This application is a National Phase Application of PCT International Application No. PCT/IL2017/050356, International Filing Date Mar. 21, 2017, entitled “ALKALINE EXCHANGE MEMBRANE FUEL CELLS SYSTEM HAVING A BI-POLAR PLATE”, published on Sep. 28, 2017 under Publication No. WO 2017/163244, which claims priority of Israel Patent Application No. 244698, filed Mar. 21, 2016, all of which are hereby incorporated by reference in their entireties.
Fuel cells are portable reliable sources of clean energy. Unlike batteries, fuel cells can continuously operate as long as fuel (e.g., hydrogen) and oxidant (e.g., oxygen) are supplied to the cell. These properties make fuel cells promising energy sources for the automotive and the aerospace industries and as stationary backup systems. One of the most promising and efficient fuel cell types is the Proton Exchange Membrane Fuel Cell (PEM FC) illustrated in
Anode 10 may include a gas diffusion layer (GDL) or gas diffusion electrode (GDE) 12 that includes, for example, carbon paper GDL. Anode 10 may include an anode catalyst layer 15 that is configured to oxidize the hydrogen into positively charged hydrogen ions (H+) and negatively charged electrons (e−). In some embodiments, membrane 30 may be directly coated with anode catalyst layer 15 in a catalyst coated membrane (CCM) type FC. In a PEM FC anode hydrogen oxidation reaction, water is not a reactant, however, humidified conditions are needed in order to conduct the H+ ions from the anode to the cathode through the membrane. The anode chemical reaction is:
H2→2H++2e− I.
Anode catalyst 15 may be made of noble metals, for example, fine platinum powder.
Cathode 20 may include a gas diffusion layer (GDL) or gas diffusion electrode (GDE) 22 that includes, for example, a carbon paper GDL. Cathode 20 may include a cathode catalyst layer 25 that may be configured to generate water from the hydrogen ions, oxygen and electrons received via a conductor that electrically connects the anode to the cathode. In some embodiments, membrane 30 may be directly coated with cathode catalyst layer 25 in a catalyst coated membrane (CCM) type FC. The cathode chemical reaction is:
½O2+2H++2e−→H2O II.
Membrane 30 may be a proton-conducting polymer membrane made from, for example, NafionR which act as semi-solid electrolyte. The membrane is configured to block the migration of electrons while allowing the migration of H+ ions.
In a PEM FC 100 water is continually being produced under current at the cathode while the H+ ions drag water molecules from the vicinity of the anode towards the cathode. These processes results in: 1) drying of the anode side and 2) water build up on the cathode side, therefore, creating a gradient in water level across the cell having higher water level in the vicinity of cathode 20 than in the vicinity of anode 10, as illustrated in graph 60 of
Solution for the uneven water distribution disclosed above may be provided by using a porous bi-polar plate (BPP) between two adjacent PEM FCs, as illustrated in
In some embodiments, the PEM FC system 150 may include two or more pairs of PEM FC 100A and 100B and all porous conductive BPPs 130 located between each pair of PEM FC 100A and 100B included in system 150 and configured to conduct electricity between cathode 20B and anode 10A. The electrical circuit may include two conductors (not illustrated) electrically connected to the anode 10 of the first external FC 100 (e.g., 100B when system 150 include two FCs) and cathode 20 of the last external FC 100 (e.g., FC 100B when system 150 include two FCs). The conductors may conduct the generated electricity from system 150. Additionally, porous BPP 130 is used to remove product water by capillarity and pressure difference away from cathode 20B side into the cooling water stream in porous BPP 130 in order to prevent cathode 20B flooding, and at the same time, moving cooling water by capillarity and pressure difference toward the anode 10A in order to maintain proper humidity condition at anode 10A, as illustrated in
During the operation of system 150 it will be required to extract the excess water removed from cathode 20B into BPP 130 and added thus accumulated at the cooling stream. Accordingly, water will have to be periodically extracted from the cooling stream.
An even more cost effective fuel cell than the PEM FC is the Alkaline Exchange Membrane Fuel Cell (AEM FC). An exemplary AEM FC is illustrated in
Cathode 320 may include a gas diffusion layer (GDL) 322, for example, carbon paper based, or gas diffusion electrode (GDE) 322, and a cathode catalyst layer 325. The cathode reaction in AEM FC is:
½O2+H2O+2e−→2OH− III.
Catalyst layer 325 may include any material that is configured to enhance the reaction of water with oxygen and electrons to form hydroxide ions. Cathode catalyst layer 325 of AEM FC may include inexpensive, non-noble metal such as silver, iron, nickel, metal-oxides or the like, in comparison to the expensive platinum used as a catalyst in the PEM FC cathode. In some embodiments, membrane 330 may be directly coated with cathode catalyst layer 325 in a catalyst coated membrane (CCM) type FC.
Anode 310 may include a gas diffusion layer (GDL) 312, for example, carbon paper based GDL 312, or gas diffusion electrode (GDE) 312 and an anode catalyst layer 315. Catalyst layer 315 may include any material that is configured to enhance the reaction of hydroxide ions with hydrogen to produce water and electrons, according to reaction IV.
H2+2OH−→2H2O+2e− IV.
Such materials may include relatively inexpensive, non-noble metal catalyst, such as nickel, which is much less expensive than the platinum used in the anode catalyst layer in PEM FC. Alkaline exchange membrane FCs 330 may include a solid polymer electrolyte that can conduct hydroxide ions and water molecules. An exemplary alkaline exchange membrane 330 may include alkaline ionomeric material and inactive polymer mesh support, or the like Alkaline exchange membrane 330 may allow a portion of the water formed in anode 310 to be transferred to the vicinity of cathode 320 and to participate in the reaction in cathode 320. Unlike PEM FC 100 and PEM FCs system 150, the operation of AEM FC 300 involves water in both the cathode and anode reactions. Water is generated on the anode side in the AEM FC at a rate of 2 H2O molecules per electron. This is twice the water generation rate in the PEM FC cathode. Furthermore, water is consumed in the cathode process at a rate of one H2O molecule per electron. This may create a challenging water management in the AEM FC in comparison to PEM FC. Therefore, in AEM FC 300 it is essential to be able to remove the excess water formed on anode 310 while supplying to cathode 320 a sufficient amount of water from the anode for forming the hydroxide ions.
Previous design of the AEM PC taught transport of water from the anode to the cathode of an AEM FC through the cell membrane as the preferred approach to achieving the desired water management in AEM FCs. This approach may provide a satisfactory solution based on the water permeability of presently available AEM ionomers, only when the AEM cell operates at relatively low currents, e.g., lower than 0.5 A/cm2. At higher operation currents relaying of the AEM membrane alone as the water transport conduit becomes problematic, in particular, when cell currents exceeding about 1 A/cm2 because the demanded rate of water transport through the membrane may exceed the permeability of presently available AEMs.
Under constant current operation of an AEM FC (such as AEM 300), the water level in the vicinity of anode 310 is expected to be significantly higher than the water level in and near cathode 320, as illustrated schematically in graph 360 of
In spite of the expected gradient of water level in AEM FC supply of sufficient water to the water consuming cathode of the AEM FC (e.g., to reaction III) is a major challenge, since the rate of water loss at the cathode is, in fact, significantly higher than the rate of water consumption by the cathode process. Some water loss may occur due to the supply of sub-saturated air (as the oxygen source) to the cathode active area. The sub-saturated air may cause the evaporation of some of the water at the cathode's exhaust (not illustrated in
Embodiments of the invention may be related to a system of alkaline exchange membrane fuel cells and a method of operating such system. The system may include a first fuel cell and a second fuel cell adjacent to the first fuel cell. In some embodiments, each of the first and second fuel cells may include: a cathode configured to generate hydroxide ions from water, oxygen and electrons, an anode configured to generate water and electrons from the hydroxide ions and hydrogen received from a hydrogen source, and an alkaline exchange membrane configured to transfer the hydroxide ions from the cathode to the anode, and to transfer water from a vicinity of the anode to a vicinity of the cathode. In some embodiments, the system may further include a first porous bi-polar plate located between the anode of the first fuel cell and the cathode of the second fuel cell and configured to transfer excess water from the vicinity of the anode of the first fuel cell to the vicinity of the cathode of the second fuel cell.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
Some aspect of the invention may be related to a system of fuel cells for producing electricity. A system according to some embodiments of the invention may include two or more AEM FCs, such as, AEM FC 300 illustrated and discussed with respect to
In some embodiments, the system may further include a cooling water stream flowing between the first and second AEM FCs via cooling channels in the BPP. The excess water formed in the anode may be transferred from the anode of the first AEM FC to the cathode of the second AEM FC via the bi-polar plate, thus mixing with the cooling water stream. In spite of the mixing of the excess water with the cooling water stream, the total amount of cooling water stream in the system may be kept substantially constant, due to the efficient passage of the excess water in the BPP and due to the consumption of the transferred water by the reaction (e.g., reaction III) taking place in the cathode. In some embodiments, the bi-polar plate may be made or include a porous material. Any excess water buildup in the system can be released as required from the cooling channels to the environment.
Reference is now made to
In some embodiments, in order to reduce the water level at the vicinity of anodes 310A and 310B and to supply water to reaction III on cathodes 320A and 320B excess water may be transferred from the vicinity of anode 310A to the vicinity of cathode 320B In some embodiments, system 400 may further include a first BPP 430A located between anode 310A of first fuel cell 300A and cathode 320B of second fuel cell 300B. BPP 430A may be configured to transfer excess water from the vicinity of anode 310A to the vicinity of cathode 320B. In some embodiments, using BPP 430A (and/or 430B and 430C) may allow operating AEM FCs 300A and 300B at relatively high currents (e.g., higher than 1 A/cm2) allowing an effective anode-to-cathode water transport rate, higher than the possible water transport rate through cell membrane 330A or 330B alone. In some embodiments, the effective anode-to-cathode water transport may allow to supply to cathodes 320A and 320B air (or other oxygen source) saturated with water to a level that may not cause the “cathode's dry-out” phenomena.
BPP 430A may include a conductive porous material, for example, Aluminum, Nickel, Graphite, Stainless Steel, and Titanium or their alloys. BPP 430A may conduct electricity between AEM FCs 300A and 300B. The pores of the porous material may allow the controlled migration of water, defined by capillary processes and pressure differences (discussed with respect to
In some embodiments, the electrical circuit of AEM FC system 400 may include the two or more AEM FC 300A and 300B and all conductive porous BPPs 430 located between each pair of PEM FC 300A and 300B included in system 400. The electrical circuit may include two conductors (not illustrated) electrically connected to the anode 310 of the first external FC 300 (e.g., 300B when system 400 include two FCs) and cathode 320 of the last external FC 300 (e.g., FC 300B when system 400 include two FCs). The conductors may assist in conducting the generated electricity from system 400.
In some embodiments, system 400 may include a cooling water channels 435 (illustrated in
In some embodiments, the operation of AEM FC system 400 may include providing the Hydrogen to the system at pressure higher than the provided air pressure, for example, providing Hydrogen at 2-3.5 barg (gauge pressure) and providing air at approximately 1 barg. As a result the water pressure in BPP 430A drops from high values near anode 310A to much lower values near cathode 320B. This pressure drop helps the transport of the excess water generated at anode 310A to the vicinity of cathode 320B.
In some embodiments, system 400 may include a third AEM FC (not illustrated). The third FC may include substantially the same components as AEM FC 300A and 300B. System 400 may further include a second BPP 430B (or 430C) located between the cathode of the first fuel cell (e.g., cathode 320A) and the anode of the third fuel cell and configured to transfer access water from the vicinity of the anode of the third fuel cell to the vicinity of the cathode of the first fuel cell. In some embodiments, BPP 430B (and/or 430C) is substantially the same as bi-polar plate 430A discussed above. In some embodiments, system 400 may include more than 3 AEM FCs 300 and more than BPP 340.
Reference is now made to
In box 530, the method may include transferring excess water generated at the anode (e.g., anode 310A) of the first fuel cell (e.g., AEM FC 300A) to the cathode (e.g., cathode 320B) of the second fuel cell (e.g., AEM FC 300B) via a bi-polar plate (e.g., plate 430) located between the anode of the first fuel cell and the cathode of the second fuel cell. The bi-polar plate may include porous material, fine tubes or any other structure that may allow water to be transferred by capillary forces and pressure differences from one side to the other side of the bi-polar plate.
In box 540, the method may include cooling the anodes and cathodes of the first and the second fuel cells by flowing cooling water stream between the first and second fuel cells via the bi-polar plate. The cooling water stream may flow in the pores of the porous plate or at designated channel made in the bi-polar plate. In some embodiments, the amount of water in the cooling water stream may be kept substantially constant throughout a lifecycle of the system. Since the bi-polar plate is configured both to allow a flow of cooling water and transfer excess water from anode 310A to cathode 320B the total amount of cooling water in system 400 may be kept constant, although the excess water stream and the cooling water stream are mixed together.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
244698 | Mar 2016 | IL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2017/050356 | 3/21/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/163244 | 9/28/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4533453 | Oda et al. | Aug 1985 | A |
4740287 | Cawlfield | Apr 1988 | A |
5362366 | De-Nora et al. | Nov 1994 | A |
5503944 | Meyer et al. | Apr 1996 | A |
5700595 | Reiser | Dec 1997 | A |
5942347 | Koncar et al. | Aug 1999 | A |
6054229 | Hsu et al. | Apr 2000 | A |
6146780 | Cisar | Nov 2000 | A |
6368737 | Margiott | Apr 2002 | B1 |
6528197 | De-Haart et al. | Mar 2003 | B1 |
20020102188 | Hsu et al. | Aug 2002 | A1 |
20030039877 | Dufner et al. | Feb 2003 | A1 |
20030148164 | Koch et al. | Aug 2003 | A1 |
20030190512 | Takahashi et al. | Oct 2003 | A1 |
20040058230 | Hsu et al. | Mar 2004 | A1 |
20040258973 | Grasso et al. | Dec 2004 | A1 |
20050255365 | Ikezoe | Nov 2005 | A1 |
20060188774 | Niu et al. | Aug 2006 | A1 |
20060199061 | Fiebig et al. | Sep 2006 | A1 |
20080160366 | Allen et al. | Jul 2008 | A1 |
20080292939 | Xie | Nov 2008 | A1 |
20100021777 | Gottesfeld et al. | Jan 2010 | A1 |
20100285386 | Wang | Nov 2010 | A1 |
20110076590 | Kozakai et al. | Mar 2011 | A1 |
20110229787 | Kozakai et al. | Sep 2011 | A1 |
20120040259 | Tomura | Feb 2012 | A1 |
20120082915 | Kozakai et al. | Apr 2012 | A1 |
20120321991 | Gottesfeld | Dec 2012 | A1 |
20130062196 | Sin | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
389020 | Feb 1989 | AT |
101022171 | Aug 2007 | CN |
1715538 | Oct 2006 | EP |
2891090 | Mar 2007 | FR |
S55139842 | Nov 1980 | JP |
S55141580 | Nov 1980 | JP |
S5867878 | Apr 1983 | JP |
S5896886 | Jun 1983 | JP |
H07 45294 | Feb 1995 | JP |
H1171692 | Mar 1999 | JP |
2010 049912 | Mar 2010 | JP |
6338338 | Mar 2015 | JP |
WO 2009149195 | Dec 2009 | WO |
WO 13047485 | Apr 2013 | WO |
WO 2015175656 | Nov 2015 | WO |
Entry |
---|
Arisetty S. et al. “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells”, Journal of Power Sources, vol. 165, Issue 1, Feb. 25, 2007, pp. 49-57. |
Pan J. et al. “High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications”. Advanced Functional Materials, vol. 20, Issue 2, pp. 312-319. |
Office Action of IL Application No. 244698, dated Oct. 25, 2016. |
Gulzow et al. “Bipolar Concept for Alkaline Fuel Cells”, Journal of Power Sources, 156 (2006), 1-7. |
Heinzel et al. “Fuel Cells-Proton-Exchange Membrane Fuel Cells”, Bipolar Plates, Jan. 1, 2009, 810-816. |
Shiau et al. “Water Management in an Alkaline Exchange Membrane Fuel Cell”, ECS Transactions, vol. 69, No. 17, Oct. 2, 2015, pp. 985-994. |
International Search Report of PCT Application No. PCT/IL2017/050356, dated Jul. 18, 2017. |
Number | Date | Country | |
---|---|---|---|
20190088965 A1 | Mar 2019 | US |