 | A |
5933230 | Imaino et al. | Aug 1999 | A |
5965043 | Noddin et al. | Oct 1999 | A |
6016223 | Suzuki et al. | Jan 2000 | A |
6016324 | Rieger et al. | Jan 2000 | A |
6055829 | Witzmann et al. | May 2000 | A |
6072624 | Dixon et al. | Jun 2000 | A |
6078599 | Everage et al. | Jun 2000 | A |
6120131 | Murthy et al. | Sep 2000 | A |
6140243 | Wallace et al. | Oct 2000 | A |
6143382 | Koyama et al. | Nov 2000 | A |
6156030 | Neev | Dec 2000 | A |
6160835 | Kwon | Dec 2000 | A |
6186384 | Sawada | Feb 2001 | B1 |
6210401 | Lai | Apr 2001 | B1 |
6224713 | Hembree et al. | May 2001 | B1 |
6234755 | Bunker et al. | May 2001 | B1 |
6256328 | Delfyett et al. | Jul 2001 | B1 |
6259151 | Morrison | Jul 2001 | B1 |
6259512 | Mizouchi | Jul 2001 | B1 |
6272156 | Reed et al. | Aug 2001 | B1 |
6301932 | Allen et al. | Oct 2001 | B1 |
6308055 | Welland et al. | Oct 2001 | B1 |
6319867 | Chacon et al. | Nov 2001 | B1 |
6322958 | Hayashi | Nov 2001 | B1 |
6338901 | Veerasamy | Jan 2002 | B1 |
6339208 | Rockstroh et al. | Jan 2002 | B1 |
6344242 | Stolk et al. | Feb 2002 | B1 |
6373565 | Kafka et al. | Apr 2002 | B1 |
6381391 | Islam et al. | Apr 2002 | B1 |
6391213 | Homola | May 2002 | B1 |
6396856 | Sucha et al. | May 2002 | B1 |
6399914 | Troitski | Jun 2002 | B1 |
6407360 | Choo et al. | Jun 2002 | B1 |
6420088 | Angelopoulos et al. | Jul 2002 | B1 |
6438996 | Cuvelier | Aug 2002 | B1 |
6445491 | Sucha et al. | Sep 2002 | B2 |
6449301 | Wu et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6489589 | Alexander | Dec 2002 | B1 |
6501578 | Bernstein et al. | Dec 2002 | B1 |
6537937 | Nishizawa et al. | Mar 2003 | B1 |
6552301 | Herman et al. | Apr 2003 | B2 |
6563079 | Umetsu et al. | May 2003 | B1 |
6573026 | Aitken et al. | Jun 2003 | B1 |
6592703 | Habeck et al. | Jul 2003 | B1 |
6635849 | Okawa et al. | Oct 2003 | B1 |
6635850 | Amako et al. | Oct 2003 | B2 |
6720519 | Liu et al. | Apr 2004 | B2 |
6729161 | Miura et al. | May 2004 | B1 |
6737345 | Lin et al. | May 2004 | B1 |
6744009 | Xuan et al. | Jun 2004 | B1 |
6754429 | Borrelli et al. | Jun 2004 | B2 |
6787732 | Xuan et al. | Sep 2004 | B1 |
6794605 | Park et al. | Sep 2004 | B2 |
6800237 | Yamamoto et al. | Oct 2004 | B1 |
6800831 | Hoetzel | Oct 2004 | B1 |
6906795 | Goto et al. | Jun 2005 | B2 |
6958094 | Ohmi et al. | Oct 2005 | B2 |
6990285 | Schroeder et al. | Jan 2006 | B2 |
6992026 | Fukuyo et al. | Jan 2006 | B2 |
6992030 | Paulson | Jan 2006 | B2 |
7008817 | Kim et al. | Mar 2006 | B2 |
7009138 | Amako et al. | Mar 2006 | B2 |
7019257 | Stevens | Mar 2006 | B2 |
7033519 | Taylor et al. | Apr 2006 | B2 |
7043072 | Goto et al. | May 2006 | B2 |
7057135 | Li | Jun 2006 | B2 |
7084073 | Lee et al. | Aug 2006 | B2 |
7211899 | Taniguchi et al. | May 2007 | B2 |
7337540 | Kurosawa | Mar 2008 | B2 |
7353829 | Wachter et al. | Apr 2008 | B1 |
7407889 | Tsunetomo et al. | Aug 2008 | B2 |
7511886 | Schultz et al. | Mar 2009 | B2 |
7528967 | Okawauchi et al. | May 2009 | B2 |
7534734 | Ellison | May 2009 | B2 |
7535634 | Savchenkov et al. | May 2009 | B1 |
7626665 | Koike | Dec 2009 | B2 |
7633033 | Thomas et al. | Dec 2009 | B2 |
7642483 | You et al. | Jan 2010 | B2 |
7649153 | Haight et al. | Jan 2010 | B2 |
7683370 | Kugimiya et al. | Mar 2010 | B2 |
7726532 | Gonoe | Jun 2010 | B2 |
7749809 | How et al. | Jul 2010 | B2 |
7763559 | Kurachi et al. | Jul 2010 | B2 |
7772115 | Hiatt | Aug 2010 | B2 |
7777275 | Lee | Aug 2010 | B2 |
7836727 | Nishiyama | Nov 2010 | B2 |
7880117 | Li et al. | Feb 2011 | B2 |
7981810 | Subramonium et al. | Jul 2011 | B1 |
7994503 | Hino et al. | Aug 2011 | B2 |
8007913 | Coppola et al. | Aug 2011 | B2 |
8021950 | Abadeer et al. | Sep 2011 | B1 |
8104385 | Hayashi et al. | Jan 2012 | B2 |
8118971 | Hori et al. | Feb 2012 | B2 |
8119462 | Takasawa et al. | Feb 2012 | B2 |
8132427 | Brown et al. | Mar 2012 | B2 |
8163649 | Koike et al. | Apr 2012 | B2 |
8168514 | Garner et al. | May 2012 | B2 |
8245539 | Lu et al. | Aug 2012 | B2 |
8245540 | Abramov et al. | Aug 2012 | B2 |
8257603 | Logunov et al. | Sep 2012 | B2 |
8269138 | Garner et al. | Sep 2012 | B2 |
8283595 | Fukuyo et al. | Oct 2012 | B2 |
8292141 | Cox et al. | Oct 2012 | B2 |
8296066 | Zhao et al. | Oct 2012 | B2 |
8303754 | Higuchi | Nov 2012 | B2 |
8307672 | Hidaka et al. | Nov 2012 | B2 |
8327666 | Harvey et al. | Dec 2012 | B2 |
8338957 | Nilsson | Dec 2012 | B2 |
8341976 | Dejneka et al. | Jan 2013 | B2 |
8347651 | Abramov et al. | Jan 2013 | B2 |
8358888 | Ramachandran | Jan 2013 | B2 |
8384083 | Mori et al. | Feb 2013 | B2 |
8411459 | Yu et al. | Apr 2013 | B2 |
8444906 | Lee et al. | May 2013 | B2 |
8448471 | Kumatani et al. | May 2013 | B2 |
8455378 | Yanase et al. | Jun 2013 | B2 |
8482189 | Goto et al. | Jul 2013 | B2 |
8518280 | Hsu et al. | Aug 2013 | B2 |
8531679 | Scheiner | Sep 2013 | B2 |
8533942 | Ohashi et al. | Sep 2013 | B2 |
8535997 | Kawakami et al. | Sep 2013 | B2 |
8549881 | Brown et al. | Oct 2013 | B2 |
8584354 | Cornejo et al. | Nov 2013 | B2 |
8584490 | Garner et al. | Nov 2013 | B2 |
8592716 | Abramov et al. | Nov 2013 | B2 |
8604380 | Howerton et al. | Dec 2013 | B2 |
8607590 | Glaesemann et al. | Dec 2013 | B2 |
8616024 | Cornejo et al. | Dec 2013 | B2 |
8635887 | Black et al. | Jan 2014 | B2 |
8643129 | Laming et al. | Feb 2014 | B2 |
8670182 | Tanida et al. | Mar 2014 | B2 |
8680489 | Martinez et al. | Mar 2014 | B2 |
8685838 | Fukuyo et al. | Apr 2014 | B2 |
8697228 | Carre et al. | Apr 2014 | B2 |
8699037 | Cox | Apr 2014 | B2 |
8720228 | Li | May 2014 | B2 |
8742588 | Nilsson et al. | Jun 2014 | B2 |
8796165 | Ellison et al. | Aug 2014 | B2 |
8826696 | Brown et al. | Sep 2014 | B2 |
8835335 | Murata et al. | Sep 2014 | B2 |
8852698 | Fukumitsu | Oct 2014 | B2 |
8871641 | Nilsson | Oct 2014 | B2 |
8873067 | Lee et al. | Oct 2014 | B2 |
8887529 | Lu et al. | Nov 2014 | B2 |
8916798 | Pluss | Dec 2014 | B2 |
8943855 | Gomez et al. | Feb 2015 | B2 |
8971053 | Kariya et al. | Mar 2015 | B2 |
8980727 | Lei et al. | Mar 2015 | B1 |
8993465 | Ellison et al. | Mar 2015 | B2 |
8999179 | Yu et al. | Apr 2015 | B2 |
9023421 | Nakashima | May 2015 | B2 |
9024443 | Inaba et al. | May 2015 | B2 |
9093381 | Barriere et al. | Jul 2015 | B2 |
9138913 | Arai et al. | Sep 2015 | B2 |
9140539 | Scheiner | Sep 2015 | B2 |
9227868 | Matsumoto et al. | Jan 2016 | B2 |
9232652 | Fushie et al. | Jan 2016 | B2 |
9263300 | Tsai et al. | Feb 2016 | B2 |
9278886 | Boek et al. | Mar 2016 | B2 |
9285593 | Laskin et al. | Mar 2016 | B1 |
9290407 | Barefoot et al. | Mar 2016 | B2 |
9296066 | Hosseini et al. | Mar 2016 | B2 |
9296646 | Burket et al. | Mar 2016 | B2 |
9305470 | Miki et al. | Apr 2016 | B2 |
9321680 | Chuang et al. | Apr 2016 | B2 |
9324791 | Tamemoto | Apr 2016 | B2 |
9327381 | Lee et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9377583 | Giaretta et al. | Jun 2016 | B2 |
9425125 | Shen | Aug 2016 | B2 |
9442377 | Ongayi et al. | Sep 2016 | B1 |
9446590 | Chen et al. | Sep 2016 | B2 |
9481598 | Bergh et al. | Nov 2016 | B2 |
9517963 | Marjanovic et al. | Dec 2016 | B2 |
9676046 | Hamada et al. | Jun 2017 | B2 |
9745220 | Burket et al. | Aug 2017 | B2 |
9758876 | Shorey et al. | Sep 2017 | B2 |
9760986 | Ramamurthy et al. | Sep 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9832868 | Wright et al. | Nov 2017 | B1 |
9850160 | Marjanovic et al. | Dec 2017 | B2 |
9953912 | Goers | Apr 2018 | B2 |
10144093 | Marjanovic et al. | Dec 2018 | B2 |
10203476 | Cui | Feb 2019 | B2 |
20010009250 | Herman et al. | Jul 2001 | A1 |
20020005805 | Ogura et al. | Jan 2002 | A1 |
20020041946 | Abe | Apr 2002 | A1 |
20020046997 | Nam et al. | Apr 2002 | A1 |
20020051563 | Goto et al. | May 2002 | A1 |
20020052125 | Shaffer et al. | May 2002 | A1 |
20020062563 | Koide et al. | May 2002 | A1 |
20020082466 | Han | Jun 2002 | A1 |
20020097486 | Yamaguchi et al. | Jul 2002 | A1 |
20020110639 | Bruns | Aug 2002 | A1 |
20020137344 | Jordan et al. | Sep 2002 | A1 |
20020180015 | Yamaguchi et al. | Dec 2002 | A1 |
20020182871 | Lu et al. | Dec 2002 | A1 |
20030006221 | Hong et al. | Jan 2003 | A1 |
20030007772 | Borrelli et al. | Jan 2003 | A1 |
20030045420 | Koyama et al. | Mar 2003 | A1 |
20030137056 | Taniguchi et al. | Jul 2003 | A1 |
20030150839 | Kobayashi et al. | Aug 2003 | A1 |
20030206651 | Goto et al. | Nov 2003 | A1 |
20030217568 | Koyo et al. | Nov 2003 | A1 |
20030235385 | Taylor et al. | Dec 2003 | A1 |
20040000534 | Lipinski | Jan 2004 | A1 |
20040013951 | Wang | Jan 2004 | A1 |
20040022487 | Nagasaka et al. | Feb 2004 | A1 |
20040058476 | Enquist et al. | Mar 2004 | A1 |
20040061705 | Yoon et al. | Apr 2004 | A1 |
20040092105 | Lee et al. | May 2004 | A1 |
20040094524 | Stevens | May 2004 | A1 |
20040152229 | Najafi et al. | Aug 2004 | A1 |
20040188393 | Li et al. | Sep 2004 | A1 |
20040217455 | Shiono et al. | Nov 2004 | A1 |
20040221615 | Postupack et al. | Nov 2004 | A1 |
20040223704 | Fujii et al. | Nov 2004 | A1 |
20040256619 | Nomura et al. | Dec 2004 | A1 |
20050009315 | Kim et al. | Jan 2005 | A1 |
20050023246 | McEntee et al. | Feb 2005 | A1 |
20050024743 | Camy-Peyret | Feb 2005 | A1 |
20050029238 | Chen | Feb 2005 | A1 |
20050033184 | Christoph | Feb 2005 | A1 |
20050079650 | Mancini et al. | Apr 2005 | A1 |
20050098458 | Gruetzmacher et al. | May 2005 | A1 |
20050098548 | Kobayashi et al. | May 2005 | A1 |
20050106874 | Matsui et al. | May 2005 | A1 |
20050112506 | Czech et al. | May 2005 | A1 |
20050115938 | Sawaki et al. | Jun 2005 | A1 |
20050142364 | Aitken | Jun 2005 | A1 |
20050142812 | Kurosawa | Jun 2005 | A1 |
20050158538 | Li et al. | Jul 2005 | A1 |
20050202683 | Wang et al. | Sep 2005 | A1 |
20050266320 | Amemiya | Dec 2005 | A1 |
20050274702 | Deshi | Dec 2005 | A1 |
20060011593 | Fukuyo et al. | Jan 2006 | A1 |
20060012766 | Klosner et al. | Jan 2006 | A1 |
20060019814 | Baik et al. | Jan 2006 | A1 |
20060039160 | Cassarly et al. | Feb 2006 | A1 |
20060109874 | Shiozaki et al. | May 2006 | A1 |
20060127679 | Gulati et al. | Jun 2006 | A1 |
20060151450 | You et al. | Jul 2006 | A1 |
20060192978 | Laguarta et al. | Aug 2006 | A1 |
20060194916 | Zhong et al. | Aug 2006 | A1 |
20060207976 | Bovatsek et al. | Sep 2006 | A1 |
20060219676 | Taylor et al. | Oct 2006 | A1 |
20060227440 | Gluckstad | Oct 2006 | A1 |
20060270232 | Kawamura et al. | Nov 2006 | A1 |
20060289410 | Morita et al. | Dec 2006 | A1 |
20060290232 | Fujita et al. | Dec 2006 | A1 |
20060292877 | Lake | Dec 2006 | A1 |
20070045779 | Hiatt | Mar 2007 | A1 |
20070051706 | Bovatsek et al. | Mar 2007 | A1 |
20070111390 | Komura et al. | May 2007 | A1 |
20070111480 | Maruyama et al. | May 2007 | A1 |
20070117044 | Ogihara et al. | May 2007 | A1 |
20070119831 | Kandt | May 2007 | A1 |
20070132977 | Komatsuda | Jun 2007 | A1 |
20070138151 | Tanaka et al. | Jun 2007 | A1 |
20070177116 | Amako | Aug 2007 | A1 |
20070181543 | Urairi et al. | Aug 2007 | A1 |
20070190340 | Coppola et al. | Aug 2007 | A1 |
20070202619 | Tamura et al. | Aug 2007 | A1 |
20070232028 | Lee et al. | Oct 2007 | A1 |
20070298529 | Maeda et al. | Dec 2007 | A1 |
20080000884 | Sugiura et al. | Jan 2008 | A1 |
20080099444 | Misawa et al. | May 2008 | A1 |
20080194109 | Ishibashi et al. | Aug 2008 | A1 |
20080206690 | Kennedy et al. | Aug 2008 | A1 |
20080212185 | Fuse | Sep 2008 | A1 |
20080245109 | Flemming et al. | Oct 2008 | A1 |
20080314883 | Juodkazis et al. | Dec 2008 | A1 |
20090013724 | Koyo et al. | Jan 2009 | A1 |
20090029189 | Moriwaki et al. | Jan 2009 | A1 |
20090032510 | Ando et al. | Feb 2009 | A1 |
20090075087 | Xu et al. | Mar 2009 | A1 |
20090098351 | Kishi | Apr 2009 | A1 |
20090151996 | Mishima et al. | Jun 2009 | A1 |
20090176034 | Ruuttu et al. | Jul 2009 | A1 |
20090183764 | Meyer | Jul 2009 | A1 |
20090219491 | Williams et al. | Sep 2009 | A1 |
20090242528 | Howerton et al. | Oct 2009 | A1 |
20090250446 | Sakamoto | Oct 2009 | A1 |
20090286091 | Danielson et al. | Nov 2009 | A1 |
20090294419 | Abramov et al. | Dec 2009 | A1 |
20090294422 | Lubatschowski et al. | Dec 2009 | A1 |
20090324899 | Feinstein et al. | Dec 2009 | A1 |
20100000259 | Ukrainczyk et al. | Jan 2010 | A1 |
20100015439 | Buether et al. | Jan 2010 | A1 |
20100015454 | Anderson et al. | Jan 2010 | A1 |
20100025387 | Arai et al. | Feb 2010 | A1 |
20100029460 | Shojiya et al. | Feb 2010 | A1 |
20100032087 | Takahashi et al. | Feb 2010 | A1 |
20100050692 | Logunov et al. | Mar 2010 | A1 |
20100068453 | Imai et al. | Mar 2010 | A1 |
20100080961 | Okamura et al. | Apr 2010 | A1 |
20100086741 | Bovatsek et al. | Apr 2010 | A1 |
20100086870 | Ogihara et al. | Apr 2010 | A1 |
20100089631 | Sakaguchi et al. | Apr 2010 | A1 |
20100089882 | Tamura | Apr 2010 | A1 |
20100102042 | Garner et al. | Apr 2010 | A1 |
20100119808 | Li et al. | May 2010 | A1 |
20100119846 | Sawada | May 2010 | A1 |
20100129603 | Blick et al. | May 2010 | A1 |
20100133697 | Nilsson | Jun 2010 | A1 |
20100147813 | Lei et al. | Jun 2010 | A1 |
20100178732 | Wu et al. | Jul 2010 | A1 |
20100206008 | Harvey et al. | Aug 2010 | A1 |
20100252540 | Lei et al. | Oct 2010 | A1 |
20100252959 | Lei et al. | Oct 2010 | A1 |
20100276505 | Smith | Nov 2010 | A1 |
20100279067 | Sabia et al. | Nov 2010 | A1 |
20100279509 | Kim et al. | Nov 2010 | A1 |
20100284027 | Scheiner | Nov 2010 | A1 |
20100287991 | Brown et al. | Nov 2010 | A1 |
20100289115 | Akiyama et al. | Nov 2010 | A1 |
20100289186 | Longo et al. | Nov 2010 | A1 |
20100291353 | Dejneka et al. | Nov 2010 | A1 |
20100292068 | Takaya et al. | Nov 2010 | A1 |
20100307809 | Noda et al. | Dec 2010 | A1 |
20100320179 | Morita et al. | Dec 2010 | A1 |
20100326138 | Kumatani et al. | Dec 2010 | A1 |
20110003619 | Fujii | Jan 2011 | A1 |
20110032467 | Koike | Feb 2011 | A1 |
20110045239 | Takaya et al. | Feb 2011 | A1 |
20110049764 | Lee et al. | Mar 2011 | A1 |
20110049765 | Li et al. | Mar 2011 | A1 |
20110088324 | Wessel | Apr 2011 | A1 |
20110100401 | Fiorentini | May 2011 | A1 |
20110123787 | Tomamoto et al. | May 2011 | A1 |
20110132881 | Liu | Jun 2011 | A1 |
20110132883 | Sheng et al. | Jun 2011 | A1 |
20110183116 | Hung et al. | Jul 2011 | A1 |
20110187025 | Costin, Sr. | Aug 2011 | A1 |
20110189847 | Tsai et al. | Aug 2011 | A1 |
20110195360 | Flemming et al. | Aug 2011 | A1 |
20110201197 | Nilsson et al. | Aug 2011 | A1 |
20110204528 | Matsutani et al. | Aug 2011 | A1 |
20110229687 | Gu et al. | Sep 2011 | A1 |
20110240611 | Sandstroem | Oct 2011 | A1 |
20110248405 | Li et al. | Oct 2011 | A1 |
20110256344 | Ono et al. | Oct 2011 | A1 |
20110259373 | Hotta et al. | Oct 2011 | A1 |
20110259860 | Bass et al. | Oct 2011 | A1 |
20110277507 | Lu et al. | Nov 2011 | A1 |
20110300908 | Grespan et al. | Dec 2011 | A1 |
20110308942 | Liu et al. | Dec 2011 | A1 |
20110316561 | Tinsley et al. | Dec 2011 | A1 |
20110318555 | Bookbinder et al. | Dec 2011 | A1 |
20110318561 | Murata et al. | Dec 2011 | A1 |
20120013196 | Kim et al. | Jan 2012 | A1 |
20120017642 | Teranishi et al. | Jan 2012 | A1 |
20120047951 | Dannoux et al. | Mar 2012 | A1 |
20120047956 | Li | Mar 2012 | A1 |
20120048604 | Cornejo et al. | Mar 2012 | A1 |
20120050692 | Gollier | Mar 2012 | A1 |
20120052302 | Matusick et al. | Mar 2012 | A1 |
20120061440 | Roell | Mar 2012 | A1 |
20120064306 | Kang et al. | Mar 2012 | A1 |
20120092681 | Cox | Apr 2012 | A1 |
20120103018 | Lu et al. | May 2012 | A1 |
20120105095 | Bryant et al. | May 2012 | A1 |
20120111057 | Barefoot et al. | May 2012 | A1 |
20120125892 | Shimoi et al. | May 2012 | A1 |
20120125893 | Shimoi et al. | May 2012 | A1 |
20120129359 | Shimoi et al. | May 2012 | A1 |
20120130004 | Xu et al. | May 2012 | A1 |
20120131958 | Shimoi et al. | May 2012 | A1 |
20120131962 | Mitsugi et al. | May 2012 | A1 |
20120135177 | Cornejo et al. | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120135607 | Shimoi et al. | May 2012 | A1 |
20120135608 | Shimoi et al. | May 2012 | A1 |
20120135852 | Ellison et al. | May 2012 | A1 |
20120135853 | Amin et al. | May 2012 | A1 |
20120141668 | Nakashima | Jun 2012 | A1 |
20120142136 | Horning et al. | Jun 2012 | A1 |
20120145331 | Gomez et al. | Jun 2012 | A1 |
20120168412 | Hooper | Jul 2012 | A1 |
20120196071 | Cornejo et al. | Aug 2012 | A1 |
20120205356 | Pluess | Aug 2012 | A1 |
20120211923 | Garner et al. | Aug 2012 | A1 |
20120214006 | Chen et al. | Aug 2012 | A1 |
20120234049 | Bolton | Sep 2012 | A1 |
20120234807 | Sercel et al. | Sep 2012 | A1 |
20120235969 | Burns et al. | Sep 2012 | A1 |
20120241919 | Mitani | Sep 2012 | A1 |
20120255935 | Kakui et al. | Oct 2012 | A1 |
20120261697 | Margalit et al. | Oct 2012 | A1 |
20120276483 | Ogihara et al. | Nov 2012 | A1 |
20120276743 | Won et al. | Nov 2012 | A1 |
20120299203 | Sugo et al. | Nov 2012 | A1 |
20120299219 | Shimoi et al. | Nov 2012 | A1 |
20120302139 | Darcangelo et al. | Nov 2012 | A1 |
20120308803 | Dejneka et al. | Dec 2012 | A1 |
20130019637 | Sol et al. | Jan 2013 | A1 |
20130029092 | Wakioka | Jan 2013 | A1 |
20130034688 | Koike et al. | Feb 2013 | A1 |
20130044371 | Rupp et al. | Feb 2013 | A1 |
20130050226 | Shenoy et al. | Feb 2013 | A1 |
20130061636 | Imai et al. | Mar 2013 | A1 |
20130068736 | Mielke et al. | Mar 2013 | A1 |
20130075480 | Yokogi et al. | Mar 2013 | A1 |
20130078891 | Lee et al. | Mar 2013 | A1 |
20130089701 | Hooper et al. | Apr 2013 | A1 |
20130091897 | Fujii et al. | Apr 2013 | A1 |
20130105213 | Hu et al. | May 2013 | A1 |
20130118793 | Teshima et al. | May 2013 | A1 |
20130122264 | Fujii et al. | May 2013 | A1 |
20130126573 | Hosseini et al. | May 2013 | A1 |
20130129947 | Harvey et al. | May 2013 | A1 |
20130133367 | Abramov et al. | May 2013 | A1 |
20130135745 | Tanida et al. | May 2013 | A1 |
20130143416 | Norval | Jun 2013 | A1 |
20130149434 | Oh et al. | Jun 2013 | A1 |
20130149494 | Koike et al. | Jun 2013 | A1 |
20130163801 | Ha et al. | Jun 2013 | A1 |
20130167590 | Teranishi et al. | Jul 2013 | A1 |
20130174607 | Wootton et al. | Jul 2013 | A1 |
20130174610 | Teranishi et al. | Jul 2013 | A1 |
20130180285 | Kariya | Jul 2013 | A1 |
20130180665 | Gomez et al. | Jul 2013 | A2 |
20130189806 | Hoshino | Jul 2013 | A1 |
20130192305 | Black et al. | Aug 2013 | A1 |
20130205835 | Giaretta et al. | Aug 2013 | A1 |
20130209731 | Nattermann et al. | Aug 2013 | A1 |
20130210245 | Jackl | Aug 2013 | A1 |
20130213467 | Nattermann et al. | Aug 2013 | A1 |
20130220982 | Thomas et al. | Aug 2013 | A1 |
20130221053 | Zhang | Aug 2013 | A1 |
20130224439 | Zhang et al. | Aug 2013 | A1 |
20130224492 | Bookbinder et al. | Aug 2013 | A1 |
20130228918 | Chen et al. | Sep 2013 | A1 |
20130247615 | Boek et al. | Sep 2013 | A1 |
20130255779 | Aitken et al. | Oct 2013 | A1 |
20130266757 | Giron et al. | Oct 2013 | A1 |
20130270240 | Kondo | Oct 2013 | A1 |
20130280495 | Matsumoto | Oct 2013 | A1 |
20130288010 | Akarapu et al. | Oct 2013 | A1 |
20130291598 | Saito et al. | Nov 2013 | A1 |
20130312460 | Kunishi et al. | Nov 2013 | A1 |
20130323469 | Abramov et al. | Dec 2013 | A1 |
20130330515 | Oh et al. | Dec 2013 | A1 |
20130334185 | Nomaru | Dec 2013 | A1 |
20130337599 | Yun | Dec 2013 | A1 |
20130340480 | Nattermann et al. | Dec 2013 | A1 |
20140015121 | Koizumi et al. | Jan 2014 | A1 |
20140027951 | Srinivas et al. | Jan 2014 | A1 |
20140034374 | Cornejo et al. | Feb 2014 | A1 |
20140034730 | Lee | Feb 2014 | A1 |
20140042202 | Lee | Feb 2014 | A1 |
20140044143 | Clarkson et al. | Feb 2014 | A1 |
20140047957 | Wu | Feb 2014 | A1 |
20140054618 | Li | Feb 2014 | A1 |
20140102146 | Saito et al. | Apr 2014 | A1 |
20140110040 | Cok | Apr 2014 | A1 |
20140113797 | Yamada et al. | Apr 2014 | A1 |
20140116091 | Chuang et al. | May 2014 | A1 |
20140133119 | Kariya et al. | May 2014 | A1 |
20140141217 | Gulati et al. | May 2014 | A1 |
20140147623 | Shorey et al. | May 2014 | A1 |
20140147624 | Streltsov et al. | May 2014 | A1 |
20140154439 | Demartino et al. | Jun 2014 | A1 |
20140165652 | Saito | Jun 2014 | A1 |
20140166199 | Bellman et al. | Jun 2014 | A1 |
20140170378 | Bellman et al. | Jun 2014 | A1 |
20140174131 | Saito et al. | Jun 2014 | A1 |
20140199519 | Schillinger et al. | Jul 2014 | A1 |
20140216108 | Wiegel et al. | Aug 2014 | A1 |
20140231390 | Nukaga et al. | Aug 2014 | A1 |
20140235796 | Ogihara et al. | Aug 2014 | A1 |
20140242375 | Mauro et al. | Aug 2014 | A1 |
20140254004 | Wooder et al. | Sep 2014 | A1 |
20140290310 | Green | Oct 2014 | A1 |
20140300728 | Drescher et al. | Oct 2014 | A1 |
20140320947 | Egerton et al. | Oct 2014 | A1 |
20140333929 | Sung et al. | Nov 2014 | A1 |
20140339207 | Sugiyama et al. | Nov 2014 | A1 |
20140340730 | Bergh et al. | Nov 2014 | A1 |
20140342897 | Amin et al. | Nov 2014 | A1 |
20140347083 | Bryant et al. | Nov 2014 | A1 |
20140361463 | Desimone et al. | Dec 2014 | A1 |
20140376006 | Scheiner | Dec 2014 | A1 |
20150021513 | Kim et al. | Jan 2015 | A1 |
20150027757 | Shin et al. | Jan 2015 | A1 |
20150036065 | Yousefpor et al. | Feb 2015 | A1 |
20150037553 | Mauro | Feb 2015 | A1 |
20150038313 | Hosseini | Feb 2015 | A1 |
20150051060 | Ellison et al. | Feb 2015 | A1 |
20150054136 | Ebefors et al. | Feb 2015 | A1 |
20150060402 | Burkett et al. | Mar 2015 | A1 |
20150075221 | Kawaguchi et al. | Mar 2015 | A1 |
20150075222 | Mader | Mar 2015 | A1 |
20150093908 | Reddy et al. | Apr 2015 | A1 |
20150102498 | Enicks et al. | Apr 2015 | A1 |
20150110442 | Zimmel et al. | Apr 2015 | A1 |
20150118522 | Hosseini | Apr 2015 | A1 |
20150136743 | Hosseini | May 2015 | A1 |
20150140241 | Hosseini | May 2015 | A1 |
20150140299 | Ellison et al. | May 2015 | A1 |
20150151380 | Hosseini | Jun 2015 | A1 |
20150158120 | Courvoisier et al. | Jun 2015 | A1 |
20150165548 | Marjanovic et al. | Jun 2015 | A1 |
20150165560 | Hackert et al. | Jun 2015 | A1 |
20150165562 | Marjanovic et al. | Jun 2015 | A1 |
20150165563 | Manley et al. | Jun 2015 | A1 |
20150166391 | Marjanovic et al. | Jun 2015 | A1 |
20150166393 | Marjanovic et al. | Jun 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150166395 | Marjanovic et al. | Jun 2015 | A1 |
20150166396 | Marjanovic et al. | Jun 2015 | A1 |
20150166397 | Marjanovic et al. | Jun 2015 | A1 |
20150173191 | Takahashi | Jun 2015 | A1 |
20150183679 | Saito | Jul 2015 | A1 |
20150232369 | Marjanovic et al. | Aug 2015 | A1 |
20150274583 | An et al. | Oct 2015 | A1 |
20150299018 | Bhuyan et al. | Oct 2015 | A1 |
20150306847 | Bellman et al. | Oct 2015 | A1 |
20150329415 | Bellman et al. | Nov 2015 | A1 |
20150360991 | Grundmueller et al. | Dec 2015 | A1 |
20150367442 | Bovatsek et al. | Dec 2015 | A1 |
20150368145 | Senshu et al. | Dec 2015 | A1 |
20150376050 | Nakamura et al. | Dec 2015 | A1 |
20160008927 | Grundmueller et al. | Jan 2016 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160023922 | Addiego et al. | Jan 2016 | A1 |
20160026842 | Withers et al. | Jan 2016 | A1 |
20160031745 | Ortner et al. | Feb 2016 | A1 |
20160035587 | Keech et al. | Feb 2016 | A1 |
20160059359 | Krueger et al. | Mar 2016 | A1 |
20160060156 | Krueger et al. | Mar 2016 | A1 |
20160102009 | Boek et al. | Apr 2016 | A1 |
20160107925 | Burket et al. | Apr 2016 | A1 |
20160122229 | Bowden | May 2016 | A1 |
20160145149 | Burket et al. | May 2016 | A1 |
20160152516 | Bazemore et al. | Jun 2016 | A1 |
20160166395 | Weiman | Jun 2016 | A9 |
20160199944 | Hosseini | Jul 2016 | A1 |
20160200621 | N'Gom et al. | Jul 2016 | A1 |
20160201474 | Slavens et al. | Jul 2016 | A1 |
20160204126 | Amano | Jul 2016 | A1 |
20160208387 | Liu et al. | Jul 2016 | A1 |
20160219704 | Vandemeer et al. | Jul 2016 | A1 |
20160237571 | Liu et al. | Aug 2016 | A1 |
20160280580 | Bohme | Sep 2016 | A1 |
20160282584 | Cui | Sep 2016 | A1 |
20160289669 | Fan et al. | Oct 2016 | A1 |
20160290791 | Buono et al. | Oct 2016 | A1 |
20160305764 | Cui et al. | Oct 2016 | A1 |
20160311717 | Nieber et al. | Oct 2016 | A1 |
20160312365 | Cordonier et al. | Oct 2016 | A1 |
20160322291 | Goers | Nov 2016 | A1 |
20160327744 | Giaretta et al. | Nov 2016 | A1 |
20160334203 | Cui et al. | Nov 2016 | A1 |
20160351410 | Fu et al. | Dec 2016 | A1 |
20160352023 | Dang et al. | Dec 2016 | A1 |
20160362331 | Castle et al. | Dec 2016 | A1 |
20160368100 | Marjanovic et al. | Dec 2016 | A1 |
20170002601 | Bergh et al. | Jan 2017 | A1 |
20170008122 | Wieland et al. | Jan 2017 | A1 |
20170011914 | Sumant et al. | Jan 2017 | A1 |
20170029957 | Moon et al. | Feb 2017 | A1 |
20170036419 | Adib et al. | Feb 2017 | A1 |
20170103249 | Jin et al. | Apr 2017 | A1 |
20170119891 | Lal et al. | May 2017 | A1 |
20170160077 | Featherstone et al. | Jun 2017 | A1 |
20170169847 | Tamaki | Jun 2017 | A1 |
20170228884 | Yoshida | Aug 2017 | A1 |
20170252859 | Kumkar et al. | Sep 2017 | A1 |
20170276951 | Kumkar et al. | Sep 2017 | A1 |
20170352553 | Bellman | Dec 2017 | A1 |
20170358447 | Tsunetomo et al. | Dec 2017 | A1 |
20170363417 | Cui et al. | Dec 2017 | A1 |
20170372899 | Yang et al. | Dec 2017 | A1 |
20180005922 | Levesque et al. | Jan 2018 | A1 |
20180033128 | Sobieranski et al. | Feb 2018 | A1 |
20180044223 | Hayashi | Feb 2018 | A1 |
20180057390 | Hackert et al. | Mar 2018 | A1 |
20180062342 | Comstock, II et al. | Mar 2018 | A1 |
20180068868 | Jaramillo et al. | Mar 2018 | A1 |
20180093914 | Akarapu et al. | Apr 2018 | A1 |
20180215647 | Ortner et al. | Aug 2018 | A1 |
20180340262 | Hiranuma | Nov 2018 | A1 |
20180342450 | Huang et al. | Nov 2018 | A1 |
20180342451 | Dahlberg et al. | Nov 2018 | A1 |
20190012514 | Jin et al. | Jan 2019 | A1 |
20190185373 | Hu et al. | Jun 2019 | A1 |
20200156990 | Sakade et al. | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2004276725 | Apr 2005 | AU |
2011101310 | Nov 2011 | AU |
2530607 | Apr 2005 | CA |
1096936 | Jan 1995 | CN |
1196562 | Oct 1998 | CN |
2388062 | Jul 2000 | CN |
1473087 | Feb 2004 | CN |
1485812 | Mar 2004 | CN |
1200793 | May 2005 | CN |
1619778 | May 2005 | CN |
1636912 | Jul 2005 | CN |
1735568 | Feb 2006 | CN |
1761378 | Apr 2006 | CN |
1845812 | Oct 2006 | CN |
1283409 | Nov 2006 | CN |
1967815 | May 2007 | CN |
101048255 | Oct 2007 | CN |
101238572 | Aug 2008 | CN |
101386466 | Mar 2009 | CN |
101427427 | May 2009 | CN |
100494879 | Jun 2009 | CN |
101502914 | Aug 2009 | CN |
100546004 | Sep 2009 | CN |
100555601 | Oct 2009 | CN |
101602148 | Dec 2009 | CN |
101610870 | Dec 2009 | CN |
201357287 | Dec 2009 | CN |
101631739 | Jan 2010 | CN |
101637849 | Feb 2010 | CN |
201471092 | May 2010 | CN |
101722367 | Jun 2010 | CN |
101862907 | Oct 2010 | CN |
101965242 | Feb 2011 | CN |
102046545 | May 2011 | CN |
102060437 | May 2011 | CN |
102246292 | Nov 2011 | CN |
102300820 | Dec 2011 | CN |
102304323 | Jan 2012 | CN |
102319960 | Jan 2012 | CN |
102326232 | Jan 2012 | CN |
102343631 | Feb 2012 | CN |
102356049 | Feb 2012 | CN |
102356050 | Feb 2012 | CN |
102428047 | Apr 2012 | CN |
102485405 | Jun 2012 | CN |
102540474 | Jul 2012 | CN |
102574246 | Jul 2012 | CN |
102585696 | Jul 2012 | CN |
102596830 | Jul 2012 | CN |
102649199 | Aug 2012 | CN |
102672355 | Sep 2012 | CN |
102795596 | Nov 2012 | CN |
102898014 | Jan 2013 | CN |
102916081 | Feb 2013 | CN |
102923939 | Feb 2013 | CN |
102958642 | Mar 2013 | CN |
103013374 | Apr 2013 | CN |
103079747 | May 2013 | CN |
103143841 | Jun 2013 | CN |
103159401 | Jun 2013 | CN |
203021443 | Jun 2013 | CN |
103237771 | Aug 2013 | CN |
103273195 | Sep 2013 | CN |
103316990 | Sep 2013 | CN |
103347830 | Oct 2013 | CN |
103359947 | Oct 2013 | CN |
103359948 | Oct 2013 | CN |
103460368 | Dec 2013 | CN |
103531414 | Jan 2014 | CN |
103534216 | Jan 2014 | CN |
103746027 | Apr 2014 | CN |
203509350 | Apr 2014 | CN |
104334507 | Feb 2015 | CN |
104344202 | Feb 2015 | CN |
104620378 | May 2015 | CN |
104897062 | Sep 2015 | CN |
105228788 | Jan 2016 | CN |
105246850 | Jan 2016 | CN |
105392593 | Mar 2016 | CN |
105693102 | Jun 2016 | CN |
105859127 | Aug 2016 | CN |
106029286 | Oct 2016 | CN |
106132627 | Nov 2016 | CN |
107108334 | Aug 2017 | CN |
107108338 | Aug 2017 | CN |
108191258 | Jun 2018 | CN |
2231330 | Jan 1974 | DE |
10322376 | Dec 2004 | DE |
102006035555 | Jan 2008 | DE |
102010003817 | Oct 2011 | DE |
102011000768 | Aug 2012 | DE |
102012010635 | Nov 2013 | DE |
102012110971 | May 2014 | DE |
102013103370 | Oct 2014 | DE |
102013223637 | May 2015 | DE |
102014113339 | Mar 2016 | DE |
0247993 | Dec 1987 | EP |
0270897 | Jun 1988 | EP |
0280918 | Sep 1988 | EP |
0393381 | Oct 1990 | EP |
0938946 | Sep 1999 | EP |
1043110 | Oct 2000 | EP |
1159104 | Dec 2001 | EP |
1164113 | Dec 2001 | EP |
1412131 | Apr 2004 | EP |
1449810 | Aug 2004 | EP |
1609559 | Dec 2005 | EP |
1614665 | Jan 2006 | EP |
1651943 | May 2006 | EP |
1714730 | Oct 2006 | EP |
1990125 | Nov 2008 | EP |
2020273 | Feb 2009 | EP |
2133170 | Dec 2009 | EP |
2202545 | Jun 2010 | EP |
2253414 | Nov 2010 | EP |
2398746 | Dec 2011 | EP |
2543065 | Jan 2013 | EP |
2574983 | Apr 2013 | EP |
2600397 | Jun 2013 | EP |
2754524 | Jul 2014 | EP |
2781296 | Sep 2014 | EP |
2783784 | Oct 2014 | EP |
2831913 | Feb 2015 | EP |
2859984 | Apr 2015 | EP |
2922793 | Sep 2015 | EP |
3166372 | May 2017 | EP |
3288906 | Mar 2018 | EP |
2989294 | Oct 2013 | FR |
1242172 | Aug 1971 | GB |
2481190 | Dec 2011 | GB |
201102390 | Mar 2013 | IN |
55-130839 | Oct 1980 | JP |
56-129261 | Oct 1981 | JP |
56-160893 | Dec 1981 | JP |
60-220340 | Nov 1985 | JP |
64-077001 | Mar 1989 | JP |
01-179770 | Jul 1989 | JP |
03-252384 | Nov 1991 | JP |
04-349132 | Dec 1992 | JP |
06-079486 | Mar 1994 | JP |
06-318756 | Nov 1994 | JP |
09-106243 | Apr 1997 | JP |
10-263873 | Oct 1998 | JP |
11-197498 | Jul 1999 | JP |
11-269683 | Oct 1999 | JP |
11-297703 | Oct 1999 | JP |
11-330597 | Nov 1999 | JP |
11-347758 | Dec 1999 | JP |
2000-010289 | Jan 2000 | JP |
2000-301372 | Oct 2000 | JP |
2000-302488 | Oct 2000 | JP |
2001-105398 | Apr 2001 | JP |
2001106545 | Apr 2001 | JP |
2001-138083 | May 2001 | JP |
2002-028799 | Jan 2002 | JP |
2002-154846 | May 2002 | JP |
2002-210730 | Jul 2002 | JP |
2002-228818 | Aug 2002 | JP |
2003-017503 | Jan 2003 | JP |
2003-062756 | Mar 2003 | JP |
2003-114400 | Apr 2003 | JP |
2003-148931 | May 2003 | JP |
2003-154517 | May 2003 | JP |
2003-181668 | Jul 2003 | JP |
2003-238178 | Aug 2003 | JP |
2004-190043 | Jul 2004 | JP |
2004-209675 | Jul 2004 | JP |
2004-255562 | Sep 2004 | JP |
2004-330236 | Nov 2004 | JP |
2004-351494 | Dec 2004 | JP |
2004-363212 | Dec 2004 | JP |
2005-000952 | Jan 2005 | JP |
2005019576 | Jan 2005 | JP |
2005-074663 | Mar 2005 | JP |
2005-104819 | Apr 2005 | JP |
2005-205440 | Aug 2005 | JP |
2005-257339 | Sep 2005 | JP |
2005-279755 | Oct 2005 | JP |
2005-288503 | Oct 2005 | JP |
2005-306702 | Nov 2005 | JP |
2006-130691 | May 2006 | JP |
3775250 | May 2006 | JP |
3775410 | May 2006 | JP |
2006-161124 | Jun 2006 | JP |
2006-248885 | Sep 2006 | JP |
3823108 | Sep 2006 | JP |
2006-290630 | Oct 2006 | JP |
2007-021548 | Feb 2007 | JP |
2007-042741 | Feb 2007 | JP |
2007-067031 | Mar 2007 | JP |
2007-196277 | Aug 2007 | JP |
2007-253203 | Oct 2007 | JP |
2007-260896 | Oct 2007 | JP |
2008-094641 | Apr 2008 | JP |
2008-156200 | Jul 2008 | JP |
2008-522950 | Jul 2008 | JP |
2008-247639 | Oct 2008 | JP |
2008-273783 | Nov 2008 | JP |
2008-288577 | Nov 2008 | JP |
4349132 | Oct 2009 | JP |
4418282 | Feb 2010 | JP |
2010-046761 | Mar 2010 | JP |
2010-074017 | Apr 2010 | JP |
2010-539288 | Dec 2010 | JP |
4592855 | Dec 2010 | JP |
2011-011212 | Jan 2011 | JP |
2011-037707 | Feb 2011 | JP |
2011-049398 | Mar 2011 | JP |
4672689 | Apr 2011 | JP |
2011-517299 | Jun 2011 | JP |
2011-143434 | Jul 2011 | JP |
2011-178642 | Sep 2011 | JP |
2011-228517 | Nov 2011 | JP |
2011-251872 | Dec 2011 | JP |
2012-024782 | Feb 2012 | JP |
2012-028533 | Feb 2012 | JP |
2012-031018 | Feb 2012 | JP |
4880820 | Feb 2012 | JP |
2012-506837 | Mar 2012 | JP |
2012-159749 | Aug 2012 | JP |
2012-517957 | Aug 2012 | JP |
2012-187618 | Oct 2012 | JP |
2013-007842 | Jan 2013 | JP |
2013-031879 | Feb 2013 | JP |
2013-043808 | Mar 2013 | JP |
2013-075802 | Apr 2013 | JP |
2013-091578 | May 2013 | JP |
2013-121908 | Jun 2013 | JP |
5274085 | Aug 2013 | JP |
2013-178371 | Sep 2013 | JP |
2013-187247 | Sep 2013 | JP |
2013-536081 | Sep 2013 | JP |
5300544 | Sep 2013 | JP |
2013-203630 | Oct 2013 | JP |
2013-203631 | Oct 2013 | JP |
2013-220958 | Oct 2013 | JP |
2013-223886 | Oct 2013 | JP |
5318748 | Oct 2013 | JP |
2013-245153 | Dec 2013 | JP |
2015-501531 | Jan 2015 | JP |
2015-030040 | Feb 2015 | JP |
2015-513804 | May 2015 | JP |
2015-129076 | Jul 2015 | JP |
2015-519722 | Jul 2015 | JP |
2015-146410 | Aug 2015 | JP |
2016-508069 | Mar 2016 | JP |
2018-518445 | Jul 2018 | JP |
10-2002-0038707 | May 2002 | KR |
10-2002-0066005 | Aug 2002 | KR |
10-2009-0057161 | Jun 2009 | KR |
2010-0120297 | Nov 2010 | KR |
10-1020621 | Mar 2011 | KR |
2011-0046953 | May 2011 | KR |
2011-0121637 | Nov 2011 | KR |
10-2012-0015366 | Feb 2012 | KR |
10-1120471 | Mar 2012 | KR |
10-1159697 | Jun 2012 | KR |
10-2012-0074508 | Jul 2012 | KR |
2012-0102675 | Sep 2012 | KR |
2013-0031380 | Mar 2013 | KR |
10-1259349 | Apr 2013 | KR |
10-1269474 | May 2013 | KR |
2013-0079395 | Jul 2013 | KR |
10-2013-0111269 | Oct 2013 | KR |
10-2013-0124646 | Nov 2013 | KR |
10-1344368 | Dec 2013 | KR |
10-2014-0022980 | Feb 2014 | KR |
10-2014-0022981 | Feb 2014 | KR |
10-2014-0064220 | May 2014 | KR |
10-1423338 | Jul 2014 | KR |
10-2014-0112652 | Sep 2014 | KR |
2015-0016176 | Feb 2015 | KR |
200842313 | Nov 2008 | TW |
201027601 | Jul 2010 | TW |
201041027 | Nov 2010 | TW |
201041118 | Nov 2010 | TW |
201212755 | Mar 2012 | TW |
201226345 | Jul 2012 | TW |
201303259 | Jan 2013 | TW |
201311592 | Mar 2013 | TW |
201331136 | Aug 2013 | TW |
201339111 | Oct 2013 | TW |
201429897 | Aug 2014 | TW |
201610602 | Mar 2016 | TW |
201621267 | Jun 2016 | TW |
201806082 | Feb 2018 | TW |
8902877 | Apr 1989 | WO |
9821154 | May 1998 | WO |
9929243 | Jun 1999 | WO |
9963900 | Dec 1999 | WO |
0051778 | Sep 2000 | WO |
0133621 | May 2001 | WO |
2002081142 | Oct 2002 | WO |
2003007370 | Jan 2003 | WO |
0311522 | Feb 2003 | WO |
0321004 | Mar 2003 | WO |
2004110693 | Dec 2004 | WO |
2005031300 | Apr 2005 | WO |
2005033033 | Apr 2005 | WO |
2005034594 | Apr 2005 | WO |
2006073098 | Jul 2006 | WO |
2006112822 | Oct 2006 | WO |
2007094160 | Aug 2007 | WO |
2007094233 | Aug 2007 | WO |
2007096958 | Aug 2007 | WO |
2008012186 | Jan 2008 | WO |
2008080182 | Jul 2008 | WO |
2008102848 | Aug 2008 | WO |
2008110061 | Sep 2008 | WO |
2008128612 | Oct 2008 | WO |
2009072810 | Jun 2009 | WO |
2009114375 | Sep 2009 | WO |
2010035736 | Apr 2010 | WO |
2010087483 | Aug 2010 | WO |
2010096359 | Aug 2010 | WO |
2010111609 | Sep 2010 | WO |
2010129459 | Nov 2010 | WO |
2011025908 | Mar 2011 | WO |
2011056781 | May 2011 | WO |
2011109648 | Sep 2011 | WO |
2012006736 | Jan 2012 | WO |
2012011230 | Jan 2012 | WO |
2012027220 | Mar 2012 | WO |
2012060277 | May 2012 | WO |
2012075072 | Jun 2012 | WO |
2012108052 | Aug 2012 | WO |
2012161317 | Nov 2012 | WO |
2012166753 | Dec 2012 | WO |
2013008344 | Jan 2013 | WO |
2013016157 | Jan 2013 | WO |
2013022148 | Feb 2013 | WO |
2013030848 | Mar 2013 | WO |
2013043173 | Mar 2013 | WO |
2013084877 | Jun 2013 | WO |
2013084879 | Jun 2013 | WO |
2013130718 | Sep 2013 | WO |
2013134237 | Sep 2013 | WO |
2013138802 | Sep 2013 | WO |
2013147694 | Oct 2013 | WO |
2013150990 | Oct 2013 | WO |
2013153195 | Oct 2013 | WO |
2014010490 | Jan 2014 | WO |
2014012125 | Jan 2014 | WO |
2014028022 | Feb 2014 | WO |
2014038326 | Mar 2014 | WO |
2014064492 | May 2014 | WO |
2014079478 | May 2014 | WO |
2014079570 | May 2014 | WO |
2014085660 | Jun 2014 | WO |
2014085663 | Jun 2014 | WO |
2014111385 | Jul 2014 | WO |
2014111794 | Jul 2014 | WO |
2014121261 | Aug 2014 | WO |
2014148020 | Sep 2014 | WO |
2014161535 | Oct 2014 | WO |
2014161534 | Nov 2014 | WO |
2014205301 | Dec 2014 | WO |
2015029286 | Mar 2015 | WO |
2015077113 | May 2015 | WO |
2015094898 | Jun 2015 | WO |
2015095088 | Jun 2015 | WO |
2015095090 | Jun 2015 | WO |
2015095146 | Jun 2015 | WO |
2015095151 | Jun 2015 | WO |
2015100056 | Jul 2015 | WO |
2015113023 | Jul 2015 | WO |
2015127583 | Sep 2015 | WO |
2015157202 | Oct 2015 | WO |
2016005455 | Jan 2016 | WO |
2016010954 | Jan 2016 | WO |
2016069821 | May 2016 | WO |
2016089844 | Jun 2016 | WO |
2016118683 | Jul 2016 | WO |
2016154284 | Sep 2016 | WO |
WO-2016143665 | Sep 2016 | WO |
2016178966 | Nov 2016 | WO |
2016176171 | Nov 2016 | WO |
2016201027 | Dec 2016 | WO |
2017038075 | Mar 2017 | WO |
2017062798 | Apr 2017 | WO |
2017127489 | Jul 2017 | WO |
2017210376 | Dec 2017 | WO |
2018162385 | Sep 2018 | WO |
Entry |
---|
Koike et al; “P-33: Cu—Mn Electrodes for a-Si TFT and Its Electrical Characteristics”; SID Symposium Digest of Technical Papers, 41:1, 1343-1346 (2010). |
Koike et al; “Self-Forming Diffusion Barrier Layer in Cu—Mn Alloy Metallization”; Appl. Phys. Lett. 87, 041911-1-041911-3 (2005). |
Kondo et al., Three-Dimensional Microdrilling of Glass by Multiphoton Process and Chemical Etching, 1999, Japanese Journal of Applied Physics, vol. 38, Part 2, No. 10A (Year: 1999). |
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031. |
Koyama et al. “Laser-micromachining for Ag Ion Exchanged Glasses,” Second International Symposium on Laser Precision Microfabrication, Proc. SPE vol. 4426 (2002) 162-165. |
Kruger et al. “UV laser drilling of SiC for semiconductor device fabrication,” J. Physics:Conference Series 59 (2007) 740-744. |
Kruger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438. |
Kruger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs anc 3 ps”; Applied Surface Science 127-129 (1998) 892-898. |
Kruger et al., “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps”; SPIE vol. 2991, 0277-786X/97, pp. 40-47, (1997). |
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physics A 69 [Suppl.], S883-S886, Springer-Verlag (1999); doi: 10.1007/S003399900300. |
Levy et al. “Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography,” Opt. Lett vol. 35, No. 6, p. 880-882 (2010). |
Li et al. “Thick Polymer cover layers for laser micromachining of fine holes,” Applied Physics A, Sep. 2005, vol. 81, Issues 4, pp. 753-758. |
Liu X et al. “laser ablation and micromachining with ultrashort laser pulses”, IEEE J. Quantum Electronics, 22, 1706-1716, 1997. |
Madehow.com, Liquid Crystal Display (LCD), Jan. 29, 2006, https:/fweb.archive.org/web/20060129092154/http://www.madehow.com/Volume-1/Liquid-Crystal-Display-LCD.html pp. 1-6. |
Maeda et al. “Optical performance of angle-dependent light-control glass”, Proc. SPIE 1536, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, 138 (Dec. 1, 1991). |
Matsusaka et al. “Micro-machinability of silversodium ion-exchanged glass by UV nanosecond laser,” J. Materials Processing Technology 202 (2008) 514-520. |
Mbise et al. “Angular selective window coatings: theory and experiments” J. Phys. D: Appl. Phys. 30 2103 (1997). |
Mcgloin et al. “Bessel beams: diffraction in a new light” Contemporary Physics, vol. 46 No. 1 (2005) pp. 15-28. |
Merola et al. “Characterization of Bessel beams generated by polymeric microaxicons” Meas. Sci. Technol. 23 (2012) 10 pgs. |
Microchemicals, “Silicon Wafers, Quartz Wafers, Glass Wafers,” Product Specifications: Brochure. 2014, 28 pgs. |
Miranda et al. (Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra; Polym Int 50:1068-1072(2001). |
Mirkhalaf, M. et al., Overcoming the brittleness of glass through bio-inspiration and micro-achitecture, Nature Communications, 5:3166/ncomm4166(2014). |
Mukhina L.; “Laser Pulse Damage on the Surface of Ion Exchange Treated Glass”; Soviet Journal of Glass Physics and Chemistry; vol. 19; No. 3; pp. 269-272; (1993. |
Ogutu et al; “Superconformal Filling of High Aspect Ratio Through Glass Vias (TGV) for Interposer Applications Using TNBT and NTBC Additives”; Journal of the Electrochemical Society, 162 (9), D457-D464 (2015). |
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810. |
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24. |
Polavka et al. “Crosslinking of polymers by the effect of ultraviolet radiation crosslinking of poly(vinyl alcohol) in the presence oflerephthalic aldehyde”; 1980. |
Polynkin et al., Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584. |
Ramil et al. “Micromachining of glass by the third harmonic of nanosecond Nd:YV04 laser”, Applied Surface Science 255 (2009) p. 5557-5560. |
Romero et al. “Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings” J. Opt. Soc. Am. AA/ol 24 No. 8 (2007) pp. 2296-2312. |
Salleo A et al., Machining of transparent materials using IR and UV nanosecond laser pulses, Appl. Physics A 71, 601-608,2000. |
Serafetinides et al., “Polymer ablation by ultra-short pulsed lasers” Proceedings of SPIE vol. 3885 (2000) http://proceedings. spiedigitallibrary.org/. |
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56. |
Shah et al. “Micromachining with a high repetition rate femtosecond fiber laser”, Journal of Laser Micro/Nanoengineering vol. 3 No. 3 (2008) pp. 157-162. |
Shealy et al. “Geometric optics-based design of laser beam shapers”,Opt. Eng. 42(11), 3123-3138 (2003). doi: 10.1117/1.1617311. |
Shorey et al; “Progress and Application of Through Glass Via (TGV) Technology”; 2016 Pan Pacific Microelectron is Symposium, SMTA, Jan. 25, 2016; pp. 1-6. |
Shorey; “Leveraging Glass for Advanced Packaging and IoT”; Apr. 21, 2016, Retrieved Formthe Internet: URL:http://www.corning.com/media/worldwide/cdt/documents/iMAPs%20-%20Corning%20Overview%20-%204-21-16%20FINALpptx.pdf. |
Siegman; “New Development in Laser Resonators”; SPIE, vol. 1227, Optical Resonators (1990) pp. 2-14. |
Stoian et al. “Spatial and temporal laser pulse design for material processing on ultrafast scales” Applied Physics A (2014)114, p. 119-127. |
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses” Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224. |
Swift Glass, Quartz/Fused Silica, Mar. 2016 (Year: 2016). |
Thiele; Relation Between Catalytic Activity and Size of Particle;; Industrial and Engineering Chemistry, vol. 31, No. 7; (1939) pp. 916-920. |
Tom Christiansen, Tami Erickson; Standard Operating Procedure: Spin-On-Glass, Surface Level Characterization (2000). |
Topper et al; “3-D Thin Film Interposer Based on TGV (Through Glass Vias): An Alternative to Si-Interposer”; IEEE, Electronic Components and Technology Conference; 2010; pp. 66-73. |
Toytman et al. “Optical breakdown in transparent media with adjustable axial length and location”, Optics Express vol. 18 No. 24, 24688-24698 (2010). |
Tsai et al. “Investigation of underwater laser drilling for brittle substrates,” J. Materials Processing technology 209 (2009) 2838-2846. |
U.S. Appl. No. 62/846,059; Cai et al. “Silicate Glass Compositions Useful for the Efficient Production of Through Glass Vias”, filed May 10, 2019, 43 pgs. |
U.S. Appl. No. 62/846,102; Guo et al. “High Silicate Glass Articles Possessing Through Glass Vias and Methods of Making and Using Thereof”, filed May 10, 2019, 36 pgs. |
Uzgiris et al. “Etched Laser Filament Tracks in Glasses and Polymers”, (1973) Phys. Rev. A 7, 734-740. |
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS MOEMS. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274. |
Varel et al., “Micromachining of quartz with ultrashod laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997). |
Velpula et al.. “Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams”, Proc. ofSPIEvol. 8967 896711-1 (2014). |
Wakayama et al. “Small size probe for inner profile measurement of pipes using optical fiber ring beam device” Proc, of SPIE vol. 8563, 2012. 7 pgs. |
Wang et al, “Investigation on C02 laser irradiation inducing glass strip peeling for microchannel formation”, Biomicrofluidics 6, 012820 (2012). |
Wlodarczyk et al. “The Impact of Graphite Coating and Wavelength on Picosecond Laser Machining of Optical Glasses,”, 31st ICALEO Program Notes (2012). Paper M#309. |
Wu et al, “A Study On Annealing Mechanisms With Different Manganese Contents in CuMn Alloy”; Journal of Alloys and Compounds, vol. 542, 2012, pp. 118-123. |
Wu et al. “Optimal orientation of the cutting head for enhancing smoothness movement in three-dimensional laser cutting” (2013) Zhongguo Jiguang/Chinese Journal of Lasers, 40 (1), art. No. 0103005. |
Xu et al. “Optimization of 3D laser cutting head orientation based on the minimum energy consumption” (2014) International Journal of Advanced Manufacturing Technology, 74 (9-12), pp. 1283-1291. |
Yan et al. “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes” Optics Letters vol. 37 No. 16 (2012) pp. 3294-3296. |
Yun et al; “P-23:The Contact Properties and TFT Structures of A-IGZO TFTs Combined With Cu—Mn Alloy Electrodes; SID Symposium Digest of Technical Papers 42:1, 1177-1180”, (2011). |
Zavyalov, “3D Hole Inspection Using Lens with High Field Curvature” Measurement Science Review, V. 15, No. 1, 2015. pp 52-57. |
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10. |
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004^23X796/05050354-11, pp. 354-364. |
Pie Scientific, Photoresist stripping and descum organic contamination removal for silicon wafer, Feb. 2016 (Year: 2016). |
West et al., Optimisation of photoresist removal from silicon wafers using atmosphericpressure plasma jet effluent, Jul. 2015, 22nd International Symposium on Plasma Chemistry (Year: 2015). |
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014. |
“PHAROS High-power femtosecond laser system” product brochure; Light Conversion, Vilnius, LT; Apr. 18, 2011, pp. 1-2. |
“TruMicro 5000” Product Manual, Trumpf Laser GmbH + Co. KG, pp. 1^1, Aug. 2011. |
“What is the difference between Ra and RMS?”; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishingra.html), Accessed Aug. 8, 2016. |
Abakians et al.“Evaporative Cutting of a Semitransparent Body With a Moving CW Laser”, J. Heat Transfer 110(4a), 924-930 (Nov. 1, 1988) (7 pages) doi:10.1115/1.3250594. |
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054. |
Ahmed et al. “Display glass cutting by femtosecond laser induced single shot periodic void array” Applied Physics A: Materials Science and Processing vol. 93 No. 1 (2008) pp. 189-192. |
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657. |
ASTM standard C770-16, entitled “Standard Test Method for Measurement of Glass Stress—Optical Coefficient,”. |
Bagchi et al. “Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces” Applied Physics B 88 (2007) p. 167-173. |
Benjamin et al; “The Adhesion of Evaporated Metal Films on Glass”; Proc. Roy. Soc. A., vol. 261, (1962); pp. 516-531. |
Bhuyan et al. “Laser micro- and nanostructuring using femtosecond Bessel beams”, Eur. Phys. J. Special Topics 199 (2011) p. 101-110. |
Bhuyan et al. “Single shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams” Applied Physics Letters 104 (2014) 021107. |
Bhuyan et al. “Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass” Proc. of SPIE vol. 7728 77281V-1, 2010. |
Bhuyan et al., “Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation” by IEEE (2011). |
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, 081102 (2010); doi: 10.1063/1.3479419. |
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574. |
Borghi et al; “M2 Factor of Bessel-Gauss Beams”; Optics Letters; vol. 22, No. 5; (1997) pp. 262-264. |
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.Org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.>df; archived on Oct. 6, 2013). |
Chen et al. “Development of an AOI system for chips with a hole on backside based on a frame imager” Proc, of SPIE vol. 9903, 2016, 6 pgs. |
Chen et al. “Projection ablation of glass-based single and arrayed microstructures using excimer laser”, (2005) Optics and Laser Technology 37, 271-280. |
Chiao etal. 9. “Self-trapping of optical beams,” Phys. Rev. Lett, vol. 13, No. 15, p. 479 (1964). |
Coming Inc., “Corning(Registered) 1737 Am LCD Glass Substrates Material Information”, issued Aug. 2002. |
Coming Inc., “Corning(Registered) Eagle2000 TM AMLCD Glass Substrates Material Information”, issued Apr. 2005. |
Couairon et al. “Femtosecond filamentation in transparent media” Physics Reports 441 (2007) pp. 47-189. |
Courvoisier et al. “Applications of femtosecond Bessel beams to laser ablation” Applied Physics A (2013) 112, p. 29-34. |
Courvoisier et al. “Surface nanoprocessing with non-diffracting femtosecond Bessel beams” Optics Letters vol. 34 No. 20, (2009) p. 3163-3165. |
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455. |
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance” Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680. |
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America. |
Dong et al. “On-axis irradiance distribution of axicons illuminated by spherical wave”, Optics & Laser Technology 39 (2007) 1258-1261. |
Dumin. “Exact solutions for nondiffracting beams I. The scaler theory” J. Opt. Soc. Am. A. 4(4) pp. 651-654, (1987). |
Duocastella et al. “Bessel and annular beams for material processing”, Laser Photonics Rev. 6, 607-621, 2012. |
Eaton et al. “Heat accumulation effects in femtosecond laser written waveguides with variable repetition rates”, Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006. |
Gattass et al. “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates” Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006. |
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98. |
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884. |
Golub, I., “Fresnel axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892. |
Gori et al. “Analytical derivation of the optimum triplicator” Optics Communications 157 (1998) pp. 13-16. |
Handbook of Adhesives (3rd edition, Edited by Irving Skeist), (1977). |
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155. |
Honda et al. “A Novel Polymer Film that Controls Light Transmission”, Progress in Pacific Polymer Science 3, 159-169 (1994). |
Hu et al. “5-axis laser cutting interference detection and correction based on STL model” (2009) Zhongguo Jiguang/Chinese Journal of Lasers, 36 (12), pp. 3313-3317. |
Huang et al., “Laser etching of glass substrates by 1064 nm laser irradiation”, Applied Physics, Oct. 2008, vol. 93, Issue 1,pp. 159-162. |
Iijima et al; “Resistivity Reduction By External Oxidation of Cu—Mn Alloy Films for Semiconductor Interconnect Application”; Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 27, 1963-1968 (2009). |
Intergrace, “Borosilicate glass: technical glass by Pulles & Hanique: Duan & Pyrex,” Pulles & Hanique B.V., 2 pgs. Published Mar. 15, 2012, retrieved from: https://web.archive.org/web/20120315092729/http://www.pulleshanique.com/02_borosilicate-glass.htm. |
Jaramillo et al., Wet etching of hydrogenated amorphous carbon films, Mar. 7, 2001, Diamond and Related Materials, vol. 10, Issues 3-7, pp. 976-979 (Year: 2001). |
Juodkazis S. et al. Laser induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures., Phys. Rev. Lett. 96, 166101,2006. |
Karlsson et al. “The technology of chemical glass strengthening—a review” Glass Technol: Eur. J. Glass Sci. Technol. A (2010) 51 (2) pp. 41-54. |
Kiyama et al; “Examination of Etching Agent and Etching Mechanism on Femtosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates”; J. Phys. Chem. C, 2009, 113, pp. 11560-11566. |
International Search Report and Written Opinion PCT/US2019/019120 dated May 29, 2019, 11 pgs. |
Smedskjaer et al; “Impact of ZnO on the Structure and Properties of Sodium Aluminosilicate Glasses: Comparison With Alkaline Earth Oxides,” Journal of Non-Crystalline Solids 381, 58-64 (2013). |
Chinese Patent Application No. 201980014910.6, Office Action, dated May 5, 2022, 15 pages (8 pages of English Translation and 7 pages of Original Document), Chinese Patent Office. |
Number | Date | Country | |
---|---|---|---|
20190256404 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62633835 | Feb 2018 | US |